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Abstract. Botnets are becoming the predominant threat on the Internet today 
and is the primary vector for carrying out attacks against organizations and 
individuals. Botnets have been used in a variety of cybercrime, from click-fraud 
to DDOS attacks to the generation of spam. In this paper we propose an 
approach to detect botnet activity by classifying network traffic behavior using 
machine learning classification techniques. We study the feasibility of detecting 
botnet activity without having seen a complete network flow by classifying 
behavior based on time intervals and we examine the performance of two 
popular classification techniques with respect to this data. Using existing 
datasets, we show experimentally that it is possible to identify the presence of 
botnet activity with high accuracy even with very small time windows, though 
there are some limitations to the approach based on the selection of attributes.  

Keywords: Botnet, Network Intrusion Detection, Traffic Behavior Analysis, 
Network Flows. 

1   Introduction 

A bot is an autonomously operating software agent which may be controlled by a 
remote operator (the botmaster) to perform malicious tasks typically installed onto a 
victim’s computer without the owner’s consent or knowledge. Bots allow a remote 
operator to control the system and command it to perform specific, typically 
malicious tasks. Some of the tasks performed by a botnet include distributed denial of 
service (DDOS), mass spam, click fraud, as well as password cracking via distributed 
computing and other forms of cybercrime.  

Command and control (C&C) is the key identifying characteristic of a botnet, and 
as such there is a variety of methods used by bots to form this network structure. 
Command and control channels must allow a botmaster to issue orders to individual 
bots in an efficient manner while at the same time avoiding being detected by 
computer security measures. Additionally, command and control channels would 
ideally want to be decentralized so that individual members are difficult to detect even 
if the C&C channel is compromised, allowing for resiliency in the network. As with 
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any problem, these three traits are frequently at odds with each other and botmasters 
and bots designers must make a tradeoff between stealthiness, decentralization and 
efficiency. 

One of the most popular methods for implementing botnet command and control is 
by using the Internet Relay Chat (IRC) protocol [1]. IRC based C&C channels are 
highly efficient due to the ease of implementation as well as the capability of forming 
large networks very quickly due to the simplicity of the network architecture. Their 
weakness lies in their highly centralized nature: a compromise of a botnet C&C server 
may compromise the location of all bots connected to that server. Additionally, 
monitoring of network traffic may easily reveal the messages being passed from the 
server to individual clients, and much research has been done on botnet detection 
based on the analysis of these message contents.  

C&C schemes based on HTTP traffic is another popular method for botnets. As a 
well-known protocol, HTTP based botnet C&C attempts to be stealthy by hijacking a 
legitimate communications channel in order to bypass traditional firewall based 
security and packets are often encrypted to avoid detection based on deep packet 
analysis. However, HTTP based C&C schemes still suffer from the issue of 
centralization, and it is possible to exploit such centralized behavior in their detection.  

A more recent development in botnet C&C technology utilizes peer to peer (p2p) 
networks and protocols to form the communications network for bots. In p2p 
schemes, individual bots act as both client and server, producing a network 
architecture without a centralized point which may be incapacitated. The network is 
resilient in that when nodes are taken offline, these gaps may be closed automatically, 
allowing for the network to continue to operate under the attacker’s control. [2] [3]. 

Feily et al. [4] divides the life-cycle of a botnet into five distinct phases: initial 
infection, secondary injection, connection, malicious command and control, and 
update and maintenance. In the initial infection phase, an attacker exploits a known 
vulnerability for a target system and infects the victim machine, granting additional 
capabilities to the attacker on the target system. In the secondary injection phase, the 
attacker uses his newly acquired access to execute additional scripts or programs 
which then fetch a malicious binary from a known location. Once the binary has been 
installed, the victim computer executes the malicious code and becomes a bot. In the 
connection phase, the bot attempts to establish a connection to the command and 
control server through a variety of methods, joining the botnet officially once this 
connection has been established. The maintenance phase is the last phase of the botnet 
lifecycle, bots are commanded to update their binaries, typically to defend against 
new attacks or to improve their functionality.  

Leonard et al. divides a botnet’s lifecycle into four phases: formation, C&C, attack 
and post-attack [5]. The attack phase is noted as a phase in the botnet lifecycle when 
the bot is actively performing malicious activities based on received instructions, 
while the post-attack phase is similar to the maintenance phase described in [4].  

Many existing botnet detection techniques rely on detecting bot activity during the 
attack phase or during the initial infection / secondary injection phase. Typical 
detectors are based on traditional intrusion detection techniques, focusing on 
identifying botnets based on existing signatures of attacks by examining the behavior 
of underlying malicious activities. 
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In our work, we propose a method to detect the presence of peer to peer botnets not 
only during the attack phase, but also in the command and control phase. We examine 
the network behavior of a botnet at the level of the TCP/UDP flow, splitting it into 
multiple time windows and extracting from them a set of attributes which are then 
used to classify malicious (botnet) or non-malicious traffic using machine learning 
classification techniques. In particular, we compare the performance of the Bayesian 
Network classifier and a decision tree classifier using reduced error pruning 
(REPTree).  

There are several advantages to detecting botnets based on their network flow 
characteristics. As a bot must communicate with the rest of the network during all 
phases after secondary injection, our approach may be used to detect the presence of a 
bot during a significant part of its life. Furthermore, detection based on network 
traffic characteristics is immune to encryption algorithms which may counter other 
approaches such as packet inspection and is computationally cheaper than those 
techniques. Additionally, by splitting individual flows into characteristic time 
windows, we may be able to detect bot activity quickly, before it has finished its tasks 
during the C&C or attack phases.  

We organize the remainder of this paper in the following way: In Section 2, we 
provide an overview of existing botnet detection approaches and techniques.  
Section 3 provides our motivation and approach for the detection of botnets. In 
Section 4, we evaluate our approach using existing experimental datasets and 
compare the effectiveness of the two classification algorithms mentioned above which 
we have selected based on their performance and characteristics. Our concluding 
remarks and discussion of future work is provided in Section 5.  

2   Related Work 

A large collection of literature exists for the detection of botnets though interest 
towards the detection of peer to peer botnets has only recently emerged. Furthermore, 
botnet detection approaches using flow analysis techniques have only emerged in the 
last few years [6] and of these most examine flows in their entirety instead of smaller 
time intervals. Faily et al. classify botnet detection systems into four general types, 
signature-based detection, anomaly-based detection, DNS-based detection and 
mining-based detection [4]. Our focus will be on mining and anomaly based detection 
due to their increasing popularity.  

Gu et al. proposed successively two botnet detection frameworks named BotHunter 
[7] and BotMiner [8].  

BotHunter [7] is a system for botnet detection which correlates alarms from the 
Snort intrusion detection system with bot activities. Specifically, BotHunter exploits 
the fact that all bots share a common set of underlying actions as part of their 
lifecycle: scanning, infection, binary download, C&C and outbound scanning. 
BotHunter monitors a network and captures activity related to port scanning, 
outbound scanning and performs some payload analysis and malware activity 
detection based on Snort rules, and then uses a correlation engine to generate a score 
for the probability that a bot has infected the network. Like many behavior correlation 
techniques, BotHunter works best when a bot has gone through all phases of its 
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lifecycle, from initial exploit to outbound scan. BotHunter is also vulnerable to 
encrypted command and control channels that cannot be detected using payload 
analysis.   

BotMiner [8] relies on the group behavior of individual bots within a botnet for its 
detection. It exploits the underlying uniformity of behavior of botnets and detects them 
by attempting to observe and cluster similar behavior being performed simultaneously 
on multiple machines on a network. BotMiner performs ‘C-plane’ clustering to first 
group network traffic behaviors which share similarities. Flows with known safe 
signatures (such as for some popular protocols) are filtered out of their list to improve 
performance. Once similar flows have been identified, BotMiner uses a second ‘A-
Plane’ clustering technique which groups flows by the type of activities they represent 
using anomaly detection via Snort. By examining both the A-Plane and C-Plane, 
BotMiner correlates hosts which exhibit both similar network characteristics as well as 
malicious activity and in doing so identify the presence of a botnet as well as members 
of the network. Experimentally, BotMiner was able to achieve detection accuracies of 
99% on several popular bot variants with a false positive rate around 1%. 

Yu et al. proposed a data mining based approach for botnet detection based on the 
incremental discrete Fourier transform, achieving detection rates of 99% with a false 
positive rate of 14% [9]. In their work, the authors capture network flows and convert 
these flows into a feature stream consisting of attributes such as duration of flow, 
packets exchanged etc. The authors then group these feature streams using a 
clustering approach and use the discrete Fourier transform to improve performance by 
reducing the size of the problem via computing the Euclidean distance of the first few 
coefficients of the transform. By observing that individual bots within the same botnet 
tend to exhibit similar flow patterns, pairs of flows with high similarities and 
corresponding hosts may then be flagged as suspicious, and a traditional rule based 
detection technique may be used to test the validity of the suspicion.  

Zeidanloo et al. proposed a botnet detection approach based on the monitoring of 
network traffic characteristics in a similar way to BotMiner. In their work, a three 
stages process of filtering, malicious activity detection and traffic monitoring is used 
to group bots by their group behavior. The approach divides the concept of flows into 
time periods of six hours and clusters these flow intervals with known malicious 
activity. The effects of different flow interval durations were not presented, and the 
accuracy of the approach is unknown.  

All of the above mentioned group behavior clustering approaches requires that 
malicious activity be performed by the bots before detection may occur and therefore 
are unsuitable for early detection during the C&C phase of a bot’s lifecycle. 
Additionally, similarity and group behavior detection strategies relies on the presence 
of multiple bots within the monitored network and are unreliable or non-functional if 
only a single infected machine is present on the network.  

Livadas et al. proposed a flow based detection approach for the detection of the 
C&C traffic of IRC-based botnets, using several classifiers to group flow behavior 
[10]. Their approach generates a set of attributes from IRC botnet flows and classifies 
these flows using a variety of machine learning techniques. Using a Bayesian network 
classifier, they achieved a false negative rate between 10% to 20% and a false positive 
rate of 30% to 40% though their results may have been negatively affected by poor 
labeling criterion of data. They showed using their approach that there exists a 
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difference between botnet IRC chat behavior and normal IRC chat behavior and that it 
was possible to use a classifier to separate flows into these categories.  

Wang et al. presented a detection approach of peer to peer based botnets 
(specifically the peer to peer Storm variants using the Kademlia based protocol) by 
observing the stability of control flows in initial time intervals of 10 minutes [11]. 
They developed an algorithm which measures the stability of flows and exploits the 
property that bots exhibit similar behavior in their command search and perform these 
tasks independently of each other and frequently. This differs from the usage of the 
protocol by a normal user which may fluctuate greatly with user behavior. They show 
that by varying parameters in their algorithm, they were able to classify 98% of Storm 
C&C data as ‘stable’, though a large percentage of non-malicious peer to peer traffic 
were also classified as such (with a false positive rate of 30%). Our own approach is 
similar to this research, though we seek to significantly increase our detection 
accuracy by introducing new attributes and by utilizing a machine learning algorithm.  

3   Approach 

3.1   Foundation 

Early works in botnet detection are predominantly based on payload analysis methods 
which inspect the contents of TCP and UDP packets for malicious signatures. Payload 
inspection typically demonstrates very high identification accuracy when compared 
with other approaches but suffer from several limitations that are increasingly reducing 
its usefulness. Payload inspection techniques are typically resource intensive operations 
that require the parsing of large amounts of packet data and are generally slow. 
Additionally, new bots frequently utilize encryption and other methods to obfuscate 
their communication and defeat packet inspection techniques. Furthermore, the violation 
of privacy is also a concern in the payload analysis-based detection scheme.  

A more recent technique, traffic analysis, seeks to alleviate some of the problems 
with payload inspection. Traffic analysis exploits the idea that bots within a botnet 
typically demonstrate uniformity of traffic behavior, present unique communications 
behavior, and that these behaviors may be characterized and classified using a set of 
attributes which distinguishes them from non-malicious traffic and techniques. Traffic 
analysis does not depend on the content of the packets and is therefore unaffected by 
encryption and there exists dedicated hardware which may extract this information 
with high performance without significantly impacting the network.  

Typical traffic analysis based detection systems examine network traffic between 
two hosts in its entirety. While this approach is feasible for offline detection, it is not 
useful for the detection of botnet behavior in real time. A network flow between two 
hosts may run for a few seconds to several days, and in many instances it is desirable 
to discover botnet activity as soon as possible.  

In this paper, we present a detection technique based on traffic analysis which 
allows us to identify botnet activity in real time by examining the characteristics of 
these flows in small time windows. We exploit some properties of botnet traffic in 
order to perform this detection with high confidence even when other non-malicious 
traffic is present on the network.  
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The uniformity of botnet communications and botnet behavior is well known and 
has been exploited by various architectures towards their detection [8] [9] [12] [13] 
[14]. Most of these techniques exploit this uniformity by monitoring the traffic 
behavior of a number of machines, and then identifying machines which are part of a 
botnet when they begin to simultaneously perform similar malicious actions. Other 
methods include observing the command and response characteristics of bots; in the 
BotSniffer architecture, Gu et al. detect individual bots by drawing a spatial-temporal 
correlation in the responses of bots to a specific command [13]. With this idea, we 
make the assumption that should there exist a unique signature for the flow behavior 
of a single bot, we can use this unique signature to detect many bots which are part of 
the same botnet.  

Several studies have shown that it is possible to detect certain classes of network 
traffic simply by observing their traffic patterns. Jun et al. proposed a technique of 
detecting peer to peer traffic based on a set of network flow attributes [15]. While the 
research does not focus on computer security but instead traffic classification, they 
nevertheless show that it is possible to detect various classes of peer to peer 
applications (eMule, Kazaa, Gnutella) based on their unique flow attributes. We also 
observe that bots utilizing implementations of the Overnet / Kademlia p2p protocol as 
well as unique p2p implementations as those seen on the Waledac bot exhibit unique 
and specific message exchange characteristics, particularly when first joining their 
p2p networks [2] [16].  

For our technique, we will analyze specifically the network flow characteristics of 
traffic on a network. For the purposes of our framework, we define a flow as a 
collection of packets being exchanged between two unique IP addresses using a pair 
of ports and utilizing one of several Layer 4 protocols. We observe the characteristics 
of a given flow by examining its traffic in a given time window T and make two 
observations about the size of the time window. First, if a time window is too small, 
we may fail to capture unique traffic characteristics that only become apparent over a 
longer period of time, and we may also introduce errors as the behavior of a flow may 
change over time. If a time window is too large, we cannot make a decision in our 
classification until the window has been met, which means that our time to detection 
will increase to an undesirably long period. Ultimately, the selection of a time 
window size will be based on a compromise between detection accuracy and speed. 

In order to classify the flow characteristics, we compute a set of attributes for each 
time window which encodes relevant information about the behavior of the flow 
during that time window. The selection of our set of attributes is based on the 
observations we have made above, combined with our intuition of botnet messaging 
activities.  

Operation of our detection framework consists of two phases. In the training phase, 
we provide our detectors with a set of known malicious and non-malicious data 
attribute vectors in order to train our classifiers in the identification of the two classes 
of data. Once complete, the system is placed in the detection phase, where it actively 
observes the network traffic and classifies the attribute vectors generated from active 
flows. When a set of attribute vectors has been classified as ‘malicious’ in the live 
data, the flows in question may be flagged as suspicious.  
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3.2   Attribute Selection 

An attribute is some characteristic of a flow or a collection of flows in a given time 
window T which may be represented as a numeric or nominal value. Table 1 lists the 
set of 12 attributes we have selected for the purposes of our evaluation. Some 
attributes, such as the source and destination IP addresses and ports of a flow, may be 
extracted directly from the TCP / UDP headers, while others, such as the average 
length of packets exchanged in the time interval, require additional processing and 
computation. These attributes are then used as part of an attribute vector which 
captures the characteristics of a single flow for a given time interval.   

Table 1. Selected network flow attributes 

Attribute Description 
SrcIp Flow source IP address 
SrcPort Flow source port address 
DstIp Flow destination IP address 
DstPort Flow destination port address 
Protocol Transport layer protocol or ‘mixed’ 
APL Average payload packet length for 

time interval. 
PV Variance of payload packet length 

for time interval. 
PX Number of packets exchanged for 

time interval. 
PPS Number of packets exchanged per 

second in time interval T 
FPS The size of the first packet in the 

flow. 
TBP The average time between packets in 

time interval. 
NR The number of reconnects for a flow 
FPH Number of flows from this address 

over the total number of flows 
generated per hour.  

 
We selected our set of attributes based on the behavior of various well known 

protocols as well as the behavior of known botnets such as Storm, Nugache and 
Waledac. For example, we note that unlike normal peer to peer usage, bot 
communication may exhibit a more uniform behavior whereupon the bot queries for 
updates or instructions on the network continuously, resulting in many uniform sized, 
small packets which continuously occur. Another observation we may make is that for 
many protocols, the initial exchange of packets when a client joins a network tends to 
be unique and follows well defined behavior; this knowledge may allow us to assist in 
classification by capturing the characteristics of the initial packet exchange and 
carrying this information forward to subsequent time intervals for that flow.  
For instance, the first packet size attribute is obtained immediately when the initial 
flow has been established and is carried on to future time windows to assist in 
classification. 
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It should be noted that while included in our attribute list, the source and 
destination IP and port numbers for a flow may not be a very good attribute if the 
training data comes from a different network and uses different IP values. Typically 
we would like to use attributes which are universal to any network in order to provide 
for a more portable signature.  

One final consideration for the selection of attributes is to provide some resistance 
to potential evasion techniques for bots. While no known bots today exhibit this 
evasion strategy, it is feasible that flow perturbation techniques could be used by a bot 
in an attempt to evade our analysis. A bot may, for example, inject random packets 
into its C&C communications in order to throw off correlations based on packet size. 
In order to mitigate some of these techniques, we measure the number of flows 
generated by a single address, and compare it with the number of total flows 
generated in some time period (in this case, an hour). This metric allows us to exploit 
the fact that most bots will generate more flows than typical non-malicious 
applications as it queries its C&C channels for tasks and carry out those tasks. We 
also measure the number of connections and reconnections a flow has made over time 
in case the bot attempts to randomly connect and disconnect to defeat our connection 
based metric. Like any service, it is desirable for a bot to be connected to its 
command and control channel as much as possible, and therefore any random 
disconnects a bot performs in order to defeat detection will naturally provide some 
mitigation against the bot’s activities. Finally, it is possible to generate white lists of 
known IP addresses and services which help eliminate potential benign programs 
which may exhibit similar connection behavior to better isolate malicious 
applications. None of our proposed strategies are foolproof, but they serve to increase 
implementation complexity for the botmaster as well as provide natural detriments to 
the efficient operation of a botnet.  

3.3   Classifier Selection 

Many machine learning (ML) classification techniques exist which all attempt to 
cluster and classify data based on attribute sets. For purposes of our work, we would 
like to select classification techniques with a high performance in order to support real 
time detection goals while at the same time exhibiting high detection accuracy.  

We have selected two popular classification techniques for our evaluation based on 
the above criteria, a Bayesian network classifier, and a decision tree classifier.  

Bayesian networks (BN) are directed acyclic graphs where each node represents a 
domain variable, or in our case, a flow attribute, and each edge between nodes 
represents the probability of dependency. Given values assigned to other nodes, a BN 
may compute the conditional probability of one node occurring given values assigned 
to other nodes. These networks have been used in the classification of a variety of 
data, including network traffic data. Like most graphical classification techniques, 
Bayesian networks are easily visualized. 

Decision tree based classifiers are a well known classification technique which 
exhibits desirably low computational complexity. In a decision tree, interior nodes 
represent input attributes with edges extending from them which correspond to  
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possible values of the attributes. These edges eventually lead to a leaf node which 
represents an output variable (in our case, whether a flow is malicious or non-
malicious). Classification of an attribute vector simply consists of traversing the path 
from root to leaf by following edges which correspond to the appropriate values of the 
attributes in the attribute vector. Decision trees are learned via a partitioning process 
where the source attribute set is split into subsets based on a value test. This 
partitioning halts after a user-defined stopping criteria has been reached. For our 
evaluation, we select a decision tree using the Reduced Error Pruning algorithm 
(REPTree). This algorithm helps improve the detection accuracy of a decision tree 
with respect to noisy data, and reduces the size of the tree to decrease the complexity 
of classification.  

4   Evaluation 

4.1   Evaluation Dataset 

There are considerable difficulties in obtaining real world datasets of botnet malicious 
activity. Many publicly available datasets consist of information collected from 
honeypots which may not reflect real-world usages. In a typical honeynet 
configuration, a honeypot is a machine dedicated for the collection of malicious data 
and typically is not used for other normal activities. In such a case, it is atypical to see 
non-malicious traffic within a honeypot network trace except in the smallest 
quantities, and such non-malicious data rarely reflect real world usage scenarios.  

In order to evaluate our system, we attempt to generate a set of network traffic 
traces which contain both malicious and non-malicious traffic, including traffic from 
standard usage of popular networked applications. Malicious and non-malicious 
traffic are intermixed in a way that both types of traffic occur during the same time 
periods, and we label this data in order to evaluate the accuracy of our methods. 

For this work, we obtained and used two separate datasets containing malicious 
traffic from the French chapter of the honeynet project involving the Storm and 
Waledac botnets, respectively [17]. Waledac is currently one of the most prevalent 
P2P botnets and is widely considered as the successor of the Storm botnet with a more 
decentralized communication protocol. Unlike Storm, which uses Overnet as a 
communication channel, Waledac utilizes HTTP communication and a fast-flux based 
DNS network exclusively.  

To represent non-malicious, everyday usage traffic, we incorporated two different 
datasets, one from the Traffic Lab at Ericsson Research in Hungary [18] and the other 
from the Lawrence Berkeley National Laboratory (LBNL) [19]. The Ericsson Lab 
dataset contains a large number of general traffic from a variety of applications, 
including HTTP web browsing behavior, World of Warcraft gaming packets, and 
packets from popular bittorrent clients such as Azureus.  

The LBNL is a research institute with a medium-sized enterprise network. The 
LBNL trace data consists of five datasets labeled D0...D4; Table 2 provides general 
information for each of the datasets.  
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Table 2. LBNL datasets general information 

 D0 D1 D2 D3 D4 

Date Oct 4, 04 Dec 15, 04 Dec 16, 04 Jan 6, 05 Jan 7, 05 
Duration 10 min 1 hour 1 hour 1 hour 1 hour 
Subnets 22 22 22 18 18 
Hosts 2,531 2,102 2,088 1,561 1,558 
Packets 18M 65M 28M 22M 28M 

 
The recording of the LBNL network trace happened over three months period, 

from October 2004 to January 2005 covering 22 subnets. The dataset contains trace 
data for a variety of traffic which spans from web and email to backup and streaming 
media. This variety of traffic serves as a good example of day-to-day use of enterprise 
networks. 

In order to produce an experimental dataset with both malicious and non-malicious 
traffic, we merged the two malicious datasets and the Erikson (non-malicious) dataset 
into a single individual trace file via a specific process depicted by Figure 2. First we 
mapped the IP addresses of the infected machines to two of the machines providing 
the background traffic. Second, we replayed all of the trace files using the TcpReplay 
tool on the same network interface card in order to homogenize the network behavior 
exhibited by all three datasets; this replayed data is then captured via wireshark for 
evaluation.  

The final evaluation data produced by this process was further merged with all five 
LBNL datasets to provide one extra subnet to indeed simulate a real enterprise size  
 

 

Fig. 1. Dataset merging process 
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network with thousands of hosts. The resulted evaluation dataset contains 22 subnets 
from the LBNL with non-malicious traffic and one additional subnet as illustrated in 
Figure 2 with both malicious and non-malicious traffic originating from the same 
machines.  

4.2   Evaluation Results 

We implemented our framework in Java and utilized the popular Weka machine 
learning framework and libraries for our classification algorithms [20]. Our program 
extracts from a given pcap file all flow information and then parses the flows into 
relevant attribute vectors for use in classification.  

In all, there were a total of 1,672,575 network flows in our test set. The duration of 
the flows vary greatly, with some lasting less than a second and a few lasting more 
than a week. Of these flows, 97,043 (about 5.8%) were malicious, and the remainder 
non-malicious. From these flows, we generated 111,818 malicious attribute vectors, 
and 2,203,807 non-malicious attribute vectors. Each feature vector represents a 300 
second time window in which at least 1 packet was exchanged. We consider 
malicious flow attribute vectors a vector which is extracted from a flow associated 
with the Storm or Waledec botnet data, and we considered all other attribute vectors 
as non-malicious, including peer to peer applications such as Bittorrent, Skype and e-
Donkey.  

To evaluate detection accuracy, we used the 10-fold cross-validation technique to 
partition our dataset into 10 random subsets, of which 1 is used for evaluation and 9 
others are used for training. This process is repeated until all 10 subsets have been 
used as the testing set exactly once, while the remaining 9 folds are used for training. 
This technique helps us guard against Type III errors and gives us a better idea of how 
our algorithm may perform in practice outside of our evaluation data. The true and 
false positive rates of both the Bayesian Network and decision tree classifiers are 
listed in Table 2 and 3 respectively. The resulting detection values are an average of 
the results of the ten runs.  

Table 3. Detection rate of Bayesian Network Classifier (attribute vectors identified) 

Detection rate using Bayesian Network classifier (T = 300s) 
 True positive False positive 
Malicious 97.7% 1.4% 
Non-Malicious 98.6% 2.3% 

Table 4. Detection rate of REPTree classifier (attribute vectors identified) 

Detection rate using decision tree classifier (REPTree)  
(T = 300s) 
 True positive False positive 
Malicious 98.3% 0.01% 
Non-Malicious 99.9% 1.7% 
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As can be seen in the above tables, both the Bayesian Network classifier and the 
decision tree produced very high (above 90%) detection rates with a very low false 
positive rate. Between the two classifiers, the decision tree was more accurate, 
classifying 99% of all attribute vectors correctly while incorrectly identifying only 1% 
of all attribute vectors. These results indicate that there are indeed unique 
characteristics of the evaluation botnets when compared to everyday p2p and non-p2p 
traffic.  

In terms of speed, the decision tree classifier was slightly slower than the Bayesian 
Network classifier, requiring 76.9 seconds for the full evaluation as compared to 56.1 
seconds for the Bayesian Network.  

In order to get some idea of the key discriminating attributes in our dataset, we use 
a correlation based attribute evaluator (CFS feature set evaluation) with best first 
search to generate a list of attributes with the highest discriminatory power while at 
the same time exhibiting low correlation with other attributes in the set. The algorithm 
generated a subset of four attributes, listed in Table 5, to be used as an optimized 
subset that may improve our performance without producing a large reduction in 
accuracy.  

Table 5. Attribute subset from CFS subset evaluation 

Feature Description 
PV Variance of payload packet length for time 

interval.  
PX Number of packets exchanged for time 

interval.  
FPS The size of the first packet in the flow.  
FPH # flows per address / total flows  

 
Tables 6 and 7 list the results of classification using only the above attribute subset. 

We can see that by reducing the number of attributes to three, the accuracy of the 
Bayesian network and REPTree classifiers both decreased slightly due to an increased 
false positive rate. Neither classifier with the reduced attribute set performed as well 
as the REPTree classifier with the full attribute set, though both very closely matched 
the best case’s accuracy. In terms of performance, reducing the number of attributes 
allowed the Bayesian network classifier to classify all attribute vectors in 76% of the 
original time, while the REPTree classifier took 33% of the time. Table 8 shows the 
actual times for classifying all attribute vectors by the classifiers on both the full 
attribute set and the reduced set. 

Table 6. Detection rate of Bayesian Network Classifier with reduced subset 

Detection rate using Bayesian Network classifier (T = 300s) 
 True positive False positive 
Malicious 92.3% 1.9% 
Non-Malicious 98.1% 7.7% 
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Fig. 3. Effects of time window
(dotted line) classifiers. 
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While BotHunter does not expect or require that all phases of a bot lifecycle to be 
present in order to perform its detection, the fact that our dataset was missing the 
initial infection stages of the bot may have contributed to its poor detection 
performance.   

5   Conclusion 

In this paper we proposed a system for detecting bot activity in both the command and 
control and attack phases based on the observation of its network flow characteristics 
for specific time intervals. We emphasize the detection in the command and control 
phase because we would like to detect the presence of a bot before any malicious 
activities can be performed, and we use the concept of time intervals to limit the 
duration we would have to observe any particular flow before we may raise our 
suspicions about the nature of the traffic. We showed that using a decision tree 
classifier, we were able to successfully detect botnet activity with high accuracy by 
simply observing small portions of a full network flow, allowing us to detect and 
respond to botnet activity in real time. By comparing the true and false positive rates 
of our detector at various time window sizes, we have determined that a duration of 
180 seconds provided the best accuracy of detection while a time window of 10 
seconds was still able to produce an effective detector with a true positive rate of over 
90% and a false positive rate under 5%.  

There are limitations to our current approach that we hope to resolve in our future 
work. First, we recognize that our detection technique is based on the availability of 
existing malicious data and that in order for a detector to be truly robust we must 
develop a mechanism to evolve the classifiers to adapt to new threats. We are also 
aware that it is possible for a malicious botnet designer to obfuscate the network flow 
behavior of a bot in order to evade detection, even if such evasion would come at the 
expense of the effectiveness of a bot. To address these concerns, we are looking into 
the development of hybrid detectors which utilizes evolving classifiers along with our 
current approach, and defeat obfuscation by incorporating group behavior correlation.  
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