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Abstract. The use of biometric systems is becoming an important solution to 
replace traditional authentication. However, biometric systems are vulnerable to 
attacks. When biometric data is compromised, unlike a password, it can’t be 
changed. Therefore, the security of biometrics models is essential in designing 
an authentication system. To achieve this protection of biometric models, two 
categories of approaches are proposed in the literature, namely, methods based 
on transformation of characteristics and biometric cryptosystems. For the first 
type of approaches, a study is made to assess the security of biometric systems. 
In biometric cryptosystems the realized works are hampered by the lack of 
formal security analysis. Hence the purpose of this paper is to propose standard 
criteria for a formal security analysis of biometric cryptosystems. The proposed 
measures take into account the specific effect of key binding cryptosystems. 
The security analysis is illustrated by experiments on the techniques of Fuzzy 
Commitment and Fuzzy Vault which we use in this work for the protection of 
biometric face recognition system. Our analysis indicates that both techniques 
are vulnerable to intrusion and binding attacks because of the ease of obtaining 
the user's model using the elements known to the attacker.  

Keywords: Security analysis, Biometric cryptosystems, Performance 
evaluation, Models transformation. 

1 Introduction 

Today, the need for security systems is becoming a necessity in the world. To better 
meet this need, biometrics is presented as a real alternative to passwords and other 
identifiers. It ensures that the user is who he claims to be, thereby reducing the risk of 
theft, loss or forgetfulness. However, biometric systems are not protected against 
attacks and a template stored in a database can be stolen by an attacker for an 
illegitimate access. This would mean that legitimate users should not be able to use 
the compromised model to authenticate [1]. To overcome this problem, one idea 
would be to secure biometric authentication scheme. 
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In the literature there are two types of methods to protect biometric templates: 
Methods based on the transformation of biometric features and biometric 
cryptosystems [2]. The first type of methods consists on applying a transform function 
on the biometric characteristics to build a model that will be stored in the database 
(enrollment phase). During authentication, the same function is applied to the 
biometric characteristics of the query template to obtain a model that is then 
compared to the stored reference model to allow or deny the access [2]. Biometric 
cryptosystems use a secret key to wrap the biometric characteristics and generate an 
auxiliary data that will be stored in the database (enrollment phase). In the 
authentication phase the secret key must be extracted from the biometric 
characteristics of the query and the auxiliary data stored [3]. 

However, these biometric technologies include several components that have 
weaknesses and limitations such as high cost, risk of tampering and poor 
performance. To this end a performance evaluation is a necessity for comparing 
different systems. In the case of characteristics transformation methods, a study is 
made by Nagar et al. [4] for the security evaluation of biometrics systems. Although 
cryptosystems are used in the real world (e.g. smart cards) [5], their practical 
applicability is hampered by the lack of a formal security analysis. Thus, the objective 
of this work is to propose a set of standard criteria to evaluate the overall security of 
biometric cryptosystems. 

In the rest of this article, biometric cryptosystems are described in Section 2, and 
then in Section 3 the analysis of the security of cryptosystems is detailed. In Section 
4, experimental results illustrate how the proposed measures can be used to evaluate 
biometric cryptosystems. Conclusion and perspectives are drawn in Section 5. 

2 Biometric Cryptosystems 

Biometric cryptosystems are techniques that aim to integrate the benefits of using a 
secret key (encryption) and biometric features in a security system [6] [7]. A several 
approaches developed in the field of biometric cryptosystems are based on two modes 
of generation of the secret key. Thus, we can distinguish between two types of 
cryptosystems along the two modes (1) Key binding biometric cryptosystems [5]: 
where the biometric template is linked with a secret key in a single entity to build an 
auxiliary data. This data reveal no information on the key or the biometric template 
and (2) Key generation biometric cryptosystems [8]: where the key is derived directly 
from the biometric data. Authentication is successful if the key is retrieved. 

In the literature there are two main approaches to perform key binding biometric 
cryptosystems: Fuzzy Commitment and Fuzzy Vault [9]. The first approach, proposed 
by Juels and Wattenberg [10], consists on using biometric features and secret key to 
generate a helper data. The pair that contains the helper data and the secret key 
encrypted is then stored in the database. In the authentication phase the key must be 
regenerated from the helper data stored in the database and biometric features of the 
query template. The second approach, proposed by Juels and Sudan [11], aims to 
generate a polynomial p from a secret code and biometric characteristic and then add 
false points to construct a Vault V that will be stored in the database. During 
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authentication it must find the secret code from the Vault stored and the biometric 
features of the query in order to succeed the access. 

However, these biometric cryptosystems include several components that have 
gaps and limitations such as the high cost, risk of falsification and poor performance. 
To this end, a performance evaluation is a prerequisite for comparison between 
different biometric systems. To ensure the security and protection against the risks 
associated with these systems, the security analysis of biometric cryptosystems 
consists of measuring these risks according to the probability or frequency of their 
appearance and their possible effects. Nagar and al [4] have made a study for security 
analysis of biometric systems. In the case of biometric cryptosystems the studies are 
made specifically for each approach; there is no formal analysis to analyze the 
security of all biometric cryptosystems. In next section we propose a set of 
generalized criteria to evaluate the overall security of biometric cryptosystems. 

3 Security Analysis of Biometrics Cryptosystems 

The security analysis plays an important role to evaluate the performance of biometric 
systems; it can test several components such as the ease of the system, the security … 
etc. To analyze the security of biometric cryptosystems, we focused on vulnerability 
to intrusion attacks and binding attacks. The term “Intrusion” is the access to a 
biometric system by submitting fake authentication data for the system. “Binding” 
attacks involve the mapping of multiple biometric models generated from different 
encryption parameters to find the original model. To cope with these attacks, it is 
important to analyze the probability of their success in a cryptosystem. 

To describe the security measures of biometric cryptosystems, we used the 
following notation: XU and XU' represent the model of the user and biometric 
characteristics of the request for the same user, XA the biometric characteristics of the 
attacker, H is the auxiliary data, KU and KU' are two different keys of the user and KA 
is the key of the attacker. DO (respectively DE) is a function of distance between the 
original models (respectively auxiliary data in encrypted domain). The user will be 
accepted by the system if the distance between the model and biometric 
characteristics of the query is below a threshold ε. 

We have proposed criteria for (1) measure of the usability of the system, (2) 
measure of the security for intrusion threats evaluation and (3) measure of the security 
for binding threats evaluation. 

3.1 Measure of the Usability of a System 

Measuring the usability of a system is made in terms of False Rejection Rate “FRR”. 
The FRR is the percentage of the users rejected by the system out of the total number 
of users in the database [12]. Therefore we distinguish two cases; before encryption 
and after encryption. 

The False Rejection Rate of the biometric system in Original domain i.e. before the 
encryption, “FRRO” is expressed by the probability that the distance between the 
biometric characteristics of the user XU and the biometric characteristics of the request 
XU’ is greater than or equal to the threshold ε. 
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 FRRO (ε)=P ( DO ( XU , XU’) ≥ ε) (1) 

The False Rejection Rate of the biometric system after the application of encryption, 
i.e. False Reject Rate in encrypted domain, “FRRE” is expressed by the probability that 
the distance between the helper data of the user and the helper data of the request is 
greater than or equal to the threshold ε as given by the following equation: 

FRRE(ε) = P (DE (HU (XU, KU), HU ( XU’, KU)) ≥ ε) (2) 

3.2 Measure of the Security of Intrusion Threats 

The measure of the security of intrusion threats is defined as the probability of a 
successful attack, assuming that the model stored in the database and encryption 
parameters are available to the attacker attempting to usurp the identity of a trusted 
user. The probability of successful intrusion threats is given by the False Acceptance 
Rate “FAR”. The FAR gives the percentage of accepted attackers among the number 
of attackers who come to the system [12]. We have proposed criteria for both cases; 
before encryption and after the encryption. 

False Acceptance Rate of original biometric system before encryption “FARO” is 
given by the probability that the distance between the biometric characteristics of the 
user XU and the biometric characteristics of the attacker XA is lower than the threshold 
ε  as it is illustrated in the following equation: 

FARO(ε)=P(DO(XU, XA ) < ε) (3) 

For the case after encryption, the attacker is required to submit biometric 
characteristics with a set of encryption parameters for authentication. Therefore, there 
are two possibilities; the case where the parameters are ‘Unknown’ to the attacker and 
the case where the parameters are ‘known’ to the attacker. Suppose that the attacker 
doesn’t know the encryption parameters for the specific user. We calculate in this 
case the False Acceptance Rate with Unknown encryption parameters “FARUP” given 
by the following equation which expresses the probability that the distance between 
the helper data of the user and the helper data of the attacker generated by its own key 
KA is lower than the threshold ε. 

FARUP(ε)=P (DE (HU(XU,KU), HA( XA ,KA) < ε) (4) 

If the attacker knows the encryption parameters of the user, the False Acceptance 
Rate with Known encryption parameters “FARKP” is defined by the probability that 
the distance between the helper data of the user and the helper data of the attacker 
generated by the same key of the user KU is lower than the threshold ε, as indicated in 
the following equation: 

FARKP(ε)=P (DE ( HU ( XU , KU), HA (XA , KU) )< ε) (5) 

In addition to the False Acceptance Rate, we considered other probabilities of 
intrusion after encryption where the stored model and the encryption parameters are 
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available to the attacker to gain an illegitimate access to a ‘Different’ biometric system 
which uses the same biometric characteristics. Suppose that the attacker knows also 
the encryption parameters of the second system. In this case, he will try to retrieve the 
biometric model using the model encrypted and the encryption parameters of the 
second system. The probability of success of such attack is called the Cryptosystem 
Intrusion Rate of Different  system with known Parameters “CIRDKP” and is defined 
by the Equation 7 that expresses the probability that the distance between the helper 
data of the user stored in the second system HU

S2 and the helper data of the attacker 
HA (generated by the feature X’U  estimated using the two keys of the user ( the key of 
the first system and the key of the second system) and the helper data of the user 
stored in the first system) is lower than the threshold ε: 

CIRDKP(ε) = P( DE ( HU 
S2(XU,KU), HA  (X’U,K’U) ) < ε) (6) 

If the attacker knows the helper data and the encryption parameters of the user in the 
first system without knowing the encryption parameters of the second system, the 
attack performed in this case is called the Cryptosystem Intrusion Rate of Different 
system with Unknown Parameters ‘CIRDUP’. The success of this attack can be 
expressed by the probability that the distance between the helper data of the user 
stored in the second system HU

S2 and the helper data of the attacker HA (generated by 
the feature X’U, estimated using the key of the user in the first system and both helper 
data of the user stored in the first and the second systems, and his key KA) is lower 
than the threshold ε as specified by 

CIRD UP(ε)=P( DE ( HU
S2(XU,KU), HA(X’U,KA))<ε) (7) 

3.3 Measure of the Security of Binding Threats 

The measure of the security for the evaluation of binding attacks is defined as the 
probability of a successful attack to link different models of the same biometric trait 
of the user and different parameters encryption. Suppose that the two sets of 
encryption parameters are known to the attacker. The Cross Rate in the Encrypted 
fields “CRE” can be defined by the probability that the distance between the helper 
data of the user in the first system HU

S1and the helper data of the user in the second 
system HU

S2 is lower than the threshold (ε equation 8): 

CRE(ε)=P( DE ( HU
S2(XU,KU), (HU

S1(XU’,K’U)<ε)                              (8) 

Besides these attacks, we assume the case where the attacker will attempt to combine 
the helper data of the trusted user and his own helper data HA (generated from his 
biometric data and his own key KA) which we named the Combination Attack; ‘CA’. 
To illustrate this scenario we consider the following criterion which consists of the 
probability that the distance between the result of combination and the helper data of 
the user is lower than the threshold ε. 

CA(ε)=P( DE ( HU(XU,KU), (HU(X’U,KU)+ HA(XA,KA))<ε) (9) 
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We also proposed another criterion, Combination Attack in a ‘different’ system 
“CAdiff”, fin which we assume that the attacker has the encryption parameters and the 
helper data of the user in the first system and tries to have access to a second system. 
We expressed this criterion by the probability that the distance between the helper 
data of the user stored in the first system HU

S1 and the result of combination (of the 
helper data of the user in the first system and the helper data of the attacker generated 
by the key of the user K’U

 ) is lower than the threshold ε by 

CAdiff(ε)=P( DE ( HU
S2(XU,KU

 ), (HU
S1(X’U,K’U

 )+ HA(XA,K’U
 
 ) ) < ε ) (10) 

4 Experiments 

In order to evaluate the proposed security analysis framework of biometric 
cryptosystems, we considered the example of biometric systems based on face 
recognition. Thus, we need two biometric systems using two different methods for 
extracting features of the face images and a technique to protect the authentication 
scheme. 

4.1 Experimental Settings 

At first we created two biometric systems, the first biometric system is based on 
“Laplacian Smoothing Transform, LST” [13] method used for feature extraction 
followed by “Linear Discriminant Analysis, LDA” [14]. The second biometric system 
[15] uses LST for feature extraction followed by Support Vector-Discriminant Analysis 
(SVDA) technique [16] for dimensionality reduction. We evaluated the performance of 
biometric systems using the YALE face database [17] separated into training and test 
subsets. Then we calculated the Hamming distance between the user of the test and the 
reference for matching. In a second step we used the Key binding biometric 
cryptosystems (Fuzzy Commitment and Fuzzy Vault) to secure the two biometric 
systems. We used Reed Solomon error correcting code that allows recovering the data 
even in the case of error transmission [18]. The hash function SHA-1 [19] has been 
used in this work to encrypt the secret key in Fuzzy Commitment scheme. In a third 
step we applied the criteria proposed in Section 3 to analyze the security of these 
systems. 

To evaluate the performance of biometric systems, there are several important 
components to test such as the system reliability and performance. We measured the 
performance of biometric systems using a false acceptance rate set correspondence 
with a false rejection rate. To view the performances of biometric systems when the 
threshold varies, we used the ROC (Receiver Operating Characteristics) [20] curves 
representing the FAR from 1-FRR. The “ROCorig”( FARo from 1-FRRo) curve present 
the original system i.e. before encryption, the system after encryption in case the 
attacker knows the encryption parameters and the case where the attacker does not 
know the encryption parameters is presented by “ROCUnknown”( FARUP from 1-FRRE). 



 Security Analysis of Key Binding Biometric Cryptosystems 275 

4.2 Security Analysis Results of Fuzzy Commitment Technique  

Figure 1 (a) shows the different ROC curves of the first system. We notice 
performance degradation compared to the original model in case the encryption 
parameters are unknown and increased degradation in the case that the attacker knows 
the encryption parameters as indicated by the curve ROC known. As it is shown,  
the original system ROCorig is better than the system after encryption, in case where the 
attacker has just his biometric traits and attempts to gain illegitimate access to the 
system as expressed in ROC Unknown curve, we notice that the system accepts up to 47% 
of the attackers and in the case where the attacker knows also the encryption 
parameters of the system we notice less performance compared to the previous 
scenario (as indicated by the ROC known curve).  

In the second system represented by Figure 1 (b), we note that there is always a 
degradation of performance compared to the original model in the case of intrusion 
with unknown parameters as shown by the ROCUnknown curve, and the degradation of 
the performance increases if the attacker knows the encryption parameters as it is 
indicated by the curve ROC known.  ROCorig curve shows also that the original system is 
better than the system after encryption; we note that the system accepts a maximum of 
11.36% of the attackers in the case of unknown parameters (ROCUnknown).  

 

Fig. 1. ROCorig, ROCUnknown, ROCknown curve of the first system (a) and the second system (b) 

As comparison of the two systems, the second system is more efficient than the 
first; this performance can be explained by the use of the SVDA method which gives 
better results than LDA [14]. 

For intrusion attacks we also evaluated the measures of the criteria, CIRDKP, CRE 
and CIRDUP. 
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Fig. 2. CIRDKP, CRE, CIRDUP curves of Fuzzy Commitment 

Figure 2 (a) shows the representation of CIRDKP for different thresholds. This 
figure shows the possibility of success of the attacker to access a ‘different’ system 
that uses the same biometric traits of the user. We note that the probability of success 
of the attacker is changed if the threshold is less than or equal to 80, due to the intra-
class variation between the user and the attacker. This variation prevents the attacker 
to gain 100% access to the system. As it is shown in the curve, the minimum 
probability that an attacker can access to the system is equal to 86%. So even with the 
intra-class variation, the probability that an attacker succeeds to access the system 
remains high. For a threshold above 80, the value of CIRDKP increases up to 100% 
which means more vulnerability of the system. The probability of success of such 
attack is higher if the attacker knows the helper data stored in the database of the first 
system and the encryption parameters on both systems. The attacker tries to generate a 
helper data HU

’ (XU, KU) from the data of the first system HU
S1 (XU, KU) and the two 

code words cU
S1 and cU

S2 of the two systems as given by the following equation. 

HU
’ (XU, KU)=( HU

S1 (XU, KU) + cU
S1) - cU

S2 =  XU- cU
S2 (11) 

We can conclude that the method of Fuzzy Commitment is vulnerable to intrusion 
attacks. If the attacker knows the encryption parameters and the model stored in the 
system (represented by CIRS) then the probability that he may have access to the 
system is of 100%. 
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In the case where the attacker wants to access to another system that uses the same 
biometric features and has the helper data of the first system and the encryption 
parameters of the first and second systems (represented by CIRDKP), protection with 
Fuzzy Commitment is not guaranteed against this type of attacks. Only the intra-class 
variation can decrease the access probability of the attacker, but from a certain 
threshold the attacker can access with a probability of 100%. 

The Figure 2 (b) shows the CIRD with Unknown Parameters. We note that the 
attacker cannot access to the system if the threshold is below 17; the rate of intrusion 
increases with variation according to thresholds and equal to 100% when the threshold is 
greater than 140. 

Figure 2 (c) shows the representation of ‘Cross Rate in Encrypted domain’ CRE 
according to thresholds. For threshold values less than or equal to 38, the cross rate is 
equal to 86.36%. For other values of the threshold (above 38) the success rate of this 
attack is increased to 100%. In this type of attacks, the rate of vulnerability is due to 
the knowledge of two helper data by the attacker, which makes easy the connection in 
encrypted domains by just matching the different helper data. The vulnerability of 
Fuzzy Commitment according to the proposed scenario can be explained by the ease 
of obtaining the original model from the elements known by the attacker namely the 
helper data and the encryption parameters. 

In ‘Combination Attack’ CA as shown in Figure 3 (a), the attacker and the user use 
the same model to authenticate. The acceptance rate of the attacker may be 0% for 
certain thresholds such as the range of thresholds [0, 20]. The rate of access to the 
system by the attacker is increased with variation because he uses the same record as 
the user. The maximum value of the vulnerability of the system is reached in the 119 
threshold for a rate of attack equal 25%. 

 

Fig. 3. CA, CAdiff curves of Fuzzy Commitment 

In the case of ‘Combination Attack in Different system’ illustrated by Figure 3(b), the 
attacker has a helper data generated by these biometric data and the encryption 
parameters of the user, then he makes a combination with the auxiliary data of the user 
and tries to attack a second system that uses the same biometric trait of the user. We 
notice that the attacker does not have access to the system for thresholds below 199, after  
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this threshold the value of vulnerability is increased to 100% because the attacker uses 
the key of the user. Fuzzy Commitment is more vulnerable to this attack, where several 
helper data generated from the same biometric trait can be adapted by the attacker to 
extract the original biometric model, and thus the ability of the revocation is affected. 

4.3 Security Analysis Results of Fuzzy Vault Technique 

After applying the proposed criteria on the method of “Fuzzy commitment”, we 
analyzed the security of the second method i.e. “Fuzzy Vault” using same criteria. 

Figure 4 shows the ROC curves before encryption ROCorig, after encryption 
ROCUnknown curve and ROCKnown where the attacker knows the encryption parameters. 
We notice a less performance than the original system ROCorig and degradation of 
performances if the attacker knows the encryption parameters. In case where the 
attacker does not have the encryption parameters, the possibility to be accepted is 
varied. If the encryption parameters are known to the attacker, the possibility of 
acceptance is 100% (ROCknown) while the acceptance in case of unknown parameters 
ROCUnknown is less than 100%. This vulnerability is due to the knowledge of the 
polynomial p by the attacker where the possibility of having an illegitimate access to 
the system of 100%. 

 

Fig. 4. ROCorig, ROCUnknown, ROCknown curves of Fuzzy Vault 

Figure 5 (a) shows the ‘Cryptosystem Intrusion Rate in a Different system with 
Known Parametrs’ CIRDKP. In this scenario, the system is vulnerable after the 
threshold 3070 because the attacker knows the polynomial p1 and p2 of two biometric 
systems and also knows the Vault V1 stored in the first system. He has all the elements 
allowing to find the model XU used to estimate the Vault V2 of the second system and 
hence has an illegitimate access to the system using the Equations 12 and 13. 

X’U = Racine (VU
S1- FP) = Racine (Projection (p1, XU)) (12) 

V’U
S2= Projection (p2, X’U) + FP’ (13) 

The attacker is rejected by the system up to the threshold 3070 due to the intra-class 
variation and the false points as well. 
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Fig. 5. CIRDKP, CIRDUP, CRE curves of Fuzzy Vault 

Figure 5 (b) shows the ‘Cryptosystem Intrusion Rate in a ‘Different’ system with 
Unknown parameters’ CIRDUP. We note an increase in vulnerability of the system 
after the threshold 140. This vulnerability is due to the knowledge of two Vaults of the 
two systems (the first system and the second system) and the encryption parameters of 
the first system, the attacker tries to find the original model using known elements 
according to Equations 14. 

X’U = Racine (VU
S1 – FP’A) = Racine (Projection (p1, XU

S1)) = Racine (VU
S2 – FP’A) (14) 

Figure 5 (c) shows the ‘Cross Rate in Encrypted domain’ CRE according to the 
thresholds. For threshold values less than or equal to 0.3, the attacker cannot link the 
two Vaults (the cross rate is 0%). This result can be explained by the false point that 
can make a difference between the two Vaults. For other threshold values (greater than 
0.3) the success rate of this attack is increased to 100% because the attacker knows the 
two polynomials and also the two Vaults. Then to make the correspondence in 
encrypted domain, the attacker can simply match the two Vaults following thresholds 
higher than 0.3. 

We note that the method of Fuzzy Vault is vulnerable to attack from a certain 
threshold depending on the proposed scenarios; this vulnerability is due to the 
possibility of obtaining the original model from the information known to the attacker 
i.e. encryption parameters and stored Vault in the database. 
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Fig. 6. CA ‘combination Attack’ and CAdiff   ‘combination Attack in different system’ curve of 
the Fuzzy Vault 

In CA attack (Figure 6 (a)), the attacker adds his Vault VA generated with his key 
KA to the Vault of the user VU

S1 stored in the first system S1 (Equation 15) which can 
disrupt the system after certain thresholds. We notice that the attacker can access to 
the system after the threshold 550 and then the value of this attack increases 
according to the threshold up to 100 after the threshold 600. 

VA
S1= VA(KA) + VU

S1(KU
S1) (15) 

In CAdiff attack (Figure 6 (b)), the attacker adds the Vault of the user VU
S1 to his Vault 

VA generated with the key of the user KU
S1 to attack a second system (Equation 16). 

The attacker can access the system after the threshold 585. The vulnerability of the 
attack increases up to 100% if the threshold exceeds 600. 

VA
S2=VA(KU

S1) + VU
S1 (KU

S1) (16) 

In combination attack, the attacker has difficulty of access to the same system as 
illustrated by CA curve. This difficulty can be higher in case of attack in a second 
system that uses the same biometric features of the user knowing the key to the first 
system as shown in CAdiff. 

5 Conclusion 

Biometric cryptosystems are developed to protect the biometric models; however no 
study is conducted in this domain for a formal security analysis. In this paper, we have 
proposed different measures to assess the security strength of key binding biometric 
cryptosystems. We applied these criteria for the protection of a biometric facial 
recognition system. The emphasis here was on the security analysis, which was tested 
on Fuzzy Commitment and Fuzzy Vault techniques showing the interest of the proposed 
measures. Our analysis shows that both methods are vulnerable to ‘intrusion’ and 
‘binding’ attacks especially if the attacker knows the encryption parameters in 
intrusion attacks and the helper data along with the encryption parameters in the cross 
attacks. Our experiments expressed that the method of Fuzzy Commitment is more  
vulnerable to proposed scenarios than Fuzzy Vault. This vulnerability can be explained 
by the ease of obtaining the original model from the auxiliary data and the encryption 
parameters. The proposed criteria allow evaluating the robustness of the biometric 
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cryptosystems (as shown for both techniques Fuzzy Commitment and Fuzzy Vault) 
and also make the difference between security and usability. 

The experimental field in the future will be extended to include different parameters 
for the protection of biometric systems. As a future work, we plan to offer other attack 
scenarios. 
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