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Pedro Frosi Rosa3, and Sergio Takeo Kofuji1

1 University of São Paulo, Brazil
{flavio,kofuji}@pad.lsi.usp.br, joaohs@usp.br

2 Federal Institute of Triângulo Mineiro, Brazil
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Abstract. Researchers from all over the world are engaged in the de-
sign of a new Internet, and Software-Defined Networking (SDN) is one
of the results of this engagement. Net-Ontology uses a SDN approach
to bring semantics to the intermediate network layers and make them
capable of handling application requirements and adapt their behaviour
over time as required. In this paper we present an experimental evalu-
ation of Net-Ontology and a feature comparison against the traditional
TCP/IP stack. This paper extends our earlier work towards a Future
Internet, showing a viable approach to introduce semantics at network
lower layers by contributing to bring richer and efficient services.

Keywords: Future Internet, Enrich Services, Network Ontology, SDN,
DTS, Workspace.

Introduction

The evolution of the intermediate network layers have been lagging behind that
of the lower and upper layers. The Internet Protocols, specified more than three
decades ago, are the likely culprit; the application needs have changed by leaps,
while the TCP/IP has only been patched, trying to meet these requirements.
Over the last few years, the networking community has strived to correct this
phenomenon[1, 3, 4, 21].
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Researchers from all over the world are engaged in the design of a new Internet,
from the ground up. This so called clean slate approach, frees the research from
the legacy of the current architecture and fosters innovations[18]. At a future
time, when results should be deployed, the research will then be refocused to the
transition from the current Internet to the future Internet

One of the results of this effort to create the Future Internet is Software-Defined
Networking (SDN)[5, 6]. SDN enables researchers to innovate and experiment new
network protocols, naming and addressing schemes, such as the one presented in
this paper, which aims at bridging the evolutionary gap between upper, lower, and
the intermediate network layers by using a richer semantics [15, 16].

FINLAN (Fast Integration of Network Layers) [9, 13, 14, 19] aims at provid-
ing high adaptability through the use of semantic concepts based on ontology,
with the elimination of static routing and addressing tied to physical location,
resulting in a better and efficient utilization of the network infrastructure.

FINLAN defines two intermediate layers that communicate between each
other using OWL (Web Ontology Language), but that clearly differentiate in
function: DL-Ontology and Net-Ontology.

The DL-Ontology layer is essentially responsible for data transfer between
the Physical layer and the upper layers, handling the semantic communication
between the peer entities and bringing a richer capacity to express their require-
ments. On the other hand, the Net-Ontology layer is accountable for handling
service needs, as it is capable of understanding specific requirements from the ap-
plication and adapting the communication to support them only when required,
using DL-Ontology to deal with the semantic communication.

In this chapter we present the Net-Ontology layer, which sits between the
DL-Ontology layer and the application. We also present its implementation and
a first experimental evaluation. The implementation presented is based on the
Title Model[17], our vision regarding future networks.

The remainder of this work is organized as follows: Section 1 describes the
Net-Ontology. Section 2 shows the Net-Ontology implementation and Section 3
the experimental results. The conclusions are presented in Section 4.

1 The Net-Ontology

The DL-Ontology is the lower layer of the FINLAN stack depicted in Figure
1, and enables the communication using concepts expressed in OWL over the
Physical layer.

The Net-Ontology layer is responsible for supporting the service needs of the
upper layer and deliver them to the DL-Ontology layer, built according to the
FINLAN Ontology. In this approach, the Net-Ontology is able to understand
specific requirements of a given application that may arise over communication
and provide them.

For example, let us suppose that two persons, P1 and P2, are chatting over
the Internet, using the application FinChat that runs over the FINLAN stack.
In a certain moment, they want to start a secret conversation. To FinChat meet
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this need, the only thing it has to do is to inform the Net-Ontology layer that
from now on the chat is to be confidential. The Net-Ontology layer is able to
understand this need and act accordingly modifying all packets exchanged from
that moment.

The Net-Ontology consists, basically, of two main modules: requirement anal-
ysis and requirement manager, as depicted in Figure 1.

Fig. 1. Net-Ontology modules

The requirement analysis module (RAM) is responsible for handling the ap-
plication requests regarding communication requirements. To accomplish this,
RAM uses the Leśniewski’s logic as proposed in [8]. The purpose is to manage
the services requirements over time. This module recognizes what technologi-
cal features are necessary to satisfy a given requirement, in a given moment,
combining them in logical formulas.

As an example, let us suppose that a service S1, in a moment t1, may need
to establish communication with the service S2, with a specific requirement.
The RAM will verify that this upper layer requirement can be provided by the
technological requirements R1 and R2. In another moment t2, S1 wishes to
improve security, using confidentiality in the conversation. For so, it is necessary
the technological requirement R3. These scenarios will be interpreted by the
analysis module and represented by the following axioms:

S1S2t1 → R1 ∧R2 (1)

S1S2t2 → (R1 ∧R2) ∧R3 (2)

The requirement manager module (RMM) takes the rules requirements and
transform them into FINLAN ontology fragments. Besides that, this module
is able to interpret and deploy the algorithms correlated with each requirement
of the ontology in the network stack.
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Taking the aforementioned example, in the moment t1, RMM receives the
requirements R1 and R2 from RAM. It will then use the FINLAN Ontology, and
add to the packages an OWL fragment, representing that P1 has requirements
R1 and R2 in FinChat.

From now on, the packages will be transmitted containing new information.
When the FinChat of P2 receives an OWL package, meaning that R1 and R2
are required, the RMM will be able to understand and make use of the necessary
algorithms. The intelligence for the network to understand and implement the
applications needs is the main responsibility of the requirement manager module.

The requirements, manipulated by RAM, are stored at the Domain Title Ser-
vice (DTS), which consists of a distributed system over the network elements
responsible for maintaining the entities available in a domain and their commu-
nication requirements over time. It plays an important role at central aspects of
networking like naming and addressing, and has the ability to share the context
among communicating entities. This sharing is provided by the workspace.

The workspace is a logical bus which contains network elements required to
support the communication of the entities. The workspace is created by an entity
wiling to communicate with a specific purpose and thus defines its requirements
and capabilities. A new entity can be joined to an existing workspace and, in
such event, the logical bus can be adapted to handle its communication.

All entities that shares a workspace takes part in the same communication.
The data is sent once by a source to the workspace and is received by all the
others, thus making an efficient use of the physical layer.

In the next subsection it will be presented a complete case of how the Net-
Ontology modules interact with the others FINLAN layers and the DTS.

1.1 FINLAN Semantic Communication

The communication between the FINLAN layers occurs in a semantic way, by
using OWL. Below, it is presented an example to illustrate how this communi-
cation happens.

Let us suppose a scenario where John and Paul are chatting using the applica-
tion FinChat that runs over the FINLAN layers, through the workspace WKS.1.
In a first moment t1, they are just talking about irrelevant issues and are not
concerned about any additional feature that FinChat can offer to them. So, the
packages travelling in the network are very simple, and the Net-Ontology has
not introduced any new requirement at the communication, in this case, only
the DL-Ontology handles their communication. A code snippet example can be:

<Message rdf:ID="Message_1">
<workspaceID rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

WKS.1</workspaceID>
<source rdf:datatype="http: //www.w3.org/2001/ XMLSchema#string">Paul</

source >
<destination rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

John</destination>
<payload rdf:datatype="http://www.w3.org/2001/ XMLSchema#byte">Hello!

How are you doing??</payload >
</Message >
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After some time, at instant t2, John starts an important subject, and selects
the feature delivery guarantee of FinChat. This means that from now on, FinChat
requires delivery guarantee to the network. The Figure 2 shows the messages
flow that will be sent and received between the FinChat entities and the DTS,
to attend this request.

With a new requirement, the Net-Ontology layer is triggered, and the require-
ment analysis module checks that it is necessary the technological requirement
of a delivery guarantee algorithm. John’s FinChat, then, sends the following
control message to DTS:

<ControlMessage rdf:ID="ControlMessage_1">
<Application rdf:ID="FinChat ">

<HasNeed >
<DeliveryGuarantee rdf:ID="DeliveryGuarantee_01"/>

</HasNeed >
</Application>
<workspaceID rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

WKS.1</workspaceID>
<source rdf:datatype="http: //www.w3.org/2001/ XMLSchema#string">John</

source >
<destination rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

DTS</destination>
<payload rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

AddNeed </payload >
</ControlMessage>

After registering John’s need, the DTS will send him a confirmation message:

<ControlMessage rdf:ID="ControlMessage_1R">
<Application rdf:ID="FinChat "/>
<workspaceID rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

WKS.1</workspaceID>
<source rdf:datatype="http: //www.w3.org/2001/ XMLSchema#string">DTS</

source >
<destination rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

John</destination>
<payload rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">OK</

payload >
</ControlMessage>

Fig. 2. Message flow example for a new requirement

At the same time, DTS will also send to Paul, who is in the same workspace as
John, a control message, asking if the need requested is supported:
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<ControlMessage rdf:ID="ControlMessage_2">
<Application rdf:ID="FinChat ">

<HasNeed >
<DeliveryGuarantee rdf:ID="DeliveryGuarantee_01"/>

</HasNeed >
</Application>
<workspaceID rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

WKS.1</workspaceID>
<source rdf:datatype="http: //www.w3.org/2001/ XMLSchema#string">DTS</

source >
<destination rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

Paul</destination>
<payload rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">isOK<

/payload >
</ControlMessage>

If Paul ’s FinChat can supply the delivery guarantee feature, the response below
is sent to DTS and it is established a communication with support to delivery
guarantee:

<ControlMessage rdf:ID="ControlMessage_2R">
<Application rdf:ID="FinChat "/>
<workspaceID rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

WKS.1</workspaceID>
<source rdf:datatype="http: //www.w3.org/2001/ XMLSchema#string">Paul</

source >
<destination rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

DTS</destination>
<payload rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">OK</

payload >
</ControlMessage>

In case of Paul ’s FinChat with no support for the delivery guarantee, this feature
will not be present in the communication between both applications.

Notice that through the Net-Ontology, FINLAN is able to register the services
needs into the DTS. From now on, it can manage what is the best way to deliver
FINLAN packages.

If a third person, Ringo, wants to join the conversation, Ringo’s FinChat will
handshake with DTS to check if it has support to DeliveryGuarantee 01. This
scenario is illustrated in Figure 3.

Fig. 3. Message flow example for a Join into Workspace WKS.1

The following messages are exchanged and Ringo joins the workspace WKS.1.
After the joining and, hence, sharing of the workspace, Ringo’s FinChat and
all the other entities will receive the same data messages without the need of
multiple data flows.
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<ControlMessage rdf:ID="ControlMessage_3">
<Application rdf:ID="FinChat ">
<workspaceID rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

WKS.1</workspaceID>
<source rdf:datatype="http: //www.w3.org/2001/ XMLSchema#string">Ringo<

/source >
<destination rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

DTS</destination>
<payload rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">Join<

/payload >
</ControlMessage>

<ControlMessage rdf:ID="ControlMessage_3R">
<Application rdf:ID="FinChat ">

<HasNeed >
<DeliveryGuarantee rdf:ID="DeliveryGuarantee_01"/>

</HasNeed >
</Application>
<workspaceID rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

WKS.1</workspaceID>
<source rdf:datatype="http: //www.w3.org/2001/ XMLSchema#string">DTS</

source >
<destination rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

Ringo </destination>
<payload rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">isOK<

/payload >
</ControlMessage>

<ControlMessage rdf:ID="ControlMessage_4">
<Application rdf:ID="TestApplication">
<workspaceID rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

WKS.1</workspaceID>
<source rdf:datatype="http: //www.w3.org/2001/ XMLSchema#string">Ringo<

/source >
<destination rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">

DTS</destination>
<payload rdf:datatype="http://www.w3.org/2001/ XMLSchema#string">OK</

payload >
</ControlMessage>

It is also important to mention that after the exemplified handshakes between
DTS and FinChat entities, the requirement manager module is responsible for
guaranteeing that the exchanged packages during the chat will have the nec-
essary information, implementing the algorithm DeliveryGuarantee 01. For ex-
ample, differently from the Message 1 structure, the messages must have an
identification field, through which the control of lost packages is made.

2 Implementation

Our FINLAN stack implementation consists of a Java library that uses commu-
nication interfaces through Raw Sockets. The linking between Java and C por-
tions of the code was done in Java Native Interface (JNI) [16, 19], as depicted in
Figure 4.

It is observed that the application App.java should use the API available in
the library Finlan.jar to establish communication. In this way, when an appli-
cation sends a packet, it communicates with the Net-Ontology sending its char-
acteristics. According to these characteristics, the Requirement Module Analisys
determines, through an inference engine, the application needs and proceeds
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Fig. 4. FINLAN Modules Implementation

with the delivery of these. After the completion of the relevant operations, Net-
Ontology sends the primitive to the DL-Ontology which, in turn, takes care of
sending the packet through the JNI interface to the libFinlan.so library.

3 Experimental Results

To validate the implementation of this work, it was performed experiments com-
paring FINLAN with the TCP/IP Architecture protocols. The goal of these
experiments was to show the behavior of the ontology use in a file transfer op-
eration with the delivery guarantee need activated, illustrating the use of the
Net-Ontology layer in FINLAN.

The TCP/IP protocols, by definition, already implements the delivery guaran-
tee feature, when the TCP transport protocol is used. To FINLAN support this
need, this work implemented it in the Net-Ontology layer, using the algorithm
described in [14]. This algorithm is a mechanism to ensure that all packages sent
are received and works as follows: when the need delivery guarantee is activated
by the application layer, all packages, sent from this moment contains a new
field representing the number of the package.

In parallel, there is a mechanism of confirmation requests and responses mes-
sages: the source host informs the packages already sent, requesting the lost ones.
The destination, on the other hand, answers which packages it did not receive.
This change of confirmation messages is orchestrated by the RTT variable, pro-
posed in [7], which consists of the best estimate (for that moment) for the send
and receive time up of the packets destination.

3.1 Network Traffic Evaluation

The experiments were performed over the following environment: hosts with 4GB
of RAM, CPU Intel R© CoreTM2 DUO @ 2.10GHz, running Linux operational
system with kernel 2.6.41.10-3.fc15.x86 64. The files transfered have size of 1, 5,
10, 15, 20, 25, 30, 35, 40, 45 and 50MB. The RTT variable was set to a fixed
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(a) Number of packets

(b) Percentual reduction

Fig. 5. FINLAN and TCP traffic comparison

value of 1 second. Figure 5 shows the results, comparing the number of packets
transmitted in both: FINLAN and TCP.

It is possible to observe that in the scenarios of this experimentation, FINLAN
had a smaller number of transmitted packets. In the transfer operation of 10MB,
for example, FINLAN transmitted 8140 packets, while the TCP transmitted
10631 (one difference of 30.6 percent).

This is due to the delivery guarantee algorithm implemented in FINLAN that
sends confirmation messages in intervals of the RTT, informing only the lost
ones, in a period, to be re-transmitted, while TCP transmitted several number of
ACK packages. This confirms that the network traffic packets is decreased using
the delivery guarantee algorithm implemented over a stack that semantically
understands the concepts and adapts the messages from this understanding.

To illustrate the primitives in these experiments, Figure 6 shows snapshots
from the Wireshark of two packets captured during the transmission of the 50MB
file. The first one, in Figure 6(a), is the confirmation request of the source entity,
called “fabiola”, informing that the range of packages from 133 to 367 was sent.
The Figure 6(b) represents the response, confirming the lost packages, through
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(a) Confirmation request

(b) Confirmation response

Fig. 6. Snapshots of FINLAN confirmation messages

the field LostMessageQuantity. According to this capture, the packages from 220
to 281 were lost and only them were re-transmitted.
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4 Conclusions

This work presented the Net-Ontology Layer, experimental results of its imple-
mentation and how it is possible to use ontology at the intermediate networks
layers to understand and support different entities needs.

The results of using ontology to support the delivery guarantee need demon-
strate an optimization of more than 30 percent of the packets sent in a file
transfer, compared with the traditional TCP/IP protocols usage.

By the Net-Ontology use, it was demonstrated the possibility to substitute
the traditional TCP/IP protocols used at the transport and network layers. This
brings more semantic power for the Future Internet networks, as the network
intermediate layers become able to better understand the entities needs.

Future Internet is being constructed with worldwide collaboration and is based
on research and experimentation. Our previous work showed [17, 19] how FIN-
LAN approach and the Title Model Ontology can work together with different
efforts regarding the future, while the work presented details on how these pro-
posals can come true.

As future works, it is expected to experiment the Net-Ontology implemen-
tation in different testbeds, such as OFELIA [11] and FIBRE (Future Internet
testbeds/experimentation between BRazil and Europe)[2, 20]. In complement,
it will be finished the actual working in progress to the experimentation using
OpenFlow [10]. Also, experimental tests using workspaces for multicast aggre-
gation [12] are being executed at OFELIA testbed.

The research and experimentation results show that we are facing a viable
approach to introduce semantics at network lower layers, by contributing to
bring richer and efficient services.
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