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Abstract. Using ontologies in software applications is a challenging task
due to the chasm between the logics-based world of ontologies and the
object-oriented world of software applications. The logics-based repre-
sentation emphasizes the meaning of concepts and properties, i.e., their
semantics. The modeler in the object-oriented paradigm also takes into
account the pragmatics, i.e., how the classes are used, by whom, and why.
To enable a comprehensive use of logics-based representations in object-
oriented software systems, a seamless integration of the two paradigms is
needed. However, the pragmatic issues of using logic-based knowledge in
object-oriented software applications has yet not been considered suffi-
ciently. Rather, the pragmatic issues that arise in using an ontology, e.g.,
which classes to instantiate in which order, remains a task to be care-
fully considered by the application developer. In this paper, we present a
declarative representation for designing and applying programming ac-
cess to ontologies. Based on this declarative representation, we have build
OntoMDE, a model-driven engineering toolkit that we have applied to
several example ontologies with different Characteristics.

1 Introduction

One of the most challenging issues in implementing Semantic Web applications is
that they are built using two different technologies: object-oriented programming
for the application logic and ontologies for the knowledge representation. Object-
oriented programming provides for maintainability, reuseability and robustness
in the implementation of complex software systems. Ontologies provide power-
ful means for knowledge representation and reasoning and are useful for various
application domains. For accessing ontological knowledge from object-oriented
software systems, there are solutions like ActiveRDF [8] and Jastorl]. Most of
these frameworks make use of the structural similarities of both paradigms,
e.g., similar inheritance mechanisms and utilize simple solutions known from the
field of object-relational mapping. But with the use of these existing tools some
problems cannot be solved: Typically, the structural similarities lead to a one-to-
one mapping between ontology concepts, properties and individuals and object-
oriented classes, fields and objects, respectively. This leads to a data-centric
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object-oriented representation of the ontology which ignores the responsibility-
driven [I7] nature of object-orientation. It is up to the API developer to provide
additional object-oriented layers which allow the use of the generated class rep-
resentations. In addition, not all concepts and relations that must be defined in
the ontology are useful in the object-oriented model. Again it is up to the API
developer to provide proper encapsulations to hide such concepts from the appli-
cation developer. Since this additional programming effort of the API developer
relies on the one-to-one class representations of a specific ontology, changes in the
ontology easily end up in excessive adaptation work of the API. In addition, as
the experiences in the WeKnowlt-project show, new requirements and changes
in the ontology may imply tedious and complex updates of the programming
access to the logics-based representation. What is needed is a tool that compre-
hensively supports API developers in designing pragmatic programming access
to ontological knowledge.

In this paper, we present a declarative representation for pragmatic access
to ontological structures that supports the developer in building programmatic
access to ontologies. We present OntoMDE, a Model-Driven Engineering toolkit
for the generation of programming access to ontologies that is based on these
declarative representations. OntoMDE supports the developer in building APIs
adapted to concrete application needs. We define our problem and introduce a
scenario and running example in the following section. In Section Bl we define
the requirements for developing programming access to ontologies. Based on
these requirements, we introduce our approach in Section @ We have applied
our approach at the examples of selected ontologies presented in Section [Al In
Section [B, we discuss the related work, before we conclude the paper.

2 Scenario, Example and Problem

First, we present a scenario to motivate our work. Subsequently, an example
ontology is introduced to demonstrate the problems of today’s API generation
tools conducting a one-to-one mapping. We compare the API resulting from the
use of existing tools with an API that would be more natural to have in a purely
object-oriented model.

2.1 Scenario: An Ontological Multimedia Annotation Framework

Jim works for a multimedia company and is responsible for the integration of
knowledge-base access in an object-oriented media annotation framework. The
media annotation framework should support the user in annotating multimedia
content such as images or video clips. Jim shall use an ontology for representing
annotated media as well as the multimedia annotations. He has not been involved
in the design of the ontologies. His task is to define the programming interfaces
to access and update the knowledge-base seamlessly from the application. He
has to consider that further specializations toward domain-specific annotations
could result in changes of the implementation.
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2.2 Example: Ontology-Based Modeling of Multimedia Metadata

Figure [Mi(a) shows an excerpt of the ontology used by Jim to model the mul-
timedia metadata. The example is based on the Multimedia Metadata Ontol-
ogy (M3O) [13] for representing annotation, decomposition, and provenance in-
formation of multimedia data. It models the annotations of an image with an
EXIH] geo-point Wg584:Poinlﬁ and a FoalJ person foaf:Person as image creator.
As we can see from the different namespaces, the m3o:Image, wgs84:Point and
foaf:Person concepts and their superconcepts dul:InformationEntity, dul:Object
and finally dul:Entity are defined in different ontologies. The inheritance and
import relationships are shown in Figure [Ib, which is needed important for a
proper API representation.

a | mBo:AnnotationConcept |
X ] dul:defines é
| m3o:AnnotationPattern I \I/ \I/ \I/
| m3o:AnnotatedConcept | | m30:GeoPointConcept }J—‘ﬂatorconcept
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| m3o:AnnotationSituation N

geo:Lat geo:Long’

| mBo:mage I—[>| dul-InformetionEntity |—[>| dul-Entity |<]—| dul:Object |<]—

Fig. 1. Annotation of an Image with its Geo-location and Creator

2.3 Issues with APIs Provided by Existing Frameworks

Jim uses a simple ontology API generation framework with a one-to-one mapping
like those mentioned in the introduction to generate a programming access to the
ontology. Figure[2shows the generation result for the ontology excerpt presented
above using such an existing tool. The framework creates a class representation

2nttp://www.exif.org/| last visit dec 05, 2011.
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Fig. 2. Naive ontology API implementation generated by existing tools

for each of the concepts defined in the ontology. The relationships between con-
cepts are represented as fields of the domain classes, e.g., the satisfies relationship
between the m3o:AnnotationSituation and the m3o:AnnotationPattern concept is
represented as satisfies field of type AnnotationPattern in the AnnotationSitua-
tion class. The generated class structure gives Jim no information about how
to use it, i.e., which classes to instantiate when annotating an image with a
geo-point or a creator. In fact one has to instantiate the class representations
AnnotationPattern, AnnotationSituation, Image, EXIFGeoPoint, ImageConcept and
EXIFGeoPointConcept and fill all the fields representing the relationships, namely
defines, classifies, hasSetting and satisfies.

Furthermore not all class representations are of direct concern for Jim’s appli-
cation. Some of these representations provide direct content for the application,
like the annotated entity — the Image — or the annotation entities — the EXIF-
GeoPoint and the FoaFPerson. Other classes only provide the structure necessary
for a proper knowledge representation. The M30O ontology uses the Description
& Situation (D&S) ontology design pattern. Description & Situation is another
reification [3] formalism in contrast to the RDF reificationf]. For using D&S as
reification formalism one has to add additional resources, the description, situ-
ation and the classifying concepts. The class representation for these concepts
are of no use for Jim when using the API in his application. For this reason, he
decides to encapsulate them from direct access and hide them from an eventual
application developer.

2.4 Solution: Reference API for the Example Ontology

Due to the problems arising with the use of simple one-to-one mappings, Jim
decides to build a programming interface to the ontology without the use of
an API generation framework. Please note that the subsequently described API
results from the design decisions made by Jim and represents only one possi-
ble model of an API for accessing this ontology. The API model designed by
Jim is presented in Figure Bl In addition Figure @l ahows two further possible

®http://www.w3.org/TR/rdf-mt/#Reif AndCont|last visit dec 10, 2011.
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models. All the API models are used in our evaluation in Section Bl Jim first
identifies the functionality to be provided by the API, the annotation of im-
ages. Jim decides to provide a class for this annotation, the annotation class.
In the following, we describe the different designs of the three APIs. API-1:
He defines the set of concepts and properties involved in this functionality. Jim
classifies the concepts in this set according to how they are used in the ap-
plication and he splits them into two disjoint sets. The first set contains all
concepts representing the content the application works on. In our terminol-
ogy, we call them content concepts. We would like to emphasize that in our
scenario Jim as an API developer will not have to know about the terminol-
ogy we use at all; but it is significantly easier in this paper to use our ter-
minology to explain the different decisions he may take when developing the
API. For our example Jim chooses the m3o:Image, the wgs84:Point and the
foaf:Person to provide the content. The other set contains the concepts of struc-
tural concern for the knowledge representation. Subsequently, we call these con-
cepts structure concepts. For Jim these concepts are m3o:AnnotationPattern,
m3o:AnnotationSituation, m3o:AnnotatedConcept, m3o0:GeoPointConcept, and
m3o-:CreatorConcept and he wants his API to encapsulate and hide class repre-
sentations of such concepts from the application. In our terminology, we call a
set of concepts and relations related to an API class a semantic unit SU =
(CO, S0, R) with CO the set of content concepts, SO the structure con-
cepts and R the set of relations. For our example, semantic units are, e.g.,
the annotation as described above or the geopoint consisting of the wgs84:Point
together with its latitude and longitude. Jim wants his API to be prepared
for arbitrary multimedia content and new types of annotations. The ontology
provides abstract concepts for multimedia content and annotations in its inher-
itance structure presented in FigurdIb. But not all concepts from this structure
are of interest to the application. Thus Jim decides to use only the least com-
mon subsumers, e.g., dul:InfomationObject for annotatable multimedia content
and dul:Object for annotations. Jim implements interfaces representing these
two concepts.

Jim is now able to design the API. He defines a class for the annotation func-
tionality as shown in Figure Bl In addition, he defines a class for each content
concept the application works on, in this case Image, EXIFGeoPoint and
FoaFPerson. These classes implement the interfaces derived from the inheri-
tance structure of the ontology, InformationEntity and Object. The Infor-
mationEntity interface has to be realized by classes representing multimedia
content, e.g., by the Image class. The Object interface has to be realized by an-
notation entities, e.g., the classes EXIFGeoPoint and FoaFPerson. All these
classes and interfaces together with the operations form a so-called pragmatic
unit. A pragmatic unit is a tuple PU = (C, F, M) that contains the classes
C, the fields F' and the methods M of an object-oriented model and that relates
to a specific semantic unit in the underlying knowledge model.
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Fig. 3. API for the Running Example developed by Jim

API-2: Another possible model is API 2 shown in Figure [, which is a more
lightweight API for an image-viewer. The API only consists of three classes,
a representation for the m3o:Image, the wgs84:Point and the foaf:Person. The
class representation of the annotation semantic unit is integrated within the
m3o:Image content concept class representation.

API-3: The decisions behind API 3, shown in Figure M are basically the same
as for API 1 with the difference that the annotation semantic unit class rep-
resentation should be identifiable by an URI. For this purpose the annotation
semantic unit class representation is integrated with the AnnotationSituation
class representation. In this API model the AnnotationSituation is classified as
content concept and encapsulates the annotation semantic unit.
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Fig. 4. Alternative APIs for the Running Example Ontology
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3 Requirements for Programming Access to Ontologies

We analyze the requirements for the generation of programming access to ontolo-
gies. The requirements have been derived from real world implementation efforts
made for different projects in our workgroup, e.g., the EU project
WeKnowlItd. We use the scenario in Section [ and the implementation of the
reference API described in Section 24 to motivate the requirements. The re-
quirements are distinguished into two sets of requirements: (1) requirements
directly related to the programming access described in Section [3.1] typically in
form of an API; (2) requirements related to a process that generates such an
APT described in Section

3.1 Requirements on the Pragmatic Programming Access

(R1) Concept Representations. Programming access to ontologies has to
represent the ontology concepts as classes in the object-oriented software sys-
tem similar to Data Access Objectﬂ (DAOs), ActiveRecords or Data Mapper
(both [I]) in the world of relational databases. Frameworks like those presented
in the related work usually map each ontology concept to an object-oriented
class representation and map the concept’s properties to fields of this class. For
our example, such a mapping is shown in Figure 2l

(R2) Encapsulation. Not all concepts of the ontology are of concern for an
application developer. In Section 2.4 Jim identifies several concepts providing
the content for his application, the content concepts. The rest of the concepts
are classified as structure concepts. These structure concepts are only of
concern for the proper knowledge representation. A programming access should
provide for encapsulating concepts that are not interesting for an application
developer.

(R3) Mapping of Inheritance Structures. There are differences between
the inheritance structure of an API and of an ontology. In object-orientation, a
class can inherit both data (attributes) and behavior (methods) from an ancestor
class. Furthermore some object-oriented languages do not support multiple in-
heritance, e.g. Java. For generating programming access to ontologies, we need
information how to generate a lean and useful inheritance structure from the
ontology for the API.

(R4) Pragmatic Units. APIs provide a programming interface for their re-
sponsibility, e.g., the annotation of images like the API from our example in Sec-
tion 23 Such a programming interface supports methods to perform operations,
like in our example adding, removing or manipulating annotations and images.
Performing such operations in programming access to ontologies often results in
the manipulation of multiple ontology entities and thus multiple concept-class

Shttp://www.weknowit.eu/| last visit dec 5, 2011.
" DAOs as Core J2EE Pattern http://java.sun.com/blueprints/
corej2eepatterns/Patterns/DataAccessObject.html
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representations. Our API should provide classes to support the application de-
veloper in performing these operations in an easy and well encapsulated way.

(R5) Method Behavior. APIs provide methods to access or manipulate API
entities or to query for entity properties. In some cases, it might be necessary
to fall back to reasoning on the ontology [I0] to be able to answer queries. For
example querying for all instances of a specific concept could be such a question.
A method for such a query performed on the Java representation could guar-
antee soundness but never completeness. The same also applies for consistency
preservation. In some cases, the API could restrict its behavior in a way that
it ensures the consistency of the represented knowledge. We expect the API to
either inform the calling method or throw an exception that the requested action
would affect the consistency of the represented knowledge. Sometimes, it is not
possible or practical for complexity reasons to restrict the API behavior. In this
case the API cannot ensure the consistency. Currently, we focus on cases where
restrictions or query answering on the API are possible, e.g., qualified number
restrictions on properties. A reasoner integration to ensure validity of operations
remains for future work.

3.2 Requirements on the Process for Generating Programming
Access to Ontologies

(R6) Customizing generated APIs. The output of the API gerneration pro-
cess is strongly driven by the developer and the context of the target application.
For instance, in Section 2.4 we have demonstrated how three different APIs might
have been defined for a given ontology, reflecting different needs of the target
applications. The generation process has to support the developer in control-
ling and customizing the output. From our observation, we know that concept
classification and assignment to semantic units is mostly uniform for various
application scenarios but choice of pragmatic units and their arrangement
can vary strongly from case to case. The import of ontologies and the intended
inheritance structure in the API can also vary for different application scenarios.

(R7) Legacy APIs integration. The API developer should be able to inte-
grate legacy APIs. Let us assume Jim uses the image class of the AWT APH. To
use this image class, Jim has to integrate it with the ontology API and provide
ontology access functionalities for this class.

(R8) Import. The generation process has to deal with import instructions in
the ontologies. A generation process has to manage all imports and decide which
are important for the API generation process.

(R9) Deanonymization of Concepts. Ontologies allow for anonymous con-
cepts in complex class expressions in OWL or blank nodes in RDFS. However,
there are no anonymous classes in object orientation. For this reason, we only al-
low named concepts in ontologies and need to de-anonymize anonymous concepts
first, if necessary.

8 http://download.oracle.com/javase/1.4.2/docs/api/java/awt/Image . html
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4 Programming Access to Ontologies with OntoMDE

In order to alleviate application developers from building the pragmatics of
accessing Semantic Web knowledge in object-oriented applications, we present
OntoMDE a Model-driven Engineering (MDE) approach for the generation of
programming access APIs from an input ontology. The OntoMDE framework
guides the developer through the semi-automatic generation process. Figure
depicts the whole process with its two intermediate models, the MoOn and the
OAM. OntoMDE provides tools to support the user in adding declarative infor-
mation about the pragmatic programming access to the intermediate models.

Input: OntoMDE : Output

OWL MoOn 9 OAM 9

Java

Fig.5. The API Generation Process

In the first step, the Model of Ontologies (MoOn) is used to represent cru-
cial properties of the target API as properties of the ontology in a declarative
manner. In MoOn, concepts are classified as either being content concepts or
structure concepts. Semantic units are defined and one can adapt parts of
the ontology’s inheritance structure to the API. Figure [6] shows the semantic
unit annotation from our running example in the MoOn-based representation.

AnnotationSemanticUnit
<<structure>>
m3o:AnnotationConcept
<<structure>>
m3o:AnnotationPattern | dul:defines
<<structure>> <<structure>> <<structure>>
m3o:AnnotatedConcept m30:GeoPointConcept m3o:CreatorConcept
£ g2 g g
g A g s
a ] i {
® [ [
<<content>> <<content>> <<content>>
m3o:lmage wgs84:Point Foaf:Person
L |
<<structure>> dul:hasSetting %
m3o:AnnotationSituation
<<content>> <<content>>
dul:InformationEntity dul:Object

Fig. 6. The Annotation Semantic Unit in the MoOn
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In the second step, the MoOn-based representation is transformed to the
Ontology API Model (OAM). The OAM provides a declarative representation
of API properties that cannot be tied to the structure of the ontology, like
legacy API integration or method behavior customization. In addition, the OAM
enables to embed information relevant for the code generation process, e.g., to
tailor the concrete API to a particular repository backend. Figure [3] shows the
OAM for our running example. Finally, the code is generated from the OAM in
fully automated manner.

In the following sections, we describe the different transformation steps along
the example from Section [2lin more detail and associate the design decision with
the requirements from the previous section.

4.1 Step 1: From Ontology T-Box to MoOn

MoOn is based on an adaptation of the ECore Metamodel for OWLH. The
transformation of OWL-based ontology entities into a MoOn representation is
inspired by the OWL-to-UML mappings described in [6J4IT1], see the discussion
on mapping models in the related work in Section fl A MoOn model for an
ontology results from two different steps: First, a fully automatic transformation
of the ontology in an ECore model. Second, a manual extension of this ECore
model with declarative information about the pragmatic programming access.

Transformation from OWL to MoOn: First, we have to represent the on-
tology in the MoOn. This preparation of the MoOn includes the representation
of all relevant concepts, see (R1). For this reason, ontologies distributed over
multiple files are accumulated, imports in the ontology are resolved, see (R8)
and implicit knowledge of the ontology is materialized using reasoning. After
these steps, we substitute anonymous concepts by named concepts (R9). This is
easily possible in Description Logics based languages as OWL by just naming
all anonymous classes. In a last step, we consider the parts of the inheritance
structure that are carried over to the MoOn-based ontology representation (com-
pare Figure [l and Figure[d]). To adapt the inheritance structure in MoOn-based
ontology representations to our needs, the proper concepts from the inheritance
structure are selected, e.g., by choosing the least common super-concept (R3).

Adding Declarative Information to the MoOn: The next step is to add
responsibility-driven information, i.e., information about how to use ontology
concepts in context of the applications. The user defines semantic units and
allocate concepts to them, see (R4). For our example, Jim represents the annota-
tion functionality as semantic unit and allocates all concepts shown in Figure G
to it. Additionally, the concepts have to be classified into structure concept and
content concepts (R2). For Jim, m3o:lmage, wgs84:Point and foaf:Person are
the content concepts and m3o:AnnotationPattern, m3o:AnnotationDescription,
m3o0:AnnotatedConcept and m3o0:GeoPointConcept are the structure concepts.

9 MOF-Based Metamodel for OWL2
http://www.w3.0rg/2007/0WL/wiki/MOF-Based_Metamodel
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OntoMDE provides for user support in concept assignment and classification
tasks. Based on an existing semantic unit allocation, OntoMDE suggests for
concept classification and based on concept classifications OntoMDE can give
advices for semantic unit allocation.

4.2 Step 2: From MoOn to OAM

The OAM uses the syntax of UML2 with proﬁle@ in order to represent the
target API. The primary purpose of the OAM is to provide declarative repre-
sentations of additional information used during code generation. For example,
information to integrate a particular repository backend (R6) or information
about the integration of legacy API classes (R7). Very important is information
about the characteristics of properties such as symmetry or transitivity. This is
used to support dedicated method behavior (R5) in the ontology API. The API
representation in the OAM is generated fully automatically from the MoOn-
based ontology representation. In this transformation, class representations for
content concepts, semantic units and interfaces for the inheritance struc-
ture are generated, similar to what Jim did in Section 24 (R1,R3,R4). Table[I]
summarizes the mappings between MoOn entities and the API enities.

Table 1. Overview of Mappings between MoOn and OAM

MoOn based ontology represen- Ontology API Model (OAM)
tation

Content concepts Content classes & class fields

Content individuals Content objects

Structure concepts Class attributes

Structure individual Individual URI and concept URI

Semantic unit Pragmatic unit class

Concept properties & relations Encapsulated in Pragmatic unit classes or class
fields

Property characteristics declarative extension in OAM

Step 3: Generating the Code of an API from the OAM

In the last step, we generate code from the API representation in the OAM.
This fully automated process is supported by the OntoMDE toolkit using Java
Emitter Templated] (JET) as code generation framework.

5 Case Studies and Lessons Learned

The primary objective of our case studies is to demonstrate the applicability of
our approach. In addition, we want to show the flexibility and adaptability of
the approach.

10 http://www.omg. org/technology/documents/profile_catalog.htm
" http://www.eclipse.org/modeling/m2t/?project=jet#jet|last visit dec 5, 2011.
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To show the applicability of our approach, we have developed and applied the
OntoMDE toolkit to generate APIs from different ontologies. We have selected
ontologies with different characteristics in terms of complexity, level of abstrac-
tion, degree of formalization, provenance, and domain-specificity. We have used
the OntoMDE toolkit to generate APIs for the Pizzd] and Wind™J ontologies.
As less formal real world ontologies, we have choosen the Ontology for Media
Resources (OfMR of the W3C and the CURIOM] ontology used in the We-
Knowlt projec@. And last, we have used OntoMDE to generate APIs for the
M3O [13], our running example is based on, and the Event-Model-F (EMF) [14].

To demonstrate the flexibility and adaptability, we used OntoMDE to generate
different APIs from the same input ontology, from slightly changed versions of
the same ontology and to integrate legacy APIs into our ontology access API. We
have selected the M30O ontology ,OfMR aligned with the M3O and an EXIH
ontology aligned to the M3O as input ontology for this study. As outlined for
our example in Section [Z4] we designed different possible APIs for accessing the
M3O. Then, we generated these APIs from the M30O ontology by changing the
declarative information about programming access on the MoOn and the OAM.
To show the integration capabilities of OntoMDE, we use the OAM to integrate
legacy APIs for the Image class in the M3O APIL.

With the first use case, the generation of APIs for the Pizza and Wine ontolo-
gies, we have shown that our approach is capable of processing OWL ontologies,
(R1,R9). From applying OntoMDE to multiple ontologies with different charac-
teristics, we can conclude that the general idea of distinguishing concepts into
content concepts or structure concepts is applicable to all tested ontolo-
gies. The concrete sets of content concepts or structure concepts strongly
depends on the characteristics of the ontology. In simple, less formal ontologies
most of the concepts are content concepts of direct concern for the application.
Whereas, in complex ontologies with a high level of abstraction and intense use
of reification more of the concepts tend to be structure concepts. The organi-
zation of concepts in semantic units is also applicable to all kinds of ontologies.
Again, we encounter differences depending on the characteristics of the ontology.
Simple ontologies often only allow for few and usually small semantic units.
Complex ontologies allow for multiple partially overlapping semantic units
with potentially many concepts.

We have also investigated the flexibility and adaptability of our approach. Re-
garding the adaptability, we have integrated the java.awt.image package as legacy
APIs for representing images into the APIs of our example. Using the OAM, the
integration of the generated API and the legacy API could be conducted in a

12 The pizza ontology http://www.co-ode.org/ontologies/pizza/2007/02/12/| last
visit dec 5, 2011.

13 http://www.w3.org/TR/owl-guide/wine.rdf| last visit dec 5, 2011.

' http://www.w3.org/TR/mediaont-10/|last visit dec 5, 2011.

15 http://www.weknowit.eu/content/
curio collaborative user resource interaction ontology| last visit dec 5, 2011.

16 http://www.weknowit.eu/| last visit dec 5, 2011.

' http://www.exif .org/specifications.html|last visit dec 5, 2011.
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few steps. As mentioned, we have generated different APIs for the ontology from
our example. We have also shown that changes of the API model could be ac-
complished by modifications on the MoOn, such as ”choice of pragmatic units”
or ”choice of content concepts”. As you can see, these changes result in different
numbers of pragmatic units and generated concept classes. To demonstrate the
flexibility regarding the actual RDF-persistence layer used, we have changed the
back-end API of the OntoMDE approach. We used our own RDF-persistence
layer Winter [I2] as well as the RDF-persistence layer Alibabd™. This change
of the backend could be conducted within a short time of about one hour. This
addresses requirements (R5), (R6), and (R7).

6 Related Work

The problem space of object relational impedance mismatch and the set of con-
ceptual and technical difficulties is addressed frequently in literature, e.g. in
[BITEIT6/2]. Among others, Fowler provides in his book [I] a wide collection of
patterns to common object relational mapping problems. Due to the fact that
many problems in persistence and code generation for ontologies are similar to
problems from the field of relational databases many approaches utilize object-
relational strategies for object-triple problems, for example like ActiveRDF [§],
a persistence API for RDF adapting the object-relational ActiveRecord pattern
from Fowlers book or OTMB a framework that resembles some of Fowlers pat-
terns to the field of object-triple mapping. Most of the other frameworks, like
AliBaba, OWL2Java [6], Jastor?d, OntologyBeanGeneratoi?], Agogo [9], and
others, use similar techniques adapting object-relational solutions. An overview
can be found at Tripress7 a project web site on mapping RDF to the object-
oriented world. These frameworks use a simple mapping model for transforming
each concept of the ontology into a class representation in a specific programming
language like Java or Ruby. Properties are mapped to fields. Only Agogo [9] is
a programming-language independent model driven approach for automatically
generating ontology APIs. It introduces an intermediate step based on a Do-
main Specific Language (DSL). This DSL captures domain concepts necessary
to map ontologies to object-oriented representations but it does not captures the
pragmatics.

The mappings used to generate the MoOn from the OWL ontologies are based
on the work done for the Ontology Definition Metamodel (ODM) [4IIT]. The
Ontology Definition Metamodel [7] is an initiative of the OMG for defining an
ontology development platform on top of MDA technologies like UML.

'8 http://www.openrdf .org/doc/alibaba/2.0-alpha4/|last visit dec 5, 2011.

19 https://projects.quasthoffs.de/otm-j|last visit dec 5, 2011.

20 http://jastor.sourceforge.net/| last visit dec 5, 2011.

2! http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator| last visit
dec 5, 2011.

22 http://semanticweb.org/wiki/Tripresso last visit dec 5, 2011.

2 mttp://www.omg.org/| last visit dec 5, 2011.
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7 Conclusion

We have presented with MoOn and OAM a declarative representation of prop-
erties of ontologies and their entities with regard to their use in applications and
application programming interfaces (APIs). On this basis, we have introduced a
multi-step model-driven approach to generate APIs from OWL-based ontologies.
The approach allows for user-driven customizations to reflect the needs in a spe-
cific application context. This distinguishes our approach from other approaches
performing a naive one-to-one mapping of the ontology concepts and properties
to the API classes and fields, respectively. With our approach, we alleviate the
developers from the tedious and time-consuming API development task such
that they can concentrate on developing the application’s functionalities. The
declarative nature of our approach eases reuseability and maintainability of the
generated API. In the case of a change of the ontology or the API, most of the
time only the declarative representation has to be adapted and a new API could
be generated. In our case studies, we applied our approach to several ontologies
covering different characteristics in terms of complexity, level of abstraction, de-
gree of formalization, provenance, and domain-specificity. For our future work,
we plan to integrate the support for different method behaviors (see R5) and
the dynamic extensibility of ontologies. The support of the dynamic extensibil-
ity of ontologies strongly depends on the persistence layer used. Another idea is
to use the declarative representation in combination with the ontology to prove
consistency of the data representation and manipulation in the API regarding
the ontology.
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