

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 171–179, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Experience on Building an Architecture Level
Adaptable System

Xu Zhang and Chung-Horng Lung

Department of Systems and Computer Engineering
Carleton University, Ottawa, Ontario, Canada
{zhangxu,chlung}@sce.carleton.ca

Abstract. Distributed and concurrent systems have become common in
enterprises, and the complexity of these systems has increased dramatically.
The self-adaptive feature can be advantageous for complex systems, because it
can acclimate to a dynamically changing environment. To achieve this goal, this
paper presents a Self-Adaptive Framework for Concurrency Architecture
(SAFCA). SAFCA includes multiple concurrency architectural alternatives and
is able to adapt to an appropriate architecture based on changes in the
environment and the control policy. With an autonomic control, SAFCA can
handle bursty workloads by invoking another architectural alternative at
runtime instead of statically configured to accommodate the peak demands,
which requires higher system resources even when they are not needed.
Experimental results demonstrate that SAFCA can improve performance. The
experience can be useful for building complicated systems that have multiple
configurations or diverse demands, such as cloud computing.

Keywords: software adaptation, software architecture, software performance
engineering, concurrency patterns.

1 Introduction

The average complexity of computer systems and the number of computing devices in
use have been increasing dramatically [3]. As a result, IT personnel have to shoulder
the burden of time-consuming (and therefore expensive) supporting tasks such as
configuration, maintenance and system performance evaluation [5]. Further, manual
control of a large distributed computing system is invariably prone to errors.

The goal of autonomic computing, initiated by IBM in 2001 [3], is to define rules
for a system to control its behavior so that the system regulates its actions to
automatically configure, heal, protect, and optimize itself [5]. More research efforts
and IT companies have launched research projects related to autonomic computing
recently [7] including in the area of distributed and concurrent applications, due to
their high complexity.

Furthermore, the Internet is known for its dynamic nature. Under normal
circumstances, the growing server farm is more than adequate to handle regular traffic
demands. However, during special events, the server farm may become unavailable

172 X. Zhang and C.-H. Lung

due to unprecedented demands [10]. On the other hand, many systems today are
configured initially and statically to handle worst-case scenarios; in other words,
systems are over-provisioned. The problem with this approach is that many resources
will be wasted in normal condition scenarios.

Another challenge in software architecture is to conduct evaluation for the
performance perspective, as there are usually uncertainties and lack of concrete data
early in the life cycle. The problem could become more difficult if multiple software
architectural alternatives exist.

This paper presents a self-adaptive system, self-adaptive framework for
concurrency architectures (SAFCA), that supports software adaptation at the
architecture level for the distributed and concurrent problem domain. The self-
adaptive system consists of multiple software architectural alternatives. The system
can adapt to changing demands at runtime by using the appropriate alternative. The
main objective of the adaptation is to better utilize system resources and increase
performance.

This paper is organized as follows: Section 2 provides the background information
on distributed and concurrency architectures. Section 3 describes the self-adaptive
framework, SAFCA. Section 4 presents experiments and the performance results.
Finally, Section 5 is the conclusion.

2 Background

This section provides brief background information on the primary concurrency
architectural patterns used in the paper.

2.1 Concurrency Architectural Patterns

Distributed and concurrent programming has been widely used in many applications.
There are several known concurrency architectural alternatives: single-thread,
dynamic thread Creation (DTC), Half-Sync/Half-Async (HS/HA), and Leader/
Followers (LFs) [8]. Both HS/HA and LFs are thread pool-based approaches.
According to our previous performance modeling studies using the layered queuing
networks [11], HS/HA has higher efficiency than LFs for high demands. Therefore,
HS/HA is chosen as the main thread pool-based architecture used in the SAFCA.

DTC, on the other hand, is selected for the study, because it is the simplest and the
common design that does not have a thread pool. Our framework actually supports
LFs as well. But the LFs pattern is not included in this comparative evaluation.

Dynamic-thread-creation (DTC): The DTC architecture is commonly used in multi-
threaded programming, especially for server applications. DTC is based on the idea of
a thread-per-request. DTC creates a thread for each new request. A thread dies after
processing its request [9]. DTC is relatively easy to program. However, a thread has
to be dynamically created per request, there is an overhead associated with it.

Half-Sync/Half-Async (HS/HA): In order to simplify programming without unduly
reducing performance, HS/HA decouples asynchronous and synchronous service
processing in concurrent systems [8].

 Experience on Building an Architecture Level Adaptable System 173

External input first arrives at the asynchronous layer. After the asynchronous layer
processes the input, the request is stored in a queue in the queuing layer. The function
of the queuing layer is to buffer input from the asynchronous layer to the synchronous
layer and inform the synchronous layer that input is now available. Worker threads in
the synchronous layer retrieve input from the queue and process the input further.
Layers are independent from each other and can perform operations concurrently.

2.2 Self-adaptive Systems

The aim of self-adaptive or autonomic computing is to provide a solution that runs
services with minimum or lower cost, capable of both scaling up and scaling down the
system resources responding to dynamic demands. This requires system elasticity, in
terms of allocating or using resources as they are needed. Therefore, systems must
adapt to changes in the environment quickly and since manual server reconfiguration
has been shown to be inadequate [4], self-adaptive solutions are better suited for such
problems. Autonomic computing has received more attention recently in software
engineering, e.g., [1][2][6], mainly due to the increased complexity of systems. One
crucial research issue is to build the capability into the system to adapt its behavior in
response to the dynamically changing environment.

In [12], we also demonstrated the feasibility of SAFCA using a simple approach
based on queue length. The idea of the queue length-based approach is simple, i.e., if
the threshold is passed, adaptation will be invoked. But it is challenging to determine
queue length and oscillations may happen. In this paper, we devise a policy to detect
the traffic burst which triggers software adaptation.

3 Self-adaptive Framework for Concurrency Architectures

SAFCA is designed to support adaptation at the architecture level during runtime
based. In other words, adaptation occurs from one architectural alternative to another.
This section first describes the main concept of the approach. The framework and the
main components are then presented. After that, the self-adaptation scheme is
described. The monitoring mechanism of busty traffic and the policy of managing
busty traffic autonomically will be demonstrated.

3.1 Problem Scope and Main Concept

The paper considers three conditions: 1) when an overloading request burst occurs,
the framework can achieve acceptable response time and decrease the message or
packet loss ratio; 2) the software resource (for example, the number of threads)
utilization under normal load condition can be minimized; 3) the self-adaptive
framework must be practical in the sense that it can be easily implemented.

HS/HA works well under normal workload conditions. However, if a burst occurs,
the pre-configured size of the thread pool becomes the performance bottleneck for
HS/HA. On the other hand, DTC can create a large number of threads to handle the
sudden burst of requests. But the overhead of thread creation and destruction in DTC

174 X. Zhang and C.-H. Lung

makes it inferior, compared to HS/HA, under normal workload condition. For this
reason, the self-adaptive system containing both HS/HA and DTC architectures is
built to validate the concept of self-adaptation. In normal conditions, HS/HA is used.
If a burst arrives (based on the burst detection policy), DTC will be activated
immediately, because HS/HA has a pre-configured pool size. During this period, both
HS/HA and DTC alternatives are running concurrently or simultaneously (for a multi-
core system). The approach is compared against a system running either HS/HA or
DTC alone for performance evaluation.

3.2 Overview of the Framework

In order to support the tasks described in Section 3.1, Figure 1 depicts the framework
and the four main components. The Monitor component gathers information
regarding the queue length, response time, arrival rate, and number of threads
currently running (number of threads that have received a request but has not sent a
reply). The Decider then computes statistical-average-quantities, such as average
queue length, average response time, etc. Based on collected and calculated
information, the Decider decides if any action should be taken. For example, if the
queue length exceeds a threshold, the Decider notifies the Executor component that
the current workload condition is heavy. The Executor will then instruct the
Architecture Manager to put new requests into the appropriate queue.

Fig. 1. Self-Adaptive Framework for Concurrency Architectures Overview

The framework consists of multiple architectural alternatives. Currently, three
alternatives are included: DTC, HS/HA, and LFs (not shown in Figure 1 and not
included in performance evaluation). Each architecture alternative has its own queue.

The Architecture Manager has a high scheduling priority so it can respond to
incoming requests immediately. Once the destination queue becomes full, the
Architecture Manager drops any new requests.

DeciderExecutor

Architecture
 Manager

HS/HA queue

DTC queue

Other Concurrency
Architecture Queue

 HS/HA
Concurrency
Architecture

(Thread Pool)

DTC
Concurrency
Architecture

 Monitor

Arrival

Rate

Throughput

 Experience on Building an Architecture Level Adaptable System 175

3.3 Self-Adaptation Policy for Bursty Traffic

The self-adaptation policy is designed so that HS/HA is the default architecture.
During normal scenarios, DTC is not active and the Architecture Manager puts new
requests in the HS/HA queue. The trigger to self-adaptation is based on arrival rate
and average response time, see Section 3.4.

When an arrival burst occurs and the response time also increases over a certain
level, the Architecture Manager begins to place new requests to DTC queue to deal
with bursy demands. When the burst is over and the arrival rate returns to the pre-
burst level, the Architecture Manager puts new requests to the original HS/HA queue.

3.4 Burst Detection Policy

Monitoring and measurements are two important elements for autonomic computing.
Monitoring and measurements are used for burst detection in our approach. Detection
of a burst could range from a simple threshold-based approach according to the queue
length [12] to a sophisticated method. This paper presents an approach based on both
the arrival rate and the average response time for message processing. Arrival rate
alone cannot indicate if the system has reached its capacity. Therefore, the average
response time is also used.

In the burst detection policy, the standard deviation (σ) of previous arrival rates
and the mean arrivals in a pre-configured interval are used.

Assume r1, r2, r3,…, rn are arrival rates for sampling intervals 1, 2, 3,…, n,
respectively. If the difference between the current arrival rate and the mean arrival
rate is greater than the standard deviation of previous arrival rates (σ), then a burst is
assumed to have occurred. However, this does not mean that the system is
overloaded, but a self-adaptive action needs to be taken. If the difference between the
current response time and previous response time also increases by y% (a pre-
configurable parameter) of the previous response time, then the Decider notifies the
Executor to take actions and the mean arrival rate is reset to zero. From this point on,
a new mean arrival rate and a new standard deviation will be calculated.

If the current arrival rate is less than the mean arrival rate, and their difference is
greater than the standard deviation of the arrival rates (σ), then the burst is assumed
to be over. The Decider notifies the Executor to free resources and mean arrival rate
is reset to zero. From this point on, a new mean arrival rate and a new standard
deviation will be calculated.

4 Experiments and Analysis

This section presents experiments conducted and results. The performance of SAFCA
is compared with that of standalone HS/HA and DTC without adaptive control.

4.1 Experiment Settings

The experiments consider a multi-tier system. The server receives message or
requests from multiple clients, and the traffic generated by those clients contains

176 X. Zhang and C.-H. Lung

random bursts. Each request received by the server is processed including CPU-bound
operations and I/O-bound operations, and then a reply is sent back to the client.

Our test bed consists of one server machine (3.0 GHz Pentium 4 systems with 3.49
GB of RAM) and a client machine (3.0 GHz Pentium 4 systems with 3.49 GB of
RAM) connected to a Phoebe Ethernet Switch (8-Port 10/100Mbps Auto/MDIX).
SAFCA is developed with SUN JDK 1.6 as the Java platform running on Microsoft
Windows XP Professional on the server side. Multiple clients generate traffic and
send requests to the server. The client traffic generator is also developed with the
same platform as that of the server. A number of experiments have been conducted.
TABLE I lists the parameters used for the experiments.

Table 1. Parameters used for experiments

Experiment Parameters Value
burstAverageArrivalRate 200 messages/sec
normalAverageArrivalRate 50 messages/sec
maxBurstDuration 20 internvals
minBurstDuration 10 intervals
maxNormalDuration 30 intervals
minNormalDuration 20 intervals
sampleIntervalLength 5 sec
queueSize (HS/HA) 25
queueSize (DTC) 25
threadPoolSize 60

4.2 Performance Evaluation of SAFCA

This section evaluates the performance of SAFCA with HS/HA and DTC in terms of
response time, request drop ratio, and utilization. As described in Section 3.3, the
policy of SAFCA is to initially send requests to the HS/HA queue. When the arrival
rate has increased by more than one standard deviation from the previous average
arrival rate and the response time also has increased by more than 20% (a
configurable value), SAFCA sends new requests to the DTC queue. If the arrival rate
has decreased by more than one standard deviation, SAFCA sends new requests back
to the HS/HA queue. The results show that SAFCA offers better performance.

SAFCA and Standalone HS/HA
Figure 2(a) depicts the response times for SAFCA and standalone HS/HA on the
primary y-axis (on the left) and the arrival rate on the secondary y-axis (on the right).
The response time of SAFCA is low during normal workload because it uses HS/HA
which is more efficient for normal workload. During bursts, the response time is still
low because SAFCA dynamically invokes DTC to cope with the bursts. This
arrangement is efficient because with HS/HA, the configured number of threads (60)
is sufficient during non-burst periods and no new threads are created. On the other
hand, DTC can accommodate high demands during burst periods because it can create
more threads. For standalone HS/HA, the throughput bottleneck is due to its fixed
number of threads.

 Experience on Building an Architecture Level Adaptable System 177

The spikes of the response time are primarily due to bursts and the monitoring
interval. If the interval is reduced, the spikes can be shortened.

(a) (b)

Fig. 2. Comparison of Response Time (a) and Drop Ratios (b) for SAFCA and HS/HA

Figure 2(b) illustrates the request drop ratio of for SAFCA and HS/HA. The drop
ratio of SAFCA is close to 0 (except when a burst first starts) during both normal
workload and burst workload. Again, the drop ratio of SAFCA for the initial burst
periods could be reduced by shortening the monitoring or sampling interval.

Figure 3 compares the thread utilization for SAFCA and standalone HS/HA. The
thread utilization is always low (between 10% and 20%) for HS/HA because the
thread pool size is fixed. However, because SAFCA uses DTC to create more threads
when needed during bursts, the resource is better utilized with utilization mostly in
the range of 60% to 70%.

Fig. 3. Comparison of CPU Utilization for SAFCA and HS/HA

SAFCA and Standalone DTC
In this experiment, the response time, the request drop ratio, the thread utilization, and
the number of created threads are measured for performance evaluation. The results
show that SAFAC has better performance in most cases.

Figure 4(a) shows the response times for SAFCA and DTC. Except when the burst
first started, SAFCA has a better response time than that of DTC in most cases.
Again, the sharp spikes of SAFCA can be mitigated using shorter monitoring length.

Figure 4(b) presents the drop ratio of for SAFCA and DTC. Both SAFCA (except
when the burst first starts) and DTC have a loss ratio close to 0.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 55 105 155 205 255 305 355 405 455 505 555 605

Time (sec)

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

0

50

100

150

200

250

300

350

400

450

500

A

r
r

i

v
a

l

R

a

t
e

(
R

e

q
u

e
s

t

s

p

e
r

s
e

c

)

HS/HA

SAFCA

ArrivalRate

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 55 105 155 205 255 305 355 405 455 505 555 605

Time (sec)

R
e

q

u
e

s

t

D

r
o

p

R
a

t

i
o

0

50

100

150

200

250

300

350

400

450

500

A

r
r

i

v

a
l

R
a

t

e

(

R
e

q

u
e

s

t

s

p

e
r

s
e

c

)

HS/HA

SAFCA

ArrivalRate

-100

-90
-80
-70
-60

-50
-40
-30

-20
-10

0

10
20
30

40
50
60

70
80
90

100

5 55 105 155 205 255 305 355 405 455 505 555 605

Time (sec)

C
P
U

U
t
i
l
i
z
a
t
i
o
n

(
%
)

0

50

100

150

200

250

300

350

400

450

500

A
r
r
i
v
a
l

R
a
t
e

(
R
e
q
u
e
s
t
s

p
e
r

s
e
c
)

HS/HA

SAFCA

ArrivalRate

178 X. Zhang and C.-H. Lung

(a) (b)

Fig. 4. Comparison of Response Time (a) and Drop Ratios (b) for SAFCA and DTC

Figure 5(a) illustrates that SAFCA has similar thread utilization as that of DTC in
both normal workload and burst workload conditions.In terms of resource usage,
Figure 5(b) shows that DTC creates more threads and consumes more resources than
SAFCA during normal workload condition. Each thread created requires memory
space, CPU cycles, and the operating system overhead for thread creation/destruction.
As depicted in Figure 5(b) in one sampling interval, DTC creates about 200 new
threads even under normal conditions. In comparison, no additional threads are
created dyanmically or only 60 existing threads in the thread pool of SAFCA can
handle the normal workload. Since normal workload periods are typically much
longer than burst periods, SAFCA is more resource efficient than DTC.

(a) (b)

Fig. 5. Comparison of CPU Utilization (a) and Number of Threads Created (b) for SAFCA and
DTC

5 Conclusions

In order to effectively utilize resources under dynamic workloads, a self-adaptive
framework, SAFCA, was proposed and developed. According to the results obtained
from a number of experiments, SAFCA improved the performance under various
workloads through an adaptive mechanism. In comparison to the standalone HS/HA
and DTC, SAFCA exhibited performance gains without the need of over-provisioning
as often adopted for thread pool-based approach. Under normal workload conditions,
SAFCA has a better resource usage than DTC-only system. The concept could be
useful for other applications to support scaling up and down of a system or cloud
computing where many configurations and diverse resources and demands exist.

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

5 55 105 155 205 255 305 355 405 455 505 555 605

Time (sec)

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

0

50

100

150

200

250

300

350

400

450

500

A
r
r
i
v
a
l

R
a
t
e

(
R
e
q
u
e
s
t
s

p
e
r

s
e
c
)

DTC

SAFCA

ArrivalRate

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 55 105 155 205 255 305 355 405 455 505 555 605

Time (sec)

R

e

q

u
e

s

t

D

r

o

p

R

a

t

i

o

0

50

100

150

200

250

300

350

400

450

500

A
r

r

i

v

a

l

R

a
t

e

(

R

e

q

u

e
s

t

s

p

e

r

s
e

c

)

DTC

SAFCA

ArrivalRate

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

5 55 105 155 205 255 305 355 405 455 505 555 605

Time (sec)

C
P
U

U
t
i
l
i
z
a
t
i
o
n

(
%
)

0

50

100

150

200

250

300

350

400

450

500

A
r
r
i
v
a
l

R
a
t
e

(
R
e
q
u
e
s
t
s

p
e
r

s
e
c
)

DTC

SAFCA

ArrivalRate

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

5 55 105 155 205 255 305 355 405 455 505 555 605

Time (sec)

N
u
m
b
e
r

o
f

T
h
r
e
a
d
s

C
r
e
a
t
e
d

0

50

100

150

200

250

300

350

400

450

500

A
r
r
i
v
a
l

r
a
t
e

(
R
e
q
u
e
s
t
s

p
e
r

s
e
c
)

DTC

SAFCA

ArrivalRate

 Experience on Building an Architecture Level Adaptable System 179

References

[1] Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller,
H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback Loops.
In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive
Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

[2] International Symp. on Software Engineering for Adaptive and Self-Managing Systems
(2006-2012)

[3] Enterprise Management Associates, Practical Autonomic Computing: Roadmap to Self-
Managing Technology. Tech. Rep., IBM, Boulder, CO (January 2006)

[4] IBM Autonomic Computing Architecture Team, An Architectural Blueprint for
Autonomic Computing, Tech. Rep., IBM, Hawthorne, NY (June 2006)

[5] Kephart, J., Chess, D.: The Vision of Autonomic Computing. Computer 36(1), 41–52
(2003)

[6] Kramer, J., Magee, J.: Self-Managed Systems: An Architectural Challenge. In: Proc. of
the Future of Software Engineering, FOSE, pp. 259–268 (2007)

[7] Muller, H.A., et al.: Autonomic Computing, Tech. Rep., Software Engineering Institute
(April 2006)

[8] Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects. Wiley (2000)

[9] Welsh, M., et al.: A Design Framework for Highly Concurrent Systems, T.R., UC
Berkeley (2000)

[10] Welsh, M., Culler, D.: Adaptive Overload Control for Busy Internet Servers. In: Proc. of
the 4th USENIX Conference on Internet Technologies and Systems, p. 4 (March 2003)

[11] Zhang, X., Lung, C.-H., Franks, G.: Towards Architecture-based Autonomic Software
Performance Engineering. In: Proc. of the 4th Conference on Software Architectures,
CAL (2010)

[12] Zhang, X., Lung, C.-H.: Improving Software Performance and Reliability with an
Architecture-Based Self-Adaptive Framework. In: Proc. of IEEE COMPSAC (2011)

	Experience on Building an Architecture Level Adaptable System
	Introduction
	Background
	Concurrency Architectural Patterns
	Self-adaptive Systems

	Self-adaptive Framework for Concurrency Architectures
	Problem Scope and Main Concept
	Overview of the Framework
	Self-Adaptation Policy for Bursty Traffic
	Burst Detection Policy

	Experiments and Analysis
	Experiment Settings
	Performance Evaluation of SAFCA

	Conclusions
	References

