
Experimentation in Executable Enterprise

Architecture Models

Laura Manzur, John Santa, Mario Sánchez, and Jorge Villalobos

Universidad de los Andes, Bogotá, Colombia
{lc.manzur441,j-santa,mar-san1,jvillalo}@uniandes.edu.co

Abstract. Enterprise Architecture (EA) is a multidimensional model-
based approach which enables analysis and decision-making in organiza-
tions. Currently, most EA approaches produce inherently static
models: they focus on structural qualities of the organizations and rep-
resent their state only in one specific point in time. Thus, these models
are not suitable enough for analyzing dynamic and run-time features of
the organizations. This paper aims to solve this situation by proposing
a model-driven platform for EA modeling and simulation. The proposal
includes the means to build executable EA models, define experiments
over the models, run the experiments, observe their run-time behavior,
and calculate indicator-based results to aid the decision-making process.

Keywords: Enterprise Architecture, Executable Models, Discrete Event
Simulation.

1 Introduction

The core of Enterprise Architecture (EA) approaches are models and diagram-
matic descriptions of systems and their environment [7]. The main goal of EA
projects is building said models, ensuring that they are an adequate represen-
tation of the enterprise in a specific point in time, and to use the models to
diagnose problems or to propose improvements.

Usually, EA projects use metamodels to guide the construction of EA models.
These metamodels are selected or designed depending on the project’s needs and
they define the types of elements that can appear in the models, the relevant
structural and behavioral properties of each one, and their possible relationships.
For example, a metamodel can establish: i) that the sole entities supported are
Processes, Applications and Infrastructure Services; ii) the structural and be-
havioral properties that modelers can provide about each kind of entity (e.g.,
application name and service cost (structural), application response time and
application failure probability (behavioral)); iii) that processes and applications
can be related (a process supported by an application), and that applications and
infrastructure services can be related as well (an application depends on some
services). Furthermore, some metamodels include constraints, which provide ad-
ditional information about valid or desirable model structures. Constraints can
be used to specify that the total cost of the services invoked in a process instance

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 455–469, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

456 L. Manzur et al.

should be less than $10, or specify that no process should depend on more than
three applications (desirable).

EA models are typically analyzed by human experts. They study the ele-
ments, relations, and properties to identify problems and to derive conclusions
that support decision-making processes. These analyses are made both by hand
(studying the models directly) and by using tools that interpret the information
present in the models. Nevertheless, “an enterprise architecture [...] is a static de-
scription of the essential components of the enterprise and their interconnections.
By itself, this static description does not provide enough information to analyze
and understand the behaviors that a given enterprise architecture is capable of
producing” [6]. This means that there is information about the enterprises, and
especially about their behavior, that cannot be evidenced just by looking at the
models. As a result, this information is ignored during the analysis processes.

Including dynamic elements in enterprise architecture models is not straight-
forward. On one hand, dynamic elements are typically absent from standardized
metamodels, and thus they cannot appear in the models. On the other hand,
analysis tools, which are based on said standardized metamodels, provide only
the means to work with structural and static aspects. Thus, they would not be
able to use information about dynamic features even if it would be present. Fi-
nally, dynamic elements introduce a whole new complexity level for the analysis
process that is beyond the capabilities of some analysis techniques.

To address this situation and enable the modeling and analysis of dynamic
features, we propose a model-driven platform for simulation. Simulation is the
key element here: by means of simulation, it is possible to draw inferences con-
cerning run-time characteristics of an enterprise [1]. Moreover, our proposal has
some characteristics that differentiate it from previous simulation proposals in
the EA domain. First of all, it does not use pre-defined metamodels to describe
the EA models that are simulated. Instead, specialized metamodels can be de-
fined by metamodelers depending on their own particular needs, and on the kind
and complexity of the analysis that they wish to perform. Secondly, the plat-
form supports arbitrarily complex behavior without requiring changes to the
base platform (e.g., simulated applications can perform parallel operations, or-
ganized by priority queues, and with different response times depending on their
complexity). Thirdly, simulation results are processed offline: runs are observed,
events and intermediate results are traced, and metrics are calculated. Metrics
are defined by EA analysts, and they correspond to the indicators needed for
their analysis and decision-making processes. Finally, this simulation approach
uses highly configurable scenarios, that can be reused across many experiments,
making the platform very suitable for answering what if questions.

This paper is structured as follows. Section 2 introduces the simulation meta-
model and EA metamodel, which are the foundation of the simulation plat-
form, and section 3 explains how these are used to build simulation scenarios
together with indicators. Section 4 discusses simulation experiments, and sec-
tion 5 presents and ideal workflow to use the proposed platform, as well as the

Experimentation in Executable Enterprise Architecture Models 457

results of an experiment. Finally, section 6 discusses related work and section 7
concludes the paper.

2 Metamodels for EA Simulations

Our simulation approach is based on two kinds of metamodels. The first one, rep-
resented by a generic Simulation Metamodel (SMM), abstracts concepts common
to every simulation project, as well as their execution logic. Figure 1 presents
the elements of the SMM. The central element is Controller, which maintains
a timeline consisting of discrete Instants. An Instant is a point in time in the
future1 on which Future Happenings are scheduled to occur. Future Happenings
represent meaningful events generated by the execution of the simulation, such
as the completion of an Activity, Task or Operation; or the failure of an Appli-
cation. A happening is described by an action that will happen to a Referenced
Element, which is any of those defined in the Simulation Model. A special type
of happening we called Future Stimulus represents events defined as input to
the simulation (e.g., a client initiating a business process). In this case, the ref-
erenced element must be an instance of an element type that inherits from the
Stimulable type. Section 4 presents further detail about stimuli.

Fig. 1. Structure of SMM and timeline

During a simulation execution, the controller processes instants in chronolog-
ical order. When all the happenings in an instant have been executed, the con-
troller advances to the next one. To run the execution, we leverage on Cumbia
[10][11]. Cumbia is a meta-modeling platform that supports the execution of
models following the behavioral semantics specified in the metamodels, as well
as complex monitoring requirements. In Cumbia, the elements of a metamodel
are all open objects, which is a modeling abstraction formed by an entity, a state
machine, and a set of actions. Since our proposal uses Cumbia as execution plat-
form, the elements of the SMM must be described as open objects. For further
information on Cumbia, refer to [11].

1 The future is relative to the simulation execution. It refers to a point in time further
from the current executing instant.

458 L. Manzur et al.

The second kind of metamodel in our approach defines the specific element
types that will appear in the simulation models. On top of the typical character-
istics of EA metamodels (attributes and relationships), these metamodels also
include information about the behavior of each element type. There are certain
concepts that appear only during the execution of a simulation such as ‘process
instance’, ‘service invocation’, and ‘current employee tasks ’, which are not to
be found in traditional EA metamodels. Concepts like these must be taken into
account if we want the simulation to be as close to reality as possible, since they
intervene in the operation of the real enterprise. This is critical in our approach,
and requires this behavioral information to be detailed enough to allow the exe-
cution of the models. The advantage of this approach revolves around the ability
to define behavior with arbitrary granularity and complexity, thus customizing
the level of detail of the simulation. We call these metamodels, which are built
on top of the SMM, Simulation Capable Metamodels (SCM).

Fig. 2. EA SCM example

Figure 2 presents a simplified version of a SCM2 from our metamodel repos-
itory. This SCM includes three EA domains: processes, applications and peo-
ple (human resources). It models an Organization composed by a set of Roles,
Persons, Processes, and Applications. Two types of activities are allowed: Man-
ualActivities and AutomaticActivities, which are supported by Tasks and Op-
erations respectively. Additionally, 〈〈definitions〉〉 are presented separately from
〈〈instances〉〉 because the behaviors of these kinds of elements are significantly

2 Some relations between elements have been removed for legibility. The relations that
present no multiplicity, correspond to 1. For a complete version of the metamodel,
refer to [13].

Experimentation in Executable Enterprise Architecture Models 459

different: Definitions are elements that provide a structure for guiding the cre-
ation of new instances; Instances are the elements that are executed and take
time to be completed. This SCM also includes concepts and relations that appear
only during the execution of the simulation, such as invocations (from Applica-
tion to OperationInvocation) and assignedTasks (from Person to AssignedTask).

Because of the use of Cumbia as execution platform, the behavior of the
elements is defined by state machines. These state machines define possible ex-
ecution states for each element, and define the actions to perform during a
simulation run. State machines are coordinated with events that trigger tran-
sitions; and with the invocation of methods implemented in the entities of the
open objects.

Fig. 3. State machines example

Figure 3 shows the open objects for elements Process, IProcess and IAutomat-
icActivity, and the coordination between them. It is necessary that every element
of the SCM defines its corresponding state machine. Due to a lack of space, we
will only explain the state machines from the mentioned open objects. A Process
has only one state and an operation that creates an IProcess (instantiate()).
IProcess and IAutomaticActivity include states that are coherent with the states
of a process instance and an activity instance during their execution. When a
process is instantiated during a simulation run, the Process element produces a
startInstanceExecution event which is detected by the IProcess state machine
(arrow 1), causing it to take the transition to the Executing state. This transi-
tion has a start() operation associated that produces a startExecution event.
This event triggers the execution of the state machine of the first activity of the

460 L. Manzur et al.

process. For this particular example, it is the IAutomaticActivity state machine
(arrow 2). Once an activity has finished executing (transitions from Executing

to Completed), it generates an activityCompleted event, which triggers the ini-
tiation of the next activity. Finally, when the last activity ends, it produces an
activityCompleted event which notifies its parent IProcess (arrow 3), making
the state machine take the transition to the Completed state.

The element IAutomaticActivity is a good example of the capabilities of the
approach. Currently, the operation execute() finishes after an amount of time
that depends on the current workload of the Application that realizes the op-
eration. The calculation of the time is based on a probability distribution. The
relations between element types of the architecture and how they behave can be
easily modified by extending and adapting the metamodel [10].

To increase the reusability of the simulation models that conform to a given
SCM, it is possible to set the values to any of its element’s attributes from a
configuration file that is external to the model. In this way, distinct configu-
rations of the same simulation scenario can be tested without requiring new
models for each case. We call this capacity parameterizability and models with
this characteristic, Parametric Simulation Models (PSM).

3 Simulation Scenarios

A simulation scenario represents a simplified version of an organization which
is interesting to be simulated, observed, and used to support decision making
processes. Typically, one scenario is simulated several times with minor config-
uration differences to see which one offers the best outcomes. Moreover, to have
comparable experiments, the characteristics observed in each one must be the
same. To support this, a simulation scenario is composed by a PSM based on
an SCM, and a set of indicators to group and present the results of simulation
runs.

Figure 4 shows a PSM that conforms to the SCM described in section 2, which
represents a small part of Banco de los Alpes (BDLA). BDLA is an EA scenario
in the banking domain, which has been developed in our research group with
the collaboration of representatives from different real banks, as a test case for
several research initiatives related to EA [12].

The model represents the process for searching potential clients for the bank
(SearchNewClients) which is composed of four activities: LoadProspectsFromPart-
ners, FilterUndesiredProspects, SegmentProspects and NotifyApprovedProduct-
sToProspects. These activities are respectively supported by four applications:
an FTP-ETL, the Clinton-MoneyLaunderingList, a CRM and ERP. Notice that
some element types do not appear in the PSM. This is because during the execu-
tion of this model, elements from concepts like IProcess and OperationInvocation
will be created to represent instances of processes produced along the simula-
tion execution and invocations to operations that support the process’ activities.
Therefore, elements of any type defined at the SCM with the Instance stereotype
must not be defined in the PSM, but appear as the result of the simulation run.

Experimentation in Executable Enterprise Architecture Models 461

Fig. 4. PSM example

To complete a simulation scenario, a set of Indicators is defined to guide the
collection of data about the simulation. As expressed by Frank in [5], an indicator
refers to “quantitative measures that are specified using several mathematical
constructs [...] for different types of reference objects and on various levels of
abstractions in the enterprise”. In our case, indicators refer to the specification
of measurements to collect during the simulation. Indicators are described using
an Indicator Language, which specifies how indicators should be presented and
how to calculate them. Due to a lack of space to describe every aspect of our
solution, we cannot give much detail about this language. Nevertheless, we will
briefly present an example.

To calculate indicators, it is necessary to observe the simulation execution,
by instrumenting the OpenObjects to gather relevant information. We took in-
spiration from the work in [9] to build an Observation Structure, composed by
Sensors and Tracers, to collect data during the simulation execution. Sensors
are in charge of monitoring elements in the simulation models, and detecting
state changes in their state machines. When these occur, a sensor collects data
and passes it to tracers. Tracers create traces with said data, and store them for
offline processing. An observation model, which is automatically derived from an
indicators definition, specifies the model elements to monitor, their events/ac-
tions of interest, the information that will be stored, and the corresponding
tracers.

Figure 5 shows how this works. Firstly, a Business Analyst defines indica-
tors (Is) by specifying (1) the desired visualizations of the simulation results,
and (2) how to calculate them using variables (V). Additionally, he specifies the
element types from the metamodel whose instances [from the model] (E) need
to be monitored. The selection of these element types includes the places where
sensors must be placed in the state machines. These places are called observation
points. The sensors placed in these observation points are associated to a tracer
(Trc) where traces (T) of intermediate states of the simulation are stored. After
a simulation run is finalized, traces are processed and consolidated into indica-
tors’ representations, which are then presented to Business Analysts through the
Visualization Layer. The indicator language’s design is based in the metamodel
proposed by Frank et al. in [5].

462 L. Manzur et al.

Fig. 5. Structure of observation model

1 indicator -category Performance;
2 specific -indicator StackedSearchNewClients {
3 categories -> Performance;
4 element ActivityInstance {
5 type -> "IAutomaticActivity";
6 filter -> "#self.process .parent.name == SearchNewClients";
7 observation -points {
8 timestamp initTime -> "execute ";
9 timestamp finishTime -> "endExecution";

10 }
11 }
12 variables {
13 double[] automaticProcessingTime -> "ActivityInstance.finishTime -
14 ActivityInstance.initTime " groupBy "ActivityInstance.process .name";
15 string processName -> "ActivityInstance.process .name" groupBy
16 "ActivityInstance.process .name";
17 }
18 visualization {
19 title -> "Stacked search new clients ";
20 bar -chart {
21 orientation -> horizontal;
22 stacked -> true;
23 bars {
24 bar "processName" -> {" automaticProcessingTime"};
25 }
26 }
27 }
28 }

Listing 1.1. Example of indicators definition

Listing 1.1 presents an example of the Indicator Language. Line 1 presents the
definition of an indicator category. These categories classify the desired indicators
so they can be grouped according to the Analysts interests (line 3). To specify
an indicator, an Analyst first specifies the elements to monitor (line 4 - 11). In

Experimentation in Executable Enterprise Architecture Models 463

the sample case, only instances of automatic activities are monitored (line 5).
For each element, we also specify a filter (line 6) to guarantee that sensors are
only placed in the automatic activities of the SearchNewClient process and not
on activities from other processes. Then, we identify the observation points for
the element which corresponds to actions in transitions in the element’s state
machine (lines 8 and 9). After the elements to monitor, an analyst then specifies
the variables and formulas to calculate the indicator (lines 12 - 17). Finally,
variables are used to build the indicators representation. Lines 20 to 24 show
that for the Search New Clients process indicator the results will be presented
using a stacked bar chart.

4 Simulation Experiment

Experimentation in simulation is the ability to configure and test distinct sce-
narios to observe the outcomes of each simulation execution, and to relate these
results to the models used as input. This serves to answer what if questions
about the operation of the organization. We refer to an experiment as a partic-
ular configuration of a scenario (PSM and indicators), complemented with the
definition of stimuli that represent influences to the model.

To configure PSMs, we currently use property files that set the values for cer-
tain attributes of the model. The aspects that can be configured using these prop-
erty files range from selecting a specific probability distribution with given pa-
rameters to describe the amount of time an Operation takes to complete, or more
complex behavior such as specifying a task assignment policy (taken from a set
of predefined policies). Listing 1.2 presents an example of a configuration for the
PSM introduced in the previous section. Line 1 specifies the distribution to cal-
culate the response time for the operation Op LoadPartnerClientsAsProspects
and lines 2 and 3 present the parameters to calculate said distribution. The rest
of the file configures similar properties for the other operations that support
activities in the process.

1 Op_LoadPartnerClientsAsProspects.responseTime.distribution=Normal
2 Op_LoadPartnerClientsAsProspects.responseTime.mu =120000
3 Op_LoadPartnerClientsAsProspects.responseTime.sigma =20000
4
5 Op_CheckProspectByRegulation.responseTime.distribution=Triangular
6 Op_CheckProspectByRegulation.responseTime.min=10000
7 Op_CheckProspectByRegulation.responseTime.max=25000
8 Op_CheckProspectByRegulation.responseTime.mode =20000
9

10 Op_SegmentPerson.responseTime.distribution=Uniform
11 Op_SegmentPerson.responseTime.min=5000
12 Op_SegmentPerson.responseTime.max=8000
13
14 Op_SendMail.responseTime.distribution=Constant
15 Op_SendMail.responseTime.value =30000

Listing 1.2. Configuration example for elements of type Operation

464 L. Manzur et al.

On the other hand, a simulation experiment includes a Stimuli definition.
Stimuli are influences over the model that affect some of the organization’s el-
ements at certain time intervals. Since an organization isn’t an entity detached
from its surroundings, people or events from its environment can affect its oper-
ation. For example, a possible stimulus for the BDLA scenario would be a client
that initiates a process to open a product. Stimuli are defined using a Stimuli
Language. Listing 1.3 shows a small example of stimuli for the PSM introduced
in the previous section. The stimuli language allows defining who generates the
stimulus (an element of the model typed Stimulable – e.g. a Person named John,
line 2) and the action it triggers (e.g., instantiateProcess, line 4). Line 5 indi-
cates that the action instantiateProcess requires specifying the name of the
process to be started (SearchNewClients). Additionally, for each stimulus it is
necessary to provide information about the time intervals it occurs. The first
occurrence of the stimulus is defined by its initiation time, which can be at any
specific time of the execution (e.g., 30.0 minutes after the simulation began,
line 9) or at the beginning (0.0 milliseconds). The following occurrences of
the stimulus are inserted in the timeline according to a probabilistic distribu-
tion. Line 10 specifies that stimuli will be inserted using a Chi distribution with
5 degrees of freedom. Finally, the termination condition indicates when to
stop creating occurrences of the stimulus and can be specified as a certain time
after the first stimulus is inserted in the timeline or as the maximum number of
repetitions of the stimulus (e.g., 5 times, line 16).

1 stimulus {
2 actor "John";
3 action {
4 name -> "instantiateProcess";
5 parameters {
6 string process -> "SearchNewClients";
7 }
8 }
9 time -> 30.0 minutes ;

10 distribution {
11 chi {
12 degrees -freedom -> 5;
13 square -> false;
14 }
15 }
16 termination -condition {
17 repeat -until -> 5 times;
18 }
19 }

Listing 1.3. Example of stimuli definition

Once a simulation experiment has been completely defined, it can be loaded
in the Simulation Engine. This engine runs the simulation while sensors gather
information about the execution and store it in traces. After executing the sim-
ulation, traces are processed and indicators are calculated and presented using
a Visualization Tool. The results can then be evaluated by Business Analysts,
which propose new experiments until a proper architecture that satisfies the
organization’s needs is found.

Experimentation in Executable Enterprise Architecture Models 465

5 EA Simulation Workflow and Validation

The elements presented in the previous sections are the building blocks of this
paper’s proposal. Figure 6 presents an ideal workflow to build and execute a
simulation. First, Business Analysts define the simulation requirements, taking
into account their interests in the project. From these requirements, EA Meta-
modelers design (or select from a repository) an EA SCM that matches them
using a Metamodeling Tool. Said SCM must extend from the SMM to include
simulation concepts.

Fig. 6. A workflow for applying the proposed approach

After an SCM has been created, a Simulation Architect, guided by the re-
quirements, builds a PSM using a Modeling Tool, which conforms to the EA
SCM designed by the EA Metamodeler. Afterwards, Business Analysts use an
Experiment Specification Tool to complete the definition of a simulation sce-
nario by defining the desired indicators. With this same tool, Business Experts
build experiments by specifying the model’s Configuration and the Stimuli that
will guide the simulation execution. Finally, all these artifacts are used as in-
puts for the Simulation Engine, which runs the experiments and presents the
results through a Visualization Tool for Business Analysts to evaluate and make
decisions accordingly.

As mentioned in section 3, we proposed a PSM using parts of a scenario called
Banco de los Alpes (BDLA) [12]. BDLA is a banking initiative focused on the

466 L. Manzur et al.

young adults market segment and on venture projects. It has approximately
25 processes distributed along 5 macroprocesses in its value chain. To validate
our proposal, we use the following scenario/experiment, whose design cannot
be explained due to a lack of space. We selected the SCM presented in figure
2 and a conformant PSM (figure 4), as well as a set of indicators (listing 1.1)
that aim to studying the SearchNewClients process. For each run of the exper-
iment, the engine created 3 instances of the process as specified in the stimuli
definition (listing 1.3), which behaved according to the configuration presented
in listing 1.2.

Fig. 7. Indicator of a simulation execution

The SearchNewClients process has solely automatic activities, but in our sim-
ulation they can take a significant amount of time to complete. Figure 7 presents
the results of the defined experiment, where we can observe that the first ac-
tivity the process executes (LoadProspectsFromPartners - Act1) corresponds to
more than 65% of the completion time in every instance of the process. Table 1
shows the activities completion times in milliseconds. We can observe that the
last activity of the process (NotifyApprovedProductsToProspects - Act4) has no
effect over the differences in completion times of the instances since it always
takes the same amount of time to complete (30,000 milliseconds). The average
completion time of the process instances is 180,5756 milliseconds. We can ob-
serve that the process instances completion times ranged from 12% less than
the average time up to 5% more. This happens because we used probabilistic
distributions to calculate the response times of the process’ activities, allowing
the simulation to obtain different results in each experiment.

Experimentation in Executable Enterprise Architecture Models 467

Table 1. Results of defined indicator in milliseconds

Process Instance Act 1 Act 2 Act 3 Act 4 Total

SearchNewClients0 132,673 20,042 6,973 30,000 189,688
SearchNewClients1 129,314 22,081 7,596 30,000 188,991
SearchNewClients2 123,315 19,045 7,646 30,000 180,006
SearchNewClients3 105,987 17,371 5,883 30,000 159,241
SearchNewClients4 136,083 12,945 5,924 30,000 184,952

6 Related Work

EA analysis assesses certain criteria of an EA model [7]. By simulating an EA
model, we can “enable enterprise architects to alter local strategies and observe
their impact on the resulting global system behavior” [2]. Our proposal simulates
an EA model in order to provide support for EA analysis by delivering informa-
tion of the experiment execution to Business Analysts for their decision-making
process. Taking into account the classification presented by Buckl et al in [3] for
EA analysis, our proposal analyses behavior statistics and dynamic behavior for
Body of Analysis dimension; ex-post and ex-ante for Time Reference; indicator
based for Analysis Technique; and non-functional for Analysis Concern.

With this classification into consideration, we found various works with similar
approaches. Among them, we found an approach based around system dynamics,
agent-based and discrete events simulation [6]. They allow simulating elements
from different domains or “views”, which are of interest of distinct stakehold-
ers. This is achieved by utilizing different simulation methods for each domain
according to its simulation needs. Similarly, our approach supports the defini-
tion of metamodels for different domains, which can be composed into a single
metamodel. But unlike their approach, our proposal uses only one simulation
method in order to execute the EA model as a whole. Finally, similar to our ap-
proach, their proposal allows observing behavior statistics, ex-post and ex-ante,
and non-functional analysis.

In [4], Crégut et al. animate models that conform to four fixed metamodels,
where dynamism is expressed by defining execution states of the domain meta-
model elements to control the progress of the overall animation. This approach
is similar to out proposal, however, we represent dynamism using state machines
that are external to the metamodel. This means that changes in the behavior
of the elements, doesn’t impact the metamodel and viceversa. Concerning sim-
ulation time management, [4] uses the states of elements to reflect time effects
over the EA model, and time-passing information is recollected through events
triggered by the elements of the model and expressed through event and traces
metamodels, which are strongly connected to the EA metamodel and model.
In contrast, our approach gathers information about the simulation using an
observation model that is independent from the EA model. This represents an
advantage since it leverages reusability of the model and metamodel. This ap-
proach focuses on both dynamic behavior and behavior statistics, as well as
ex-post and ex-ante analysis, since the approach allows making decisions over

468 L. Manzur et al.

the EA and adjusting the model to observe new behavior. Nevertheless, their
approach doesn’t specify how the animation results are presented in order to
analyze them and make decisions.

Frank et al. [5] propose an indicator metamodel to evaluate non-functional
properties of an organization within an Indicator System. Unlike our approach,
they propose associating indicators to goals in order to assess if the system is
supporting the organization’s needs. Like our indicator language, they relate in-
dicators to relevant elements of the organization, which are monitored to build
indicators. On the other hand, Johnson et al. utilize Architecture Theory Dia-
grams (ATDs) [8] to assess the non-functional analysis dimension of the organi-
zation. We have studied this work and taken inspiration from it for our indicator
language as well.

Finally, the main difference between our proposal and other EA simulation
and analysis tools [4][5][6][8] is the flexibility for using ad hoc metamodels that
include only domains of interest for the human experts, according to the project’s
needs. Other approaches define fixed metamodels that analysts are forced to
use regardless of their own particular needs, which can introduce non-relevant
information for the simulation into the models.

7 Conclusions

This paper proposes a model-based platform for building and simulating EA
models to support decision making processes. The proposed platform offers the
possibility of using EA metamodels, designed for particular projects, with any
desired granularity, which is defined at the beginning of the project. This means
that the metamodels only consider elements that pertain the EA analysis. The
proposal also permits the definition of arbitrarily complex behaviors for each
type of element involved, empowering the simulation. Additionally, allowing the
definition of custom metamodels, we permit adapting the simulation to the par-
ticular definition of an organization, regardless of its business interests or re-
quirements. This makes our proposal a suitable solution to make EA analysis
for any enterprise.

Putting in place an EA simulation requires a number of different activities.
Seeking to facilitate the definition of an EA simulation, we proposed an ideal
workflow that aligns the simulation artifacts to the various activities of a sim-
ulation definition process. Furthermore, the characteristic of having multiple
decoupled artifacts fosters reuse at several levels. One of those is the scenario/-
experiment level: multiple experiments can be run on top of the same scenario,
without requiring extensive modifications or re-designs. The results of all the
experiments run over the same scenarios are presented using the same, compa-
rable indicators. This facilitates the work of business analysts who participate
in decision making processes and use the results of the simulation as inputs for
analysis.

We have already considered several lines of future development for the plat-
form. One of them is including complementing (and reusable) domain metamod-
els in the simulations. This should not be difficult to achieve on top of Cumbia

Experimentation in Executable Enterprise Architecture Models 469

since it has already shown its capacity to run multiple concern-specific workflow
languages [10]. Additionally, although having custom-made metamodels can in-
ccur in unnecessary extra effort, we plan to include means to transform existent
EA metamodels and models designed with standard languages (e.g., BPMN or
EPC), to facilitate the task of defining the simulation scenarios.

References

1. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete Event System Simula-
tion, 5th edn. Prentice Hall (2009)

2. Buckl, S., Matthes, F., Renz, W., Schweda, C.M., Sudeikat, J.: Towards simulation-
supported enterprise architecture. In: Fachtagung Modellierung betrieblicher Infor-
mationssysteme (MobIS 2008), Saarbrucken, pp. 131–145 (2008)

3. Buckl, S., Matthes, F., Schweda, C.M.: Classifying Enterprise Architecture Anal-
ysis Approaches. In: Poler, R., van Sinderen, M., Sanchis, R. (eds.) IWEI 2009.
LNBIP, vol. 38, pp. 66–79. Springer, Heidelberg (2009)

4. Crégut, X., Combemale, B., Pantel, M., Faudoux, R., Pavei, J.: Generative Tech-
nologies for Model Animation in the TopCased Platform. In: Kühne, T., Selic,
B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 90–103.
Springer, Heidelberg (2010)

5. Frank, U., Heise, D., Kattenstroth, H., Schauer, H.: Designing and utilising business
indicator systems within enterprise models - outline of a method. In: Modelierung
bietrieblicher Informationssysteme (MobIS 200) - Modellierung zwischen SOA und
Compliance Management, Germany (2008)

6. Garret, C.: Understanding Enterprise Behavior using Hybrid Simulation of Enter-
prise Architecture. PhD thesis. Massachusetts Institute of Technology, USA (2009)

7. Johnson, P., Johansson, E., Sommestad, T., Ulberg, J.: A tool for enterprise archi-
tecture analysis. In: 11th IEEE International Enterprise Distributed Object Com-
puting Conference (EDOC 2007), p. 142 (October 2007)

8. Johnson, P., Nordstrom, L., Lagerstrom, R.: Formalizing analysis of enterprise
architecture. In: Interoperability for Enterprise Software and Applications Confer-
ence, p. 10 (April 2006)

9. Sánchez, M., Jiménez, C., Villalobos, J.: Model based testing for workflow enabled
applications. Computación y Sistemas (2011)

10. Sánchez, M., Jiménez, C., Villalobos, J., Deridder, D.: Extensibility in Model-Based
Business Process Engines. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009.
LNBIP, vol. 33, pp. 157–174. Springer, Heidelberg (2009)

11. Sánchez, M., Villalobos, J., Romero, D.: A State Machine Based Coordination
Model applied to Workflow Applications. Avances en Sistemas e Informática 6(1),
35–44 (2009)

12. TICSW Research Group Universidad de los Andes. Banco de los Alpes. Website
(August 2011), http://sistemas.uniandes.edu.co/~losalpes/

13. TICSW Research Group Universidad de los Andes. EA Simulation Engine. Website
(January 2012),
http://cumbia.uniandes.edu.co/wikicumbia/doku.php?id=ea:start

http://sistemas.uniandes.edu.co/~losalpes/
http://cumbia.uniandes.edu.co/wikicumbia/doku.php?id=ea:start

	Experimentation in Executable Enterprise Architecture Models
	Introduction
	Metamodels for EA Simulations
	Simulation Scenarios
	Simulation Experiment
	EA Simulation Workflow and Validation
	Related Work
	Conclusions
	References

