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Abstract. The Flask architecture, which mainly contains object manager (OM) 
and security server (SS), is widely used to support flexible security policies in 
operating system. In nature, OM and SS should be isolated from each other to 
separate decision from enforcement. However, current implementation of Flask, 
such as SELinux and SEBSD, puts both OM and SS in the same address space. 
If one component is subverted, the whole system will be exposed to the 
attacker. In this paper, we present hardware assisted in-VM isolation to improve 
the security of the Flask implementation. The key of our approach is the 
separation of SS from other parts of guest OS by constructing hardware assisted 
page tables at the hypervisor level. In this way SS can execute in a strongly 
isolated address space with respect to its associated guest OS, and therefore can 
provide a trustworthy and centralized repository for policy and decision-
making. Our experiment shows that our method introduces moderate 
performance overhead. 

Keywords: Flask Architecture, Virtualization, Security, In-VM Isolation, Extended 
Page Tables. 

1 Introduction 

Since operating system kernels occupy a privileged position in the software stack of 
computer systems, exploiting kernel-level vulnerability gives attackers completely 
control of systems. So protecting the integrity of operating system is very important. 
The Flask architecture [1], which mainly contains object manager (OM) and security 
sever (SS), is widely used to support flexible security policies in operating system. 
Various security modules such as SELinux [2], SEBSD [3], have been implemented 
using the Flask architecture. Since such modules play an important role in the system 
security, it is important to protect them from being attacked. In nature, OM and SS 
should be isolated from each other to separate decision from enforcement. However, 
current implementation of Flask, places both OM and SS in the same address space. If 
one component is subverted, the security module will be broken and the system will 
be exposed to the attacker. 

As far as we know, there is no effective ways to protect the Flask implementation. 
Kernel-level integrity protection of Flask is not enough, as these protection  
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mechanisms reside in the same privilege level as the operating system kernel. They 
could be potentially bypassed or subverted. Virtualization gives us a chance to 
improve the security of Flask implementation. As the virtual machine monitor 
(VMM), also known as the hypervisor, exists on the lower level than the kernel, it 
could be used to detect and prevent the attacks against the Flask. Livewire [4], 
VMwatcher [5], Lares [6], Patagonix [7] raised to protect the guest kernel integrity 
utilizing virtualization. These approaches leverage a separate trusted VM to monitor 
the untrusted VM. Although these out-of-VM approaches have good security effect, 
they are suitable only for monitoring the events that occur infrequently during system 
running because switching between VMs causes large overhead. So it’s not 
appropriate for protecting Flask architecture which is used to actively monitor those 
events occurring frequently. 

SIM [8] is an In-VM monitoring framework that puts security tools in the same 
VM. It utilizes shadow page tables (SPT) mechanism [23] to create a separate virtual 
address space called SIM address space in the guest VM. It’s a one-side view address 
space and exists in parallel to the system address spaces used by guest kernel. That 
means the code in the kernel address space cannot visit SIM address space directly 
but the code in the SIM address space can visit the kernel code. Security monitor is 
placed in the SIM address space so that it can be isolated from the untrusted kernel, 
and therefore is protected. It also leverages a feature of Intel VT to reduce the 
overhead when switching between the system address space and the SIM address 
space. This way gives SIM the performance benefits and the same security level as 
out-of-VM method. However, the SPT mechanism that SIM uses will result in 
expensive VM exits and context switches when synchronizing the shadow page tables 
with guest page tables [19]. Moreover, the source code structure of the shadow page 
tables is quite complex and not easy to maintain [19]. 

In this paper, we utilize Intel Extended Page Table (EPT) technology [21] to design 
a hardware assisted in-VM framework to isolate SS from the kernel. Isolated SS 
provides a trustworthy and centralized repository for policy and decision-making. 
EPT is an Intel hardware virtualization technology that is used to support the 
virtualization of physical memory. It controls the translation from guest physical 
addresses to the host physical address. The extended page table is shared by all the 
process in the guest VM and we call it system EPT which constructs system address 
space. In order to construct an isolated address space for SS, we create an independent 
EPT called SS EPT. This EPT maps all the physical addresses that belong to the guest 
VM, which constructs security server address space. Then we modify the origin 
system EPT to eliminate the mapping for SS code and data. In this way, the code in 
the kernel cannot access SS code and data directly. It has to enter security server 
address space by switching from system EPT to SS EPT to call SS function. We use 
UnixBench [11] to evaluate our prototype. The result shows the overhead is moderate. 
As AMD Nested Page Tables (NPT) [24] technology is similar to EPT, our work can 
be extended to the system with an AMD CPU. To the best of our knowledge, our 
work is a first step towards constructing in-VM isolation using hardware assisted page 
tables to improve Flask implementation. 
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2 Background 

2.1 The Flask Architecture Overview  

Flask [1] is an operating system security architecture that aims at supporting diverse 
security policies, as shown in Figure 1. OM is used to enforce security policy 
decisions returned by SS. Access Vector Cache module (AVC), is used to store the 
access decisions provided by SS for future use so that it can reduce the performance 
overhead. 

 

Fig. 1. The Flask architecture 

When the system executes an operation, opening a file for example, OM will 
enforce security policy decision for this operation. OM queries AVC for the access 
decision. If AVC has stored such rules, it passes the result directly to OM. If no valid 
entries exist, AVC will send the query to SS. SS will look up the policy database, find 
the access decision and return it to AVC. AVC saves this decision, and then returns 
the result to OM. 

2.2 EPT Overview 

Without virtualization, memory management unit (MMU) is used to translate virtual 
addresses (VA) to physical addresses (PA) using page tables. But in a virtualized 
environment, the hypervisor takes full control of the host memory which is shared among 
virtual machines. So the guest VM can’t see PA and guest page tables can’t be used 
directly. In order to abstract the physical memory, the hypervisor presents guest physical 
addresses (GPA) to VM and maintains the mapping from GPA to host physical addresses 
(HPA). This gives the VM an illusion that it owns the actual physical memory. 

EPT mechanism [21] is an Intel hardware virtualization technology that can be 
used to support the virtualization of physical memory. It is used to map GPA to HPA. 
Figure 2 shows the address translating process using EPT technology. First, the guest 
page tables pointed by CR3 register are used to translate VA to GPA. Then the EPT 
pointed by EPT base pointer is used to translate GPA to HPA. EPT has a structure of 
four level page tables. The top level is page map level 4 table, the second level is page 
directory pointer table, the third is page directory table and the last is page table. 
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Fig. 2. Address translation using EPT 

3 Assumption and Threat Model  

Our framework is based on the following security assumptions. First, we assume that 
the operating system runs on a virtualization environment. Second, we assume that 
the underlying hypervisor is trusted. Recent hypervisor rootkits [13-14] make the 
hypervisor insecure. There are already some research such as HyperGuard [15], 
HyperCheck [16], HyperSentry [17] and HyperSafe [18] which aim at protecting the 
integrity of the hypervisor. In our prototype, we assume that the attacker cannot 
control the hypervisor to do malicious things. Especially the attacker cannot 
manipulate the EPT maintained by the hypervisor. Third, we assume OM hooks can 
be protected so that they cannot be removed or changed maliciously to bypass the 
security checks enforced by SS. Protecting these hooks are out of the scope for our 
work. It can be done using other research work like HookSafe [12]. In this way, we 
can guarantee the security operation cannot be bypassed. Finally, the boot of guest 
VM is trusted and the guest is clean before we enable our setting. 

Our threat model allows an attacker to gain access to the kernel address space and 
to carry out the following type of attack: 

1. SS code attack:  
The attacker can modify SS code or inject malicious code to make SS not 
functional.  

2. SS data attack:  
The attacker may carry out control flow attack targeting SS stack or heap data. For 
example, stack buffer overflow or heap overflow attack. Also, non-control data 
attack is possible. It is pointers out that non-control data, like global variable, can 
be exploited to launch attack [22]. For example, a Boolean variable in SS that used 
to determine whether authentication is passed or not can be flipped to circumvent 
the authentication. Moreover, the attacker may take control of AVC entries and 
security policy data which may cause the Flask architecture not work as expected.  

4 Overview of Our Approach  

In order to make SS trustworthy to provide a centralized repository for policy and 
decision making, we isolate SS from kernel, including OM and other parts of the 
kernel, using hardware assisted in-VM isolation technique, as shown in Figure 3.  
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Fig. 3. Hardware assisted in-VM isolated Flask framework 

We introduce a security server address space that is independent from and invisible 
to the system address space used by the operating system. We place SS together with 
AVC in it, as AVC is subverted, it makes no sense to isolate and protect SS. For 
clarity, when we refer to SS in the following section, it includes SS and AVC 
together. We create security server address space by constructing an independent 
EPT, called SS EPT, at the hypervisor level. This EPT is a synchronized copy of 
system EPT and is only used by SS for address translation. At the same time we 
remove the mapping to SS in the original system EPT. In this way, the code in the 
system address space cannot view and access SS code and data directly. 

The entry and exit gates are used to switch address spaces by loading different 
EPTs. When the kernel calls SS function, it uses the entry gates to enter security 
server address space by switching from system EPT to SS EPT. When the call is 
finished, it uses the exit gates to return to system address space by switching from SS 
EPT to system EPT.  The entry and exit gates also switch the stacks as SS need have 
its own to prevent attacks against stack data. The entry gates perform the transfer out 
of system stack into security server stack. The exit gates perform the switch from 
security server stack to system stack. The entry and exit gates are the only regions 
mapped into both address spaces so that a transfer between system address space and 
security server address space can only happen through code contained in these 
regions. They are write-protected so that their contents cannot be modified by any 
code in the kernel. 

5 Implementation 

In our prototype, we use Xen as the hypervisor and SELinux in the HVM DomU with 
2.6.32 Linux kernel as the implementation of the flask architecture.  
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First, we construct an independent address space for SS by creating a separate 
EPT. Then we create entry and exit gates to achieve the switching between two EPTs. 
At last, we load a kernel module to take all the settings into effect. 

5.1 Isolated Address Space Construction 

Generally, SELinux which includes OM and SS is compiled into the kernel. SS code 
and kernel code may be sharing one physical page.  SS data is similar. In order to 
isolate SS from other parts of the kernel, we need modify the Linux kernel linker 
script file to guarantee SS code and data are page aligned. So they are not mixed with 
code and data from the kernel. Take x86 architecture for example, when the kernel is 
compiled, a link script file called “vmlinux.lds” is generated according to the source 
file “vmlinux.lds.S”. It’s used to control the kernel linking. Here we modify its source 
file so that the changes will take effect every time vmlinux.lds is generated. In 
vmlinux.lds.S, we make SS code and data page align and add four indicators to record 
the start and end address of SS code and data. After the kernel building is completed, 
we can lookup System.map table to find the values of indicators to see whether the 
change is applied successfully. 

After that, in order to construct an EPT that is only used by SS to execute address 
translation, we add a hypercall named “ept_create”. It is invoked only once. After 
guest VM is booted up, we load a kernel module to notify the hypervisor to invoke 
this function. It completes the following two tasks.  

First, this hypercall creates a new EPT. For clarity, we would refer the EPT used 
for guest VM as system EPT, and refer the EPT we create for SS as SS EPT. This 
hypercall uses the system EPT as a template. Since EPT has a structure of four level 
page tables, we need allocate the physical pages for them and set their entries. First of 
all, the hypercall allocates a physical page as the new top level page table for SS EPT. 
Then it checks the top level page table entries of system EPT. For each valid entry 
that points to a second level page table of system EPT, the top level page table of SS 
EPT will be set the corresponding entry to point to a new page allocated as a second 
level page table of SS EPT. As for the access permission of the entry, the hypercall 
will copy it from the top level page table entry of system EPT. We do the similar 
operations for the second and the third page table of SS EPT. The last level page table 
is dealt with differently. As for the page table entries, we assign them exactly the 
same value as those in system EPT. When all is done, we get an independent EPT 
which has its own top level, second level, third level and last level page tables. But it 
maps the same physical memory as system EPT. 

Second, the hypercall changes access permissions in system EPT. In order to 
isolate SS from the guest OS, SS code and data can only be seen and used in the 
security server address space. So the hypercall removes the mapping for them from 
system EPT. The hypercall “ept_create” takes four parameters when it’s called. Two 
of them represent start and end of guest frame number of SS code section. The other 
two are for SS data section. For each guest frame number of code section, we find the 
entry of page table in system EPT and make it invalid. For SS data section, we do the 
same setting. 
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5.2 Entry Gate and Exit Gate Implementation 

We use entry and exit gates to switch the address spaces. First, in order to implement 
the switching between system EPT and SS EPT, we need to define another hypercall 
named “ept_switch”. The main task of entry and exit gates is issuing this hypercall to 
switch EPTs. This hypercall is designed to take an integer as parameter to indicate 
switching direction. If we want to enter SS to execute code, the physical address of 
the top level page table of SS EPT will be written to a control field in virtual machine 
control structure. If we want to exit SS and return to the kernel, the physical address 
of the top level page table of system EPT will be written to that field. Both the above 
physical addresses are stored in a structure of the hypervisor, so they cannot be 
obtained and operated by attackers. 

In order to prevent the execution from diverting to somewhere else due to interrupt, 
we disable interrupts at the beginning of entry gates and enable interrupts at the end of 
exit gates. Moreover, we also need switch the stacks in the entry and exit gates. In 
other words, the security server address space has its own stack. The entry gates 
perform the transfer out of the stack in the system address space into the stack in the 
security server address space. The exit gates do the opposite thing. In this way, SS 
stack is not viewed and accessed by the kernel code, and therefore our framework can 
defend attacks against stack data. 

There is still one detail we need to deal with. After SELinux completes the 
initialization, the entry and exit gates should begin to work. But we don’t have the SS 
EPT created at the moment, so the entry and exit gates actually do nothing before the 
“ept_create” hypercall is issued. We define a global integer variable H in the kernel to 
illustrate this condition. Before SS EPT is constructed, we assign zero to H. The entry 
and exit gates will read this value and do nothing. After creating SS EPT, we assign 
one to H. The code in both gates will perceive the change and begin to work. 

5.3 Loading a Module to Enforce the Settings 

The last step is to load a kernel module to take the entire configuration into effect. 
The module does the following two things.  

First it will issue the “ept_create” hypercall to notify the hypervisor to create SS 
EPT. The four parameters of this function can be obtained through simple calculation. 
In section 5.1, we define four indicators, which are saved in the System.map file. 
They record the start and end address of SS code and data. The addresses are all 
virtual addresses. But the kernel lies in the direct mapping area, so we can get 
physical address by subtracting a fixed offset from virtual address. Then we can get 
guest frame numbers that the hypercall needs by shifting right the physical address a 
page size. When this hypercall is called successfully, SS EPT is created. Second, the 
module will set the global variable H, which is described in 5.2, to be one. The entry 
and exit gates check this variable and start to work.  

Since the global variable H is in the system address space, attackers may change its 
value to be zero at run time. However, if it is set to be zero, the entry gates and exit 
gates will do nothing, and the guest VM can only use system EPT. In this way OM 
cannot find SS when it calls SS functions, as the system EPT has no mapping to them. 
So it returns a segmentation fault and terminates current process. 
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6 Evaluation 

We have implemented our prototype on a DELL desktop with Intel Core i5-650 
processor, which supports Intel VT technology. We used Xen 4.0.1 as the hypervisor. 
The host OS is 32-bit Ubuntu 10.04. So is the guest VM. It’s booted up as HVM 
DomU with one VCPU and 512M RAM. We evaluate our work from the aspects of 
performance and security. 

6.1 Performance Overhead 

As many security hooks exist in the kernel and they are frequently called, we should 
pay attention to the performance overhead. In our experiments, we used UnixBench 
[11] to evaluate the system performance. UnixBench provides a basic reference of the 
performance of a Unix-like system. We tested the performance of the guest VM in 
two scenarios: one was with SELinux enabled natively and the other one was our 
prototype that used hardware assisted in-VM isolation. 

First we ran UnixBench in DomU with SELinux enabled natively. It means SS and 
OM are not isolated from each other and both of them are in the kernel address space. 
We used the results as the base of our test. Then we ran UnixBench again using our 
prototype. SS is isolated from OM and it is in its own address space. As is shown in 
Figure 4, we divided the latter results by the formal ones and expressed the final 
results as percentages. Each result is the average of 5 trials. Most of them demonstrate 
that the overhead of our prototype is small except for the shell script test. This test 
made a process start eight concurrent copies of a shell script which did operations to a 
data file. SELinux would check process creation, shell script running and file access 
for each copy, so the performance went down due to frequent switching of EPTs. 
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Besides, as we put AVC in the security server address space to improve security, 
every time OM queries AVC for the access rules, it would switch to the security 
server space. This is a large part of performance overhead. We can improve the 
performance by moving AVC out of the security server address space but we need 
extra effort to protect it from being attacked. 

6.2 Security Analysis 

One important design consideration is to stop attacks against SS code and data. It is 
easy to protect SS code. For example, we can use write-protected technology or 
attestation technology to protect SS code. However, it is nontrivial to protect SS data. 
It includes dynamic data that may cause control flow attack. For instance, the heap 
overflow can be used to modify function pointers and stack buffer overflow can be 
used to change return addresses. Our approach can prevent such attack, as SS has its 
own address space, including its own heap and stack. Attackers may also launch non-
control-data attack [22] to bypass the authentication. Since we isolate SS strongly 
from other parts of the kernel, the attacker who even obtains the kernel privilege 
cannot see SS non-control data. So our approach can prevent such attack too. As we 
put AVC and security policy data in the security server address space, it is also very 
difficult for the attacker to change them maliciously.  

Since SS can load policy files into memory at runtime, attackers may breach the 
security of SS by loading an invalid policy. To prevent this we can maintain a white 
list which stores valid hash values of policy files. When SS loads a policy file, we can 
check whether the hash value of this file is in the list. If it is, the file is allowed to be 
loaded into the memory. Otherwise, SS refuses to load the policy. 

7 Related Work 

Our work is related to projects that use secure monitors to protect the integrity of OS 
kernels. Livewire [4] is a VMM-based prototype that aims at protecting the guest VM 
kernel code and critical data structures from being modified. VMwatcher [5] is a 
VMM-based malware detection approach, which moves the anti-malware facilities 
out of the monitored VM in order to achieve stronger tamper-resistance. Lares [6] is 
an architecture that places hooks inside the guest VM that can invoke a security 
application residing in a separated VM. Patagonix [7] is a hypervisor-based prototype 
that detects and identifies covertly executing binaries without making assumptions 
about the OS kernel. All these approaches are out-of-VM monitors which are 
inappropriate for Flask as it is a fine-grained secure architecture that the hooks are 
called frequently during system execution. They would incur heavy overhead due to 
frequent switching between the guest VMs and the hypervisor.  

SIM [8] is an in-VM monitor which places the security tools in the same VM and 
uses the hardware virtualization technology to avoid the hypervisor involvement 
when switching address spaces. It is more efficient than the out- of-VM approaches, 
and also guarantees the security. However, the shadow paging mechanism it uses is 
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quite complex and not easy to maintain. So we design a hardware assisted in-VM 
isolated framework that takes advantage of Intel EPT technology to improve the Flask 
implementation. 

8 Conclusions and Future Work 

In this work, we improve the Flask implementation using hardware assisted in-VM 
isolation. We introduce a separated EPT in the hypervisor to construct an address 
space for SS so that we can isolate SS from other parts of the kernel. Since all the 
improving is done at the hypervisor level, the attacker cannot subvert them at the 
guest VM level. Our approach only works with a Type I VMM, which is implemented 
directly on the physical hardware, since we need the lower level VMM to protect 
guest VMs running on it. Our work is a first step towards creating in-VM isolation 
using hardware assisted page tables to improve Flask implementation. It can be 
applied to other security tools, such as integrity measurement agent, instruction 
detection tools and so on. 

Our future work is to protect OM, especially the hooks used by OM to call AVC 
and SS functions. If they are bypassed, SS will have no effect at all. Only using write-
protect method to protect them is not enough and we will utilize the research results 
of HookSafe [12] to protect the hooks from being hijacked. 
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