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Abstract. Distributed and concurrent systems have become common in 
enterprises, and the complexity of these systems has increased dramatically. 
The self-adaptive feature can be advantageous for complex systems, because it 
can acclimate to a dynamically changing environment. To achieve this goal, this 
paper presents a Self-Adaptive Framework for Concurrency Architecture 
(SAFCA). SAFCA includes multiple concurrency architectural alternatives and 
is able to adapt to an appropriate architecture based on changes in the 
environment and the control policy. With an autonomic control, SAFCA can 
handle bursty workloads by invoking another architectural alternative at 
runtime instead of statically configured to accommodate the peak demands, 
which requires higher system resources even when they are not needed. 
Experimental results demonstrate that SAFCA can improve performance. The 
experience can be useful for building complicated systems that have multiple 
configurations or diverse demands, such as cloud computing. 

Keywords: software adaptation, software architecture, software performance 
engineering, concurrency patterns. 

1 Introduction 

The average complexity of computer systems and the number of computing devices in 
use have been increasing dramatically [3]. As a result, IT personnel have to shoulder 
the burden of time-consuming (and therefore expensive) supporting tasks such as 
configuration, maintenance and system performance evaluation [5]. Further, manual 
control of a large distributed computing system is invariably prone to errors. 

The goal of autonomic computing, initiated by IBM in 2001 [3], is to define rules 
for a system to control its behavior so that the system regulates its actions to 
automatically configure, heal, protect, and optimize itself [5]. More research efforts 
and IT companies have launched research projects related to autonomic computing 
recently [7] including in the area of distributed and concurrent applications, due to 
their high complexity. 

Furthermore, the Internet is known for its dynamic nature. Under normal 
circumstances, the growing server farm is more than adequate to handle regular traffic 
demands. However, during special events, the server farm may become unavailable 
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due to unprecedented demands [10]. On the other hand, many systems today are 
configured initially and statically to handle worst-case scenarios; in other words, 
systems are over-provisioned. The problem with this approach is that many resources 
will be wasted in normal condition scenarios. 

Another challenge in software architecture is to conduct evaluation for the 
performance perspective, as there are usually uncertainties and lack of concrete data 
early in the life cycle. The problem could become more difficult if multiple software 
architectural alternatives exist.  

This paper presents a self-adaptive system, self-adaptive framework for 
concurrency architectures (SAFCA), that supports software adaptation at the 
architecture level for the distributed and concurrent problem domain. The self-
adaptive system consists of multiple software architectural alternatives. The system 
can adapt to changing demands at runtime by using the appropriate alternative. The 
main objective of the adaptation is to better utilize system resources and increase 
performance. 

This paper is organized as follows: Section 2 provides the background information 
on distributed and concurrency architectures. Section 3 describes the self-adaptive 
framework, SAFCA. Section 4 presents experiments and the performance results. 
Finally, Section 5 is the conclusion. 

2 Background 

This section provides brief background information on the primary concurrency 
architectural patterns used in the paper. 

2.1 Concurrency Architectural Patterns 

Distributed and concurrent programming has been widely used in many applications. 
There are several known concurrency architectural alternatives: single-thread, 
dynamic thread Creation (DTC), Half-Sync/Half-Async (HS/HA), and Leader/ 
Followers (LFs) [8]. Both HS/HA and LFs are thread pool-based approaches. 
According to our previous performance modeling studies using the layered queuing 
networks [11], HS/HA has higher efficiency than LFs for high demands. Therefore, 
HS/HA is chosen as the main thread pool-based architecture used in the SAFCA. 

DTC, on the other hand, is selected for the study, because it is the simplest and the 
common design that does not have a thread pool. Our framework actually supports 
LFs as well. But the LFs pattern is not included in this comparative evaluation. 

Dynamic-thread-creation (DTC): The DTC architecture is commonly used in multi-
threaded programming, especially for server applications. DTC is based on the idea of 
a thread-per-request. DTC creates a thread for each new request. A thread dies after 
processing its request [9]. DTC is relatively easy to program. However, a thread has 
to be dynamically created per request, there is an overhead associated with it. 

Half-Sync/Half-Async (HS/HA): In order to simplify programming without unduly 
reducing performance, HS/HA decouples asynchronous and synchronous service 
processing in concurrent systems [8].  
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External input first arrives at the asynchronous layer. After the asynchronous layer 
processes the input, the request is stored in a queue in the queuing layer. The function 
of the queuing layer is to buffer input from the asynchronous layer to the synchronous 
layer and inform the synchronous layer that input is now available. Worker threads in 
the synchronous layer retrieve input from the queue and process the input further. 
Layers are independent from each other and can perform operations concurrently. 

2.2 Self-adaptive Systems 

The aim of self-adaptive or autonomic computing is to provide a solution that runs 
services with minimum or lower cost, capable of both scaling up and scaling down the 
system resources responding to dynamic demands. This requires system elasticity, in 
terms of allocating or using resources as they are needed. Therefore, systems must 
adapt to changes in the environment quickly and since manual server reconfiguration 
has been shown to be inadequate [4], self-adaptive solutions are better suited for such 
problems. Autonomic computing has received more attention recently in software 
engineering, e.g., [1][2][6], mainly due to the increased complexity of systems. One 
crucial research issue is to build the capability into the system to adapt its behavior in 
response to the dynamically changing environment. 

In [12], we also demonstrated the feasibility of SAFCA using a simple approach 
based on queue length. The idea of the queue length-based approach is simple, i.e., if 
the threshold is passed, adaptation will be invoked. But it is challenging to determine 
queue length and oscillations may happen. In this paper, we devise a policy to detect 
the traffic burst which triggers software adaptation.  

3 Self-adaptive Framework for Concurrency Architectures 

SAFCA is designed to support adaptation at the architecture level during runtime 
based. In other words, adaptation occurs from one architectural alternative to another.  
This section first describes the main concept of the approach. The framework and the 
main components are then presented. After that, the self-adaptation scheme is 
described. The monitoring mechanism of busty traffic and the policy of managing 
busty traffic autonomically will be demonstrated.   

3.1 Problem Scope and Main Concept 

The paper considers three conditions: 1) when an overloading request burst occurs, 
the framework can achieve acceptable response time and decrease the message or 
packet loss ratio; 2) the software resource (for example, the number of threads) 
utilization under normal load condition can be minimized; 3) the self-adaptive 
framework must be practical in the sense that it can be easily implemented. 

HS/HA works well under normal workload conditions. However, if a burst occurs, 
the pre-configured size of the thread pool becomes the performance bottleneck for 
HS/HA. On the other hand, DTC can create a large number of threads to handle the 
sudden burst of requests. But the overhead of thread creation and destruction in DTC 
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makes it inferior, compared to HS/HA, under normal workload condition. For this 
reason, the self-adaptive system containing both HS/HA and DTC architectures is 
built to validate the concept of self-adaptation. In normal conditions, HS/HA is used. 
If a burst arrives (based on the burst detection policy), DTC will be activated 
immediately, because HS/HA has a pre-configured pool size. During this period, both 
HS/HA and DTC alternatives are running concurrently or simultaneously (for a multi-
core system). The approach is compared against a system running either HS/HA or 
DTC alone for performance evaluation. 

3.2 Overview of the Framework 

In order to support the tasks described in Section 3.1, Figure 1 depicts the framework 
and the four main components. The Monitor component gathers information 
regarding the queue length, response time, arrival rate, and number of threads 
currently running (number of threads that have received a request but has not sent a 
reply). The Decider then computes statistical-average-quantities, such as average 
queue length, average response time, etc. Based on collected and calculated 
information, the Decider decides if any action should be taken. For example, if the 
queue length exceeds a threshold, the Decider notifies the Executor component that 
the current workload condition is heavy. The Executor will then instruct the 
Architecture Manager to put new requests into the appropriate queue. 

 

 

Fig. 1. Self-Adaptive Framework for Concurrency Architectures Overview 

The framework consists of multiple architectural alternatives. Currently, three 
alternatives are included: DTC, HS/HA, and LFs (not shown in Figure 1 and not 
included in performance evaluation). Each architecture alternative has its own queue. 

The Architecture Manager has a high scheduling priority so it can respond to 
incoming requests immediately. Once the destination queue becomes full, the 
Architecture Manager drops any new requests. 
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3.3 Self-Adaptation Policy for Bursty Traffic 

The self-adaptation policy is designed so that HS/HA is the default architecture. 
During normal scenarios, DTC is not active and the Architecture Manager puts new 
requests in the HS/HA queue. The trigger to self-adaptation is based on arrival rate 
and average response time, see Section 3.4. 

When an arrival burst occurs and the response time also increases over a certain 
level, the Architecture Manager begins to place new requests to DTC queue to deal 
with bursy demands. When the burst is over and the arrival rate returns to the pre-
burst level, the Architecture Manager puts new requests to the original HS/HA queue. 

3.4 Burst Detection Policy 

Monitoring and measurements are two important elements for autonomic computing. 
Monitoring and measurements are used for burst detection in our approach. Detection 
of a burst could range from a simple threshold-based approach according to the queue 
length [12] to a sophisticated method. This paper presents an approach based on both 
the arrival rate and the average response time for message processing. Arrival rate 
alone cannot indicate if the system has reached its capacity. Therefore, the average 
response time is also used. 

In the burst detection policy, the standard deviation (σ ) of previous arrival rates 
and the mean arrivals in a pre-configured interval are used.  

Assume r1, r2, r3,…, rn are arrival rates for sampling intervals 1, 2, 3,…, n, 
respectively. If the difference between the current arrival rate and the mean arrival 
rate is greater than the standard deviation of previous arrival rates (σ ), then a burst is 
assumed to have occurred. However, this does not mean that the system is 
overloaded, but a self-adaptive action needs to be taken. If the difference between the 
current response time and previous response time also increases by y% (a pre-
configurable parameter) of the previous response time, then the Decider notifies the 
Executor to take actions and the mean arrival rate is reset to zero. From this point on, 
a new mean arrival rate and a new standard deviation will be calculated.  

If the current arrival rate is less than the mean arrival rate, and their difference is 
greater than the standard deviation of the arrival rates (σ ), then the burst is assumed 
to be over. The Decider notifies the Executor to free resources and mean arrival rate 
is reset to zero. From this point on, a new mean arrival rate and a new standard 
deviation will be calculated. 

4 Experiments and Analysis 

This section presents experiments conducted and results. The performance of SAFCA 
is compared with that of standalone HS/HA and DTC without adaptive control. 

4.1 Experiment Settings 

The experiments consider a multi-tier system. The server receives message or 
requests from multiple clients, and the traffic generated by those clients contains 
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random bursts. Each request received by the server is processed including CPU-bound 
operations and I/O-bound operations, and then a reply is sent back to the client. 

Our test bed consists of one server machine (3.0 GHz Pentium 4 systems with 3.49 
GB of RAM) and a client machine (3.0 GHz Pentium 4 systems with 3.49 GB of 
RAM) connected to a Phoebe Ethernet Switch (8-Port 10/100Mbps Auto/MDIX). 
SAFCA is developed with SUN JDK 1.6 as the Java platform running on Microsoft 
Windows XP Professional on the server side. Multiple clients generate traffic and 
send requests to the server. The client traffic generator is also developed with the 
same platform as that of the server. A number of experiments have been conducted. 
TABLE I lists the parameters used for the experiments. 

Table 1. Parameters used for experiments 

Experiment Parameters Value 
burstAverageArrivalRate 200 messages/sec 
normalAverageArrivalRate 50 messages/sec 
maxBurstDuration 20 internvals 
minBurstDuration 10 intervals 
maxNormalDuration 30 intervals 
minNormalDuration 20 intervals 
sampleIntervalLength 5 sec 
queueSize (HS/HA) 25 
queueSize (DTC) 25 
threadPoolSize 60 

4.2 Performance Evaluation of SAFCA 

This section evaluates the performance of SAFCA with HS/HA and DTC in terms of 
response time, request drop ratio, and utilization. As described in Section 3.3, the 
policy of SAFCA is to initially send requests to the HS/HA queue. When the arrival 
rate has increased by more than one standard deviation from the previous average 
arrival rate and the response time also has increased by more than 20% (a 
configurable value), SAFCA sends new requests to the DTC queue. If the arrival rate 
has decreased by more than one standard deviation, SAFCA sends new requests back 
to the HS/HA queue. The results show that SAFCA offers better performance. 

SAFCA and Standalone HS/HA 
Figure 2(a) depicts the response times for SAFCA and standalone HS/HA on the 
primary y-axis (on the left) and the arrival rate on the secondary y-axis (on the right). 
The response time of SAFCA is low during normal workload because it uses HS/HA 
which is more efficient for normal workload. During bursts, the response time is still 
low because SAFCA dynamically invokes DTC to cope with the bursts. This 
arrangement is efficient because with HS/HA, the configured number of threads (60) 
is sufficient during non-burst periods and no new threads are created. On the other 
hand, DTC can accommodate high demands during burst periods because it can create 
more threads. For standalone HS/HA, the throughput bottleneck is due to its fixed 
number of threads.  
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The spikes of the response time are primarily due to bursts and the monitoring 
interval. If the interval is reduced, the spikes can be shortened. 

 

 

(a) (b)

Fig. 2. Comparison of Response Time (a) and Drop Ratios (b) for SAFCA and HS/HA 

Figure 2(b) illustrates the request drop ratio of for SAFCA and HS/HA. The drop 
ratio of SAFCA is close to 0 (except when a burst first starts) during both normal 
workload and burst workload. Again, the drop ratio of SAFCA for the initial burst 
periods could be reduced by shortening the monitoring or sampling interval. 

Figure 3 compares the thread utilization for SAFCA and standalone HS/HA. The 
thread utilization is always low (between 10% and 20%) for HS/HA because the 
thread pool size is fixed. However, because SAFCA uses DTC to create more threads 
when needed during bursts, the resource is better utilized with utilization mostly in 
the range of 60% to 70%. 

 

 

Fig. 3. Comparison of CPU Utilization for SAFCA and HS/HA 

SAFCA and Standalone DTC  
In this experiment, the response time, the request drop ratio, the thread utilization, and 
the number of created threads are measured for performance evaluation. The results 
show that SAFAC has better performance in most cases. 

Figure 4(a) shows the response times for SAFCA and DTC. Except when the burst 
first started, SAFCA has a better response time than that of DTC in most cases. 
Again, the sharp spikes of SAFCA can be mitigated using shorter monitoring length. 

Figure 4(b) presents the drop ratio of for SAFCA and DTC. Both SAFCA (except 
when the burst first starts) and DTC have a loss ratio close to 0.  
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(a) (b)

Fig. 4. Comparison of Response Time (a) and Drop Ratios (b) for SAFCA and DTC 

Figure 5(a) illustrates that SAFCA has similar thread utilization as that of DTC in 
both normal workload and burst workload conditions.In terms of resource usage, 
Figure 5(b) shows that DTC creates more threads and consumes more resources than 
SAFCA during normal workload condition. Each thread created requires memory 
space, CPU cycles, and the operating system overhead for thread creation/destruction. 
As depicted in Figure 5(b) in one sampling interval, DTC creates about 200 new 
threads even under normal conditions. In comparison, no additional threads are 
created dyanmically or only 60 existing threads in the thread pool of SAFCA can 
handle the normal workload. Since normal workload periods are typically much 
longer than burst periods, SAFCA is more resource efficient than DTC. 

 

 
 

(a) (b)

Fig. 5. Comparison of CPU Utilization (a) and Number of Threads Created (b) for SAFCA and 
DTC 

5 Conclusions  

In order to effectively utilize resources under dynamic workloads, a self-adaptive 
framework, SAFCA, was proposed and developed. According to the results obtained 
from a number of experiments, SAFCA improved the performance under various 
workloads through an adaptive mechanism. In comparison to the standalone HS/HA 
and DTC, SAFCA exhibited performance gains without the need of over-provisioning 
as often adopted for thread pool-based approach. Under normal workload conditions, 
SAFCA has a better resource usage than DTC-only system. The concept could be 
useful for other applications to support scaling up and down of a system or cloud 
computing where many configurations and diverse resources and demands exist. 
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