
Ontology Evolution with Semantic Wikis

Mauro Dragoni and Chiara Ghidini

FBK-irst, Via Sommarive 18 Povo, I-38123,Trento, Italy
[dragoni,ghidini]@fbk.eu

Abstract. One of the challenges of using ontology evolution approaches is the
capability of exposing the ontology with information that may be used by third-
party tools for tracking the updates carried out on the ontologies. In this paper
we present and enhanced version of the MoKi tool equipped with an ontology
evolution approach that permits to evolve an ontology by providing a mechanism
for facing the tracking challenge. By considering, as use case, the context of the
Organic.Lingua EU-project, we will discuss the effectiveness of the proposed
approach and possible drawbacks.

1 Introduction

Ontologies are dynamic entities that evolve over time because they are affected by
the necessity of applying changes in the domain, in the conceptualization, or in their
specification. As stated in [25], the ontology evolution may be defined as “the timely
adaptation of an ontology to the arisen changes and the consistent propagation of these
changes to dependent artifacts.”

The management of ontology evolution has several challenges associated, ranging
from the adequate control of ontology changes to the administration of ontology ver-
sions. Ontologies evolution refers to the activity of facilitating the modification of an
ontology by preserving its consistency; it can be seen as a consequence of different
activities during the development and, mainly, the maintenance of the ontology.

Starting from a high level perspective, we can classify ontology evolution in two
main scenarios: the first one is that only one ontology is created, maintained, and made
evolve, by one or more users; the second, and more complex one is that different users
work on different ontologies, and then, these ontologies are merged, and made evolve, in
one single inter-ontology. The challenges raised by using an ontology evolution mech-
anism become more complex in scenarios where concepts defined in the ontology are
used to tag resources that are then retrieved by using third-party tools or web search en-
vironments. By taking into account this scenario, the tool used for managing the ontol-
ogy and its evolution has to provide the capability of injecting, into the ontology, some
information for maintaining the retrieval effectiveness of the search environments used
to retrieve resources that are tagged with concepts that have been updated or deleted.

In this paper we analyze the scenario explained above by considering, as use case, the
context of the Organic.Lingua EU-project1. This project aims to create a multilingual
portal where users are able to retrieve agricultural resources tagged with concepts de-
fined into an ontology. The ontology is managed by using a semantic wiki tool, called

1 http://www.organic-lingua.eu

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 105–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



106 M. Dragoni and C. Ghidini

MoKi, that has been equipped with an ontology evolution approach focused on the
maintenance of the retrieval effectiveness of the Organic.Lingua platform.

The paper is organized as follow: Section 2 presents a review on the ontology evo-
lution field. Section 3 presents the MoKi tool, while in Section 4 we discuss how MoKi
will be used for facing the ontology evolution challenge and we compare the presented
enhanced version of MoKi against the other semantic wikis presented in the literature.
Section 5 shows which are the issues raised when ontology evolution approaches are
used; finally, Section 6 concludes.

2 Related Work

Several approaches have been presented in the literature about ontology evolution. The
aspects that are taken into account may be split in two different categories:

– Schema evolution: it is the ability to change the schema of the ontology without
loss of data and by maintaining the consistency of the ontology, moreover, it has to
be possible to access to both old and new data through the new ontology schema;

– Schema versioning: it is the ability to access all the data (both old and new)
through all versions of the ontology. A version is a reference that labels a quiet
point in the definition of a schema. Therefore, all resources have to be retrievable
by using coherent concepts and by using every historic definition of the ontology
schema.

Both aspects are strictly correlated with the context of the Organic.Lingua project due
to the necessity of maintaining the retrieval effectiveness of the system through the
changes that are carried out on the ontology.

Schema Evolution. The evolution of ontology schema is generally composed of two
phases: the planning of the changes, and their implementation.

The planning of the changes consists of identifying the potential consequences of a
change, and estimating what needs to be modified to accomplish a change. Such analy-
sis, that derives from the software engineering environment, is very helpful to estimate
the cost and effort required to implement the requested change. In [17] the author de-
scribes in detail how the change of a concept in the ontology might imply a cascade of
changes (propagation) that may affect the entire ontology.

By analyzing the propagation of changes, it is possible to estimate which is the cost
of the ontology evolution. As stated in [17], the cost of evolution is a key element in the
decision on propagating changes through the ontology or not, and in [23] the authors
provide an overview on approaches related to the estimation of the cost of evolution and
propose a parametric model for the estimation of costs to build, maintain, and evolve
and ontology.

The second phase is related to the implementation of the changes. In the literature
there are identified four different kinds of approach used to propagate the effects of
changes implemented in an ontology:

– immediate conversion (or coercion) [12] [15]
– deferred conversion (or screening) [1] [20]



Ontology Evolution with Semantic Wikis 107

– explicit deletion [3]
– filtering [1] [20]

After the implementation of the changes, it is sometimes necessary to restructure the
ontology in order to maintain the same information capacity [14] defined as the seman-
tic equivalence between different versions of the ontology [19]. This step may introduce
inconsistencies in the ontology schema that have to be managed.

There are two different schools of thought about how to face this problem: the first
one is the “consistency maintenance”, that it is a conservative approach in which the
system is kept consistent at all costs. Some approaches related to consistency mainte-
nance are presented in [25] and [11]. While, the second strategy simply consists in the
“inconsistency management”, in which inconsistencies are considered inevitable and,
therefore, it is necessary to manage them. The main studies in the literature about in-
consistency management are related to the localization of inconsistencies, for example
[6] it is presented an approach based on the use of sub-ontologies to identify inconsis-
tencies, while in [18] the authors present a logic-based method to detect some kinds of
inconsistencies.

Schema Versioning. Versioning is in general the mechanism that allow users to keep
track of all changes applied to the definition of something, and to undo changes by
rolling back to previous versions. The same principle is applied to ontologies, in which
it is necessary to track the changes applied to the ontology schema, in order to permit
to users to roll-back to previous versions if it is necessary.

There are two main strategies that are adopted to establish the version of an ontology:
“state-based” and “change-based”. The “state-based” versioning consists in considering
the state of the ontology at certain moment in time; a new state is created each time that
a change is applied by the system to the ontology schema. An example of system that
supports such a versioning strategy is described in [8].

The second way to manage schema versioning is a “change-based” approach (or
“operation-based”) that consisting in storing information about the precise changes or
explicit operations that are performed on the ontology. The advantages of this approach,
with respect to the previous one, is that it is simpler to compare different versions of an
ontology and to implement undo/redo mechanisms. An example of system implement-
ing a change-based approach is proposed in [13].

3 MoKi Tool

MoKi2 is a collaborative MediaWiki-based [9] tool for modeling ontological and pro-
cedural knowledge. The main idea behind MoKi is to associate a wiki page, containing
both unstructured and structured information, to each entity of the ontology and process
model. From a high level perspective, the main features of MoKi3 are:

2 See http://moki.fbk.eu
3 A comprehensive description of MoKi can be found in [4].

http://moki.fbk.eu


108 M. Dragoni and C. Ghidini

– the capability to model different types of conceptual models in an integrated man-
ner. In particular the current version of MoKi is tailored to the integrated modeling
of ontological and procedural knowledge;

– the capability to support on-line collaboration between members of the modeling
team, including collaboration between domain experts and knowledge engineers.

In the context of the Organic.Lingua project, the use of MoKi has been focused on the
modeling of the ontological knowledge only, while the collaborative feature is useful
due to the structure of the modeling team that is composed by heterogeneous groups of
domain experts and knowledge engineers situated in different geographical regions.

The following subsection illustrates how these features are realized in the generic
MoKi architecture.

Modeling integrated ontological and procedural knowledge The capability of modeling
integrated ontological and procedural knowledge is based on different characteristics
of MoKi. MoKi associates a wiki page to each concept, property, and individual in
the ontology, and to each (complex or atomic) process in the process model. Special
pages enable to visualize (edit) the ontology and process models organized according
to the generalization and the aggregation/decomposition dimensions respectively. The
ontological entities are described in Web Ontology Language (OWL [24]), while the
process entities are described in Business Process Modeling Notation (BPMN [16]).

Supporting collaboration between domain experts and knowledge engineers MoKi is
an on-line tool based on MediaWiki, thus inheriting all the collaborative features pro-
vided by it. In addition MoKi facilitates the collaboration between domain experts and
knowledge engineers by providing different access modes to the elements described on
the model, as illustrated in Figure 1 for the ontology concept “Mountain”.

MoKi allows to store both unstructured and structured descriptions of the elements
of the models, as shown on the left hand side of Figure 1. The unstructured part contains
a rich and often exhaustive description of knowledge better suited to humans, usually
provided with linguistic and pictorial instruments. Instead, the structured part is the
one which is used to provide the portion of knowledge which will be directly encoded
in the modeling language used to describe the specific element (OWL in the case of
the concept “Mountain”). The advantage of storing the unstructured and structured de-
scriptions in MoKi is twofold. First, informal descriptions are usually used to provide
the initial description upon which the formal model is built, and to document the ele-
ments of the model (e.g., for future access and revisions). Storing the unstructured and
structured descriptions in the same tool can facilitate the interplay between these parts.
Second, domain experts, who usually create, describe, and review knowledge at a rather
informal/human intelligible level, may find the unstructured part their preferred portion
of page where to describe knowledge, while knowledge engineers should be mainly
focused on the descriptions contained in the structured part. Nevertheless, by using the
same tool and accessing the same pages, all of them can be notified of what the others
are focused at. Moreover, the discussion facilities of wikis, together with special fields
for comments, can be used by both roles to discuss on specific parts of the model.

The reader, may found more details about the general features of MoKi in [5].



Ontology Evolution with Semantic Wikis 109

Fig. 1. Multi-mode access to a wiki page

4 Ontology Evolution with MoKi

By considering the aims of the Organic.Lingua project, MoKi implements an evolution
mechanism that permits to achieve the following goals:

– to modify the definition of a concept and at the same time to maintain an association
of deprecation with the old definition;

– to delete a concept and at the same time to track the changes;
– to grant retrieval effectiveness after an update or a deletion of a concept.

The main issue related to the ontology evolution in the Organic.Lingua project is to
maintain the retrieval effectiveness of the platform when concepts are both updated
and/or deleted. In this Section we present how these goals are reached with the use of
MoKi in the context of the Organic.Lingua project.

Concept Update. The concept update is intended as an action performed by a user
consisting on modifying the definition with which a concept is identified in the ontology.
A concept may be updated in different ways:

– the concept definition is only modified: assuming to have a concept defined as “A”,
it is then renamed as concept “B”;

– the concept is split in two or more concepts: assuming to have in the ontology a
concept defined as “A”, it may be split in the set of concepts “B”, “C”, and “D”.



110 M. Dragoni and C. Ghidini

Fig. 2. Concept update by modifying its definition

Fig. 3. Concept update by splitting the original concept in two or more new concepts

In this context, it is desirable that in both cases the old definition of the concept
“A” is maintained in the ontology, because, as explained earlier, it is necessary that the
resources stored in the repository, that has been annotated with the concept “A”, still
remain retrievable when users look for resources annotated with the concept “A”.

Figures 2 and 3 present the two scenarios respectively when a concept is updated by
modifying only its definition, and when a concept is split in two or more concepts.

The left parts of the images show the ontology situation before the update, while
the right parts show how the ontology evolves after the two possible concept updates.
In both cases, the starting point is the scenario in which a concept subsumes (“isA”
relationship) other concepts, (the same strategies may also be applied for different type
of relations), and it is used to annotated a set of resources stored in the repository.

When a concept is updated (Figure 2), the ontology is modified by inserting a new
concept that replaces the old one; however, the old one is maintained in the ontology.
The associations between the old concept and its subsumed concepts are moved, and
they are placed as subsumptions of the new concept. Two relations are created between
the old concept and the new one: “isReplacedBy” and “replaces”. The relations “isRe-



Ontology Evolution with Semantic Wikis 111

placedBy” and “replaces” are used for retrieval purposes because they permit to navi-
gate through the old concept definitions that are maintained in the ontology in order to
preserve the retrieval effectiveness. In fact, the resources annotated with the definition
of the old concepts still remain retrievable when users perform queries containing the
definition of the old concepts. Moreover, in order to preserve also the efficiency of the
platform, it is possible to annotate the resources, previously annotated with the defi-
nition of the old concept, with the definition of the new one. This way, the resources
are retrievable by using only the definition of the new concept; otherwise, it would be
necessary to perform the retrieval operation in different steps.

The second case is the split of the original concept in two or more concepts (Fig-
ure 3). In this case, the operations described in the previous case, are repeated for the
all concepts that have been created after the split of the original one. Therefore:

– the subsumptions relationships are copied for all new concepts;
– the couple of relations “isReplacedBy” and “replaces” are created for each new

concept;
– the actions to preserve the effectiveness and the efficiency of the platform are per-

formed.

Concept Deletion. Similarly to the concept update, the concept deletion has to be
managed differently based on the relationships between the deleted concept and the
other ones. Two different scenarios are expected: (i) the concept is a middle node of the
ontology; and, (ii) the concept is a leaf of the ontology.

The case in which the concept is at the top of the ontology is not managed because
it is supposed that the top concept is never been deleted.

Figures 4 and 5 show the two scenarios respectively when the deleted concept is a
middle node or a leaf of the ontology.

In the first case, it is supposed that the concept “B” (middle node) is deleted, while in
the second case, it is supposed that the deleted concept is “Y” (leaf node). It is desirable
that in both cases the concepts “B” and “Y” are somehow maintained in the ontology,
because, as explained earlier, it is necessary that the resources stored in the repository,
that has been annotated with the concept “B” (or “Y”), still remain retrievable when
users look for resources annotated with the concept “B” (or “Y”).

Fig. 4. Deletion of a middle-node concept



112 M. Dragoni and C. Ghidini

Fig. 5. Deletion of a leaf concept

The left parts of the images show the ontology situation before the deletion, while
the right parts show how the ontology evolves after the two possible concept deletions.
In both cases, the relation used to associated the concepts is the “isA” relationship,
however, the same strategies may also be applied for different type of relations. It is
also supposed that the resources are annotated by using only the deleted concept.

When the deleted concept is a middle node (the concept “B” in Figure 4), the sub-
sumed concepts (in this case the concepts “X”, “Y”, and “Z”) are directly associated
with the parent concepts of “B” in order to preserve the consistency of the taxonomy.
However, there is the possibility that a set of resources is annotated by using only the
concept “B”. To make these resources retrievable it has been decided to use the “has-
DeprecatedParent” and “hasDeprecatedDescendant” relationships. The “hasDeprecat-
edParent” relationship associates the concepts that was descendants of the deleted con-
cept, with the deleted concept itself. This way, when users perform queries containing
the concept “X” and/or “Y” and/or “Z”, the platform will also looks for resources that
are annotated by using the concept “B”. In the same way, when a user perform queries
containing the concept “A”, the “hasDeprecatedDescendant” relationship is exploited to
retrieve the resources that have been annotated by using the concept “B”

In the second case (Figure 5), it is supposed that the deleted concept “Y” is a leaf
node of the ontology. In this case, the evolution of the ontology is more simpler than
the previous case. The “hasDeprecatedDescendant” relationship is created between the
concepts “B” and “Y”, and this relationship is exploited in the same way explained for
the previous case. Therefore, when users look for resources annotated with the con-
cept “Y”, these resources still remain retrievable, while, when users look for resources
annotated with the concept “B”, the resources annotated with the concept “Y” will be
retrieved too.

4.1 Ontology Evolution with Semantic Wikis: A Comparison

In the literature, wiki systems and semantic wikis have been mainly applied to support
collaborative creation and sharing of ontological knowledge.

AceWiki [10] was developed in the context of logic verbalization, that is, the effort
to verbalize formal logic statements into English statements and vice-versa. AceWiki
is based on Attempto Controlled English (ACE), which allows users expressing their



Ontology Evolution with Semantic Wikis 113

Table 1. Comparison of state-of-the-art modeling wikis

OWL Evolution
support mechanism

AceWiki X
SMW+ X
IkeWiki X

OntoWiki X X
MoKi v.2 X X

knowledge in near natural language (i.e. natural language with some restrictions). Se-
mantic MediaWiki+ [7], which includes the Halo Extension, is a further extension on
Semantic MediaWiki with a focus on enhanced usability for semantic features. Espe-
cially, it supports the annotation of whole pages and parts of text, and offers “knowledge
gardening” functionalities, that is maintenance scripts at the semantic level, with the aim
to detect inconsistent annotations, near-duplicate entries etc.

IkeWiki [22] supports the semantic annotation of pages and semantic links between
pages. Annotations are used for context-specific presentation of pages, advanced query-
ing, consistency verification or drawing conclusions. OntoWiki [2] seems to focus
slightly more directly on the creation of a semantic knowledge base, and offers widgets
to edit/author single elements/pages and whole statements (subject, predicate, object).

We have compared the tools mentioned above, together with the versions of MoKi
presented in this paper, against the ontology evolution features. The results are dis-
played in Table 1, where the columns refer to the capability of: (i) representing entities
by using OWL syntax; and (ii) providing an ontology evolution algorithm when changes
are carried out on pages.

As we can see from the table, all the compared wikis support the use of the OWL
language for representing the entities, while only OntoWiki implements and ontology
evolution approach. The approach implemented in OntoWiki is based on the EvoPat
algorithm [21] that permits to define evolution patterns that may be applied to an ontol-
ogy for evolving it. This strategy is merely related to the evolution of the ontology, but
it does not take into account the necessity of tracking the historical aspect of the ontol-
ogy. This way, with respect to the ontology evolution approach implemented in MoKi,
an external tool is not able to infer which was the previous structure of the ontology.

5 Challenges on the Ontology Quality and Exposure

The use of ontology evolutions mechanisms needs further activities for checking the
updated version of the ontologies that are generated as well as for verifying the impact
of the carried out changes on the functionalities of third-party tools that, eventually, ex-
ploit the ontology for their activities (for instance, resource tagging). In this Section we
want to highlight which are the challenges raised by using an ontology evolution mech-
anism and to verify if the approach implemented in MoKi faces them in an effective
way.



114 M. Dragoni and C. Ghidini

5.1 Ontology Quality

The evolution of ontologies implies the possibility of introducing some mistakes into
the ontology definition. For instance, after deletion operations, there is the probabil-
ity that some concepts may remain orphans due to the removal of some relationships,
or that there are individuals defined without using concepts. Some examples of im-
precisions are: concepts and properties that do not have verbal descriptions, orphaned
concepts, concepts that are not used to tag individuals, properties that do not have do-
main and/or range definitions, presence of non-shared concepts and/or properties, and
individuals with no type defined.

In order to avoid the existence of these imprecisions, MoKi implements a service that
permits to knowledge engineers to identify the elements that contains some errors.

This service checks the quality of the ontology by performing the following actions
in order to avoid the issues listed above:

– Concepts checking: this check consists in verifying that every concept has a verbal
description, that there are not orphaned concepts, concepts without individuals, and
non-shared concepts.

– Individuals checking: this check consists in verifying that every individual has a
type defined.

– Properties checking: this check consists in verifying that every property has a verbal
description, that both domain and range are defined in each property, and that there
are not non-shared properties.

Besides this automatic check, MoKi implements a further service that helps the knowl-
edge engineer to discover ontology imprecisions. It consists in the use of questionnaires
containing list of statements that have been automatically inferred from the domain
model defined in the ontology used by the tool. Only statements formulated by using
already existing complex concept expressions are displayed. A knowledge engineer an-
alyzes the explanation of each inferred statement in order to understand how it has been
inferred and if the statement is correct with respect to which should be the content of the
ontology. This way, the knowledge engineer may exploit this service in order to identify
possible imprecisions in the ontology and to adjust the ontology by providing/removing
elements that cause the imprecisions.

5.2 Ontology Exposure

The challenge of exposing the ontology is a very important aspect not only in the context
of the Organic.Lingua project.

Indeed, this challenge impacts on all scenarios in which there are tools that exploit
ontologies produced and managed by third-party providers and that they use the con-
cepts defined in the ontology for several activities, like the annotating one.

In these scenarios, the evolution of an ontology might be critical from the point
of view of resource retrieval. Indeed, the external tools have to be able to understand
how the changes are represented in the ontology in order to update the set of concepts
available for the tagging activity, as well as, to provide a mechanism in the search
environment for retrieving the resources tagged with the old versions of the ontology.



Ontology Evolution with Semantic Wikis 115

The current version of MoKi exposes the ontology in Linked Data format to external
tools that use it for supporting the tagging activity of the resources that are deployed on
the Organic.Lingua portal.

The approach implemented in MoKi that is described in Section 4, provides a set of
relationships that permit to reconstruct the changes carried out on the ontology. This
way, external tools may exploit these relationships for updating the interface provided
to their users, while the search environment may use these relationships for maintaining
its effectiveness.

6 Conclusions

In this paper we presented how the challenge of ontology evolution may be faced by
using semantic wiki tools. In particular, the use case that we have considered takes into
account the scenario in which an ontology is used for tagging resources available on the
web. We described how the presented version of MoKi is able to manage the ontology
evolution mechanism by providing a set of relationships that permit both to external
tools and to search environment, to maintain the knowledge of the changes carried on
the ontology.

Acknowledgments. Organic.Lingua is funded under the ICT Support Program of the
EU Commission (Grant Agreement Number 270999).

References

1. Andany, J., Léonard, M., Palisser, C.: Management of schema evolution in databases. In:
Lohman, G.M., Sernadas, A., Camps, R. (eds.) VLDB, pp. 161–170. Morgan Kaufmann
(1991)

2. Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A Tool for Social, Semantic Collaboration.
In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749. Springer, Heidelberg (2006)

3. Banerjee, J., Kim, W., Kim, H.-J., Korth, H.F.: Semantics and implementation of schema evo-
lution in object-oriented databases. In: Dayal, U., Traiger, I.L. (eds.) SIGMOD Conference,
pp. 311–322. ACM Press (1987)

4. Ghidini, C., Rospocher, M., Serafini, L.: Moki: a wiki-based conceptual modeling tool. In:
ISWC 2010 Posters & Demonstrations Track: Collected Abstracts. CEUR Workshop Pro-
ceedings (CEUR-WS.org), Shanghai, China, vol. 658, pp. 77–80 (2010)

5. Ghidini, C., Rospocher, M., Serafini, L.: Conceptual modeling in wikis: a reference archi-
tecture and a tool. In: The Fourth International Conference on Information, Process, and
Knowledge Management, eKNOW 2012 (2012)

6. Haase, P., Stojanovic, L.: Consistent Evolution of Owl Ontologies. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer, Heidelberg (2005)

7. Hansch, D., Schnurr, H.-P.: Practical applications of semantic mediawiki in commercial en-
vironments - case study: semantic-based project management. In: 3rd European Semantic
Technology Conference, ESTC 2009 (2009)

8. Klein, M.C.A., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology Versioning and Change
Detection on the Web. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS
(LNAI), vol. 2473, pp. 197–212. Springer, Heidelberg (2002)



116 M. Dragoni and C. Ghidini

9. Krotzsch, M., Vrandecic, D., Volkel, M.: Wikipedia and the semantic web - the missing links.
In: Proc. of the 1st Int. Wikimedia Conference, Wikimania 2005 (2005)

10. Kuhn, T.: AceWiki: A Natural and Expressive Semantic Wiki. In: Proceedings of Semantic
Web User Interaction at CHI 2008: Exploring HCI Challenges (2008)

11. De Leenheer, P., de Moor, A., Meersman, R.: Context dependency management in ontology
engineering: A formal approach. J. Data Semantics 8, 26–56 (2007)

12. Lerner, B.S., Habermann, A.N.: Beyond schema evolution to database reorganization. In:
OOPSLA/ECOOP, pp. 67–76 (1990)

13. Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed ontologies on the
semantic web. VLDB J. 12(4), 286–302 (2003)

14. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The use of information capacity in schema
integration and translation. In: Proceedings of the 19th International Conference on Very
Large Data Bases, VLDB (1993)

15. Nguyen, G.T., Rieu, D.: Schema evolution in object-oriented database systems. Data Knowl.
Eng. 4(1), 43–67 (1989)

16. OMG. Business process modeling notation, v1.1, www.omg.org/spec/BPMN/1.1/PDF
17. Plessers, P.: An Approach to Web-Based Ontology Evolution. PhD thesis. Department of

Computer Science, Vrije Universiteit Brussel, Brussel, Belgium (2006)
18. Plessers, P., De Troyer, O.: Resolving Inconsistencies in Evolving Ontologies. In: Sure,

Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 200–214. Springer, Heidelberg
(2006)

19. Proper, H.A., Halpin, T.A.: Conceptual schema optimisation: Database optimisation before
sliding down the waterfall. Technical Report 341. Department of Computer Science, Univer-
sity of Queensland, Australia (1998)

20. Ra, Y.-G., Rundensteiner, E.A.: A transparent schema-evolution system based on object-
oriented view technology. IEEE Trans. Knowl. Data Eng. 9(4), 600–624 (1997)

21. Rieß, C., Heino, N., Tramp, S., Auer, S.: Evopat - pattern-based evolution and refactoring of
rdf knowledge bases. In: International Semantic Web Conference (1), pp. 647–662 (2010)

22. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management. In: 1st Int.
Ws. on Semantic Technologies in Collaborative Applications, STICA 2006 (2006)

23. Simperl, E., Popov, I.O., Bürger, T.: ONTOCOM Revisited: Towards Accurate Cost Predic-
tions for Ontology Development Projects. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC
2009. LNCS, vol. 5554, pp. 248–262. Springer, Heidelberg (2009)

24. Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language guide. W3C Rec-
ommendation, February 10 (2004)

25. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis. University of Karl-
shrue, Karlshrue, Germany (2004)

www.omg.org/spec/BPMN/1.1/PDF

	Ontology Evolution with Semantic Wikis
	Introduction
	Related Work
	MoKi Tool
	Ontology Evolution with MoKi
	Ontology Evolution with Semantic Wikis: A Comparison

	Challenges on the Ontology Quality and Exposure
	Ontology Quality
	Ontology Exposure

	Conclusions
	References




