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Abstract. Admission control aims to compensate for the inability of slow-
changing network configurations to react rapidly enough to load fluctuations. 
Even though many admission control approaches exist, most of them suffer 
from the fact that they are based on some very rigid assumptions about the per-
flow and aggregate underlying traffic models, requiring manual reconfiguration 
of their parameters in a “trial and error” fashion when these original assump-
tions stop being valid. In this paper we present a fuzzy reinforcement learning 
admission control approach based on the increasingly popular Pre-Congestion 
Notification framework that requires no a priori knowledge about traffic flow 
characteristics, traffic models and flow dynamics. By means of simulations we 
show that the scheme can perform well under a variety of traffic and load con-
ditions and adapt its behavior accordingly without requiring any overly compli-
cated operations and with no need for manual and frequent reconfigurations. 

Keywords: Admission Control, Pre-Congestion Notification, Fuzzy Logic, 
Reinforcement Learning, Quality of Service, Autonomic Management. 

1 Introduction 

The envisioned dynamicity of future Internet networks, where applications with dif-
ferent service requirements may appear makes Quality of Service (QoS) provisioning 
and service continuity a challenging issue that traditional traffic engineering ap-
proaches, usually based on offline optimizations through bandwidth provisioning, 
may not be able to address efficiently. Towards this end, dynamic service manage-
ment functions such as admission control can play a significant role with respect to 
supporting QoS for application flows during the actual service delivery time, helping 
to overcome the inability of slow-changing network configurations to react adequate-
ly fast to shorter-term load fluctuations. 
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Even though admission control is a well-studied subject [1, 2], most of the existing 
schemes suffer from the fact that they are based on some very rigid assumptions about 
the per-flow and aggregate underlying traffic models, requiring therefore manual 
reconfiguration of their parameters in a “trial and error” fashion as soon as the origi-
nal assumptions stop being valid, in order to keep performing well [3]. That is they 
employ some tuning parameters that need to be initially manually set and also read-
justed as soon as the traffic and network characteristics change. 

The idea of mechanisms able to self-adapt and self-configure as the conditions 
change has been around for quite some time under the generic term autonomic man-
agement and has been gaining steadily increasing interest during the past few years. 
In that context, past and existing projects [4] have been working towards inducing 
self-* behavior in Internet communication mechanisms. In this direction, in this paper 
we propose a novel, autonomic admission control scheme based on the increasingly 
popular Pre-Congestion Notification (PCN) framework put forward by IETF [5]. The 
proposed solution adapts autonomically to the characteristics of the traffic flows and 
underlying network traffic and can perform well under a variety of traffic and load 
conditions without making any assumptions about traffic models, flow dynamics and 
characteristics and with no need for manual and frequent reconfigurations. 

The rest of this paper is organized as follows; in Section 2 we present the underly-
ing concepts behind PCN, the variations of this approach and its limitations, as well 
as some existing approaches towards introducing autonomic behavior into PCN. In 
Section 3 we present in detail our scheme and in Section 4 we evaluate its perfor-
mance under a variety of traffic and load conditions. Finally, in Section 5 we con-
clude, summarizing our findings, while we also give some directions for future work. 

2 Pre-Congestion Notification Based Admission Control 

PCN, which targets core/fixed network segments, defines a new traffic class that rece-
ives preferred treatment by PCN-enabled nodes, similar to the expedited forwarding 
per-hop behavior in Differentiated Services [6], aiming to minimize the packet loss 
rate (PLR) for loss-intolerant flows. The PCN framework provides two main functio-
nalities that are admission control (AC) and flow termination (FT) [7]. AC, as also 
aforementioned, decides on whether new flow requests should be admitted or rejected 
based on the current network conditions whereas FT is a control function that tears 
down already admitted flows in case of overloads that might occur, in spite of AC, 
due to rerouted traffic (i.e. in case of link failures and other unexpected events). AC 
targets the “normal operations” phase of a network whereas FT can be seen as a radi-
cal measure for use only in emergency situations and should be avoided as much as 
possible (it is more acceptable to deny a flow session than to allow it to start with high 
uncertainty about the chances of completing, which renders the session useless [8]). 

In order to support both these functionalities PCN introduces an admissible and a 
supportable rate threshold (AR(l), SR(l)) for each link l of the network, which create 
three different load regimes. If the PCN rate r(l) is below AR(l), there is no pre-
congestion and -from that link’s point of view- further flows can be admitted in  
the ingress-egress path(s) to which it belongs to. If the PCN traffic rate r(l) is  
above AR(l), the link is AR-pre-congested and no further flows should be admitted 
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depending also on how much the rate exceeds AR(l). If the PCN rate r(l) is above 
SR(l), the link is SR-pre-congested and in this state some of the existing flows should 
be additionally terminated, depending also on how much the rate exceeds SR(l). Both 
the AC and FT mechanisms are triggered based on packet markings; that is PCN 
nodes mark traffic accordingly depending on whether it exceeds AR(l) or SR(l), the 
egress nodes evaluate the packet markings and deduce on the admission control and -
if needed- flow termination decisions. The above are illustrated in Fig. 1. 

 

Fig. 1. PCN rates and behavior 

PCN-based AC can be performed in various ways [7]. In its Probe Based AC 
(PBAC) version the markings on probe packets only are evaluated and the admission 
control decision is derived. In the Observation Based AC (OBAC) version, no probe 
packets are sent and a single marked packet of the “main flows” aggregate traffic is 
considered enough to set the AC status for the involved ingress-egress pair(s) to reject 
for the subsequent time period. Finally, in the Congestion Level Estimate (CLE) 
Based AC (CLEBAC) version, no probe packets are sent and at regular intervals the 
percentage of marked versus total packets of the “main flows” aggregate traffic is 
evaluated and the AC status is set to accept or reject, depending also on whether the 
CLE value is below or above a predefined threshold value. 

The main deficiency of PCN-based AC is that even though the possible marking 
behaviors and the possible AC mechanisms are described in detail [5, 7], the way to 
actually set the marking thresholds so as to achieve the desired QoS targets is not 
addressed. While there has been considerable work [9, 10, 11] in evaluating the per-
formance of the various versions of PCN-based AC schemes in (mostly) single link 
topologies, these works assume that the marking thresholds and the other involved 
PCN parameters (e.g. the CLE threshold value) can also be derived and set in the first 
place; in principle they evaluate the performance of the schemes as a function of their 
involved parameters without though providing any guidelines on how these parame-
ters should be set if the schemes were to be applied in a practical networking scenario. 
This means that in order to apply PCN-based AC even for a single path consisting of 
10 links there exist 10 distinct marking threshold values that need to be manually 
adjusted so that the combined marking behavior along all these links, when used in 
the AC mechanism, guarantees the desired QoS targets. Thus, when network charac-
teristics such as links capacities and/or flows characteristics change, these thresholds 
have to be manually readjusted until these QoS targets are again met. In principle a 
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In our scheme, which will be described in detail in the following Section, we aim to 
address the long-term performance of PCN-based AC in environments with flow arriv-
als and terminations without inducing significant processing overhead (calculations 
and adjustments many times per second) or requiring any state or flow statistics being 
kept and updated at any routers. Through the use of machine learning, the AC control-
ler is able, starting from some default marking threshold value, to converge to a set of 
rules that drive the marking behavior and threshold value readjustment, autonomically 
and on a per scenario basis as the traffic and network characteristics require. 

3 Fuzzy Q-Learning PCN-Based Admission Control 

Fuzzy Q-Learning has been extensively used in the literature, e.g. see [15, 16] to in-
troduce autonomic capabilities in network control systems, and is a combination of 
fuzzy logic [17] with Q-learning (type of Reinforcement Learning (RL)) [18] that 
aims to combine the robustness of a rule based fuzzy system with the adaptability and 
learning capabilities of Q-learning. In this Section we highlight the main concepts and 
benefits of this approach and its applicability in the context of PCN-based AC. 

3.1 Fuzzy Q-Learning Concepts 

Rule based fuzzy systems have been extensively applied with success in many diverse 
application areas due to their similarity to human perception and reasoning, their in-
tuitiveness and their simplicity. The main concept is that, contrary to classical set 
theory, the sets used for representing their input and output parameters are fuzzy; 
meaning that their elements have degrees of membership that represent the degree of 
truth of a statement. The process of mapping the input values into membership func-
tions (MFs) is called “fuzzification”. After this first step, membership functions are 
combined in fuzzy “if…then” rules to make inferences and finally the “defuzzifica-
tion” phase produces a crisp output value. In principle the idea of fuzzy inference 
systems is that at every point in time and for a unique set of input parameter values, 
multiple rules can be triggered with a different degree of truth (strength) and their 
individual outputs are then “combined” to derive a unique crisp output value. Fuzzy 
inference systems offer robustness and smooth reaction [17] however they do require 
the existence of an expert to define the appropriate rule-set. The main challenge is 
therefore to be able to generate the appropriate rule-set without the existence of a 
direct trainer. Reinforcement learning can be applied in this context to drive the gen-
eration of the appropriate rule-set based on the interactions with the environment. 

Q-learning belongs to the Temporal Difference (TD) methods which are one of the 
three main types of Reinforcement Learning methods, the other two being Dynamic 
Programming and Monte Carlo methods [18]. TD methods combine the pros of the 
other two types of RL methods; that is, they don’t require an accurate model of the 
environment (contrary to Dynamic Programming) and are suitable for step-by-step 
incremental computations (contrary to Monte Carlo methods). Q-learning works by 
learning an action-value function based on the interactions of an agent (controller) 
with the environment and the instantaneous reward it receives. The objective of an  
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agent is to find, by trying out all the possible actions when being in a given state, the 
action that maximizes its long term reward. The detailed mathematical foundation and 
formulation of Q-learning can be found in [15, 16, 18] therefore it is not repeated 
here, due to space limitations; the core Q-learning algorithm [18] is provided though, 
so as to highlight  the parameters involved in it and consequently in our evaluation in 
the following Session. 

Initialise Q(s,α) arbitrarily (1)             
 Repeat (2) 
  Initialize s (3)                                     
  Repeat (4) 
   Choose α from s using policy derived from Q (e.g.        ε-greedy) (5)                                       
   Take action α, observe r, s’ (6)                    
   Q(s,α)=Q(s,α)+a*[r+γ*maxα’Q(s’,α’)-Q(s,α)] (7)       
   s←s’ (8) 
 until s is terminal (9) 

In every step of the Q-learning algorithm, the agent/controller observes the environ-
ment (line 5) and deduces in which state s it currently resides based on the input pa-
rameter values. It then (100-ε) % of the time takes the action with the highest Q value 
and ε% of the time it takes another action randomly from the set of available actions 
(line 5). This is called the exploration/exploitation tradeoff which aims to ensure the 
agent is allowed to move into “unchartered territory” instead of solely relying on what 
it has learnt so far. After taking the action the agent receives an instantaneous reward 
r, observes to which state s’this action led it into (line 6) and updates the correspond-
ing Q value (line 7). Parameter a (0<a≤1) is the learning rate which determines how 
much the agent values the newly acquired knowledge compared with the existing one 
and γ (0≤γ<1) is the discount factor which defines how much expected future re-
wards affect decisions now. Low γ means the agent pays little attention to the future 
whereas high γ means that potential future rewards have a major influence now; that 
is the agent is willing to accept some short-term loss in return for long-term gain. 

Q-learning is an attractive method of learning because of the simplicity of the com-
putational demands per step and also because of proof of convergence to a global 
optimum, avoiding all local optima, as long as the Markov Decision Process (MDP) 
requirement is met; that is the next state depends only on the current state and the 
taken action (it is worth noting that the MDP requirement applies to all RL methods). 
It can also be easily combined with fuzzy logic and provide the association between 
the states and the available actions, which is the same as constructing the fuzzy logic 
“if…then” engine; the only additional step required being the distribution of the rein-
forcement/reward signal among multiple simultaneously triggered “if…then” rules 
due to the overlapping of the fuzzy input sets. This distribution can be done propor-
tionally to the strength with which each rule is triggered so that rules (states) triggered 
with high strength -and contributing therefore more to the output action- are rewarded 
(or penalized) more compared to rules triggered with lower strength [15, 16]. 
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3.2 Applicability to PCN-Based Admission Control  

In our CLEBAC PCN-based AC approach we assume that there is a PCN 
agent/controller running at every PCN node and we define two input parameters for 
each controller and one output parameter; the input parameters are the traffic rate (as 
% of the link capacity) and its “trend” over the past T seconds. To define the trend of 
the traffic rate we split the T second interval into two intervals (t-T, t-T/2] and (t-T/2, 
t], calculate the traffic rate into each one individually and calculate the trend as: 

 trend(t-T,t)= rate(t-T/2,t] – rate(t-T,t-T/2] (1) 

As output parameter we define the adjustment X of the marking threshold compared 
to its current setting; that is the marking threshold after each action becomes: 

 ThresholdRatenew=ThresholdRatecurrent + defuzzified(X) (2) 

The individual “if…then” rules for driving the marking behavior are therefore of the 
kind “if the traffic rate is VERY HIGH (POSITIVE BIG) and the trend is VERY 
HIGH (POSITIVE BIG) then the threshold adjustment is NEGATIVE BIG”. This 
rule intuitively states that if the traffic is very high and keeps increasing then the 
marking threshold should be reduced a lot so that packet marking should be accele-
rated and subsequent flows should be rejected. 

The membership functions for the input and output parameters used in our evalua-
tion are summarized in Table 1. Since each of the input parameters and the output 
parameter can be categorized as being Negative Big (NB), Negative Small (NS), Zero 
(ZE), Positive Small (PS) and Positive Big (PB) this means that the rule-set consists 
of 25 “if…then” rules with each rule having 5 possible output actions. The objective 
of the learning process is therefore for the controller to derive the optimal output ac-
tion for each one of the 25 rules. 

Table 1. Input and output MFs of the controller 

Traffic Rate Trend of Traffic Rate Adjustment (kbps) 

NB (piece-wise linear)  -∞, 0.4, 0.8 (piece-wise linear)  -∞, -0.5015,  

-0.003 

(triangular) -45, -35, -25 

NS (triangular) 0.78, 0.805, 0.83 (triangular) -0.035, -0.0075, 0.02 (triangular) -38, -20.5, -3 

ZE (triangular) 0.82, 0.845, 0.87 (triangular) 0.015, 0.215, 0.28 (triangular) -5, 0, 5 

PS (triangular) 0.86, 0.895, 0.93 (triangular) 0.025, 0.0325, 0.04 (triangular) 3, 9.5, 16 

PB (piece-wise linear)  0.92, 1, +∞ (piece-wise linear) 0.035, 1, +∞ (triangular) 14, 16, 18 

One important element, as in every application of RL, is the instantaneous reward 
function since it fundamentally defines what the controller attempts to learn to optim-
ize in the long-term. In our case we set the reward function as follows: 

 Reward=൜Utilization, if Packet Loss Rate=0
P, if Packet Loss Rate ≠0  (3) 

This way the controller attempts, based on the available actions, to learn the policy 
that maximizes the long-term utilization while at the same time avoiding situations 
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Regarding the video streams we used traffic traces from [20] with the high  
quality streams having peak rate 3.1Mbps and average rate 0.58Mbps, the average 
quality streams having peak rate 1.5Mbps and average rate 0.18Mbps and the  
low quality streams having peak rate 1.5Mbps and average rate 0.11Mbps. To test our 
scheme under a variety of load conditions and flow arrival/departure dynamics we 
considered various scenarios with per quality type flow inter-arrival times 1sec, 2sec 
and 3sec (exponentially distributed) and flow durations 350sec and 1200sec, also 
exponentially distributed. The first duration could, for example, correspond to music 
video clips whereas the second to episodes of a TV series. Every scenario was run for 
7200sec simulated time and 10 times with different random number generator seeds. 

Regarding the scheme’s parameters we fixed the monitoring interval T to be equal 
to 5sec, the control periodicity S to be equal to 1sec and the marking threshold was 
initially set equal to 95% of the link capacity. Regarding the marking behavior, we 
employed the exhaustive threshold marking approach [7], which marks all packets on 
a link when the metered rate exceeds the marking threshold rate. For the admission 
control decision we also assumed that whenever CLE>0 then the AC status should be 
set to reject. With respect to the Q-learning specific parameters we set P equal to -20 
to “force” the controller to learn to avoid taking actions that may lead to packet 
losses. The discount factor γ was set equal to 0.95 and ε for the explora-
tion/exploitation tradeoff was set equal to 0.05, meaning that with 95% probability the 
action with the higher Q value is taken during the learning period. Regarding the 
learning rate since the environment is non-deterministic (due to the probabilistic flow 
arrivals/departures and the inherent burstiness of the traffic, taking an action from a 
given state can lead to different states and rewards) we used the learning rate for the 
non-deterministic version of Q-learning. In this version, the practice is to begin with a 
higher learning rate and reduce it during the learning process by employing the fol-
lowing formula: 

 a(s,α)= amax/(1+visits(s,α)) (4) 

The learning rate used to update each state-action pair (“if…then” rule) is reduced 
every time this state-action pair is visited; amax was set equal to 0.1.  

Due to space limitations only the obtained results for two scenarios will be pre-
sented; similar results and conclusions were drawn from all the tested scenarios. It is 
also worth noting that all the aforementioned parameters were fixed and remained 
unchanged throughout all scenarios and all simulation runs within each scenario. 

4.1 Scenario 1 (Inter-arrival Time=1sec, Video Duration=1200sec) 

Fig. 4 shows the outcomes of one out of the ten simulation runs. FQL PCN is able, 
after the initial period of PLR due to the high initial marking threshold, to reduce and 
vary the marking threshold so that PLR is equal to zero for most of the time and the 
utilization stays at high levels. During the initial period of PLR spikes (first 660sec on 
average among all simulation runs), PLR stays well below 0.5% whereas for the rest 
of the simulation runs the PLR spikes account in total for 12sec (on average among all 
runs) with a maximum PLR value of less than 10-4 (it is worth noting that according 
to [21], for MPEG-4 video this latter value of PLR can be considered tolerable). 
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