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Abstract. This paper deals with the concepts of persistence diagrams
and matching distance. They are two of the main ingredients of Topo-
logical Persistence, which has proven to be a promising framework for
shape comparison. Persistence diagrams are descriptors providing a sig-
nature of the shapes under study, while the matching distance is a metric
to compare them. One drawback in the application of these tools is the
computational costs for the evaluation of the matching distance. The aim
of the present paper is to introduce a new framework for the approxima-
tion of the matching distance, which does not affect the reliability of the
entire approach in comparing shapes, and extremely reduces computa-
tional costs. This is shown through experiments on 3D-models.
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1 Introduction

Interpreting and comparing shapes are challenging issues in computer vision,
computer graphics and pattern recognition [11,12]. Topological Persistence –
including Persistent Homology [9] and Size Theory [1,10] – has proven to be a
successful comparison/retrieval/classification (hereafter CRC) scheme.

In a nutshell, the basic idea for dealing with the CRC task is to define a
measure of the (dis)similarity between the shapes in a given database. This can
be done by extracting a battery of shape descriptors – the so-called persistence
diagrams – from each element in the database, capturing meaningful shape prop-
erties. Thus, the problem of assessing the (dis)similarity between two shapes can
be recast into the one of comparing the associated persistence diagrams accord-
ing to the matching (or bottleneck) distance, a proven stable distance between
these descriptors. This process defines a metric over the database, that can be
used for CRC purposes. In general, a given persistence diagram may come from
different shapes: This can be interpreted as an equivalence with respect to the
properties captured by that descriptor.

Such an approach has been successfully used in a number of concrete prob-
lems concerning shape comparison and retrieval [4,5,8]. However, defining a
(dis)similarity metric in the case of large databases can lead to considerable
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computational costs. The bottleneck in this procedure can be identified in the
evaluation of the matching distance.

The Contribution of the Paper. Reducing the computational costs in defin-
ing a (dis)similarity metric within a database of shapes is definitely a desirable
target: This would enable us to further improve the persistence CRC framework
and apply it to a wider class of concrete problems. The present paper aims to
illustrate an idea to achieve this goal, ranging from a theoretical formalization
of the proposed strategy to its validation through an experimental study. We in-
troduce a multi-scale construction of our matching distance-based (dis)similarity
metric. Our procedure is based on a “dissimilarity criterion” which is formal-
ized in Theorem 1. Experiments on 3D-models show that, using our idea, it is
possible not to affect the reliability of the entire approach in comparing shapes,
extremely reducing the computational costs.

2 Preliminaries

In persistence, the shape of an object is usually studied by choosing a topolog-
ical space X to represent it, and a function ϕ : X → R, called a filtering (or
measuring) function, to define a family of subspaces Xu = ϕ−1((−∞, u]), u ∈ R,
nested by inclusion, i.e. a filtration of X . Applying homology to the filtration
allows us to study how topological features vary in passing from a set of the
filtration into a larger one, and to rank topological features with bounded life-
time by importance, according to the length of their life. The basic assumption
is that the longer a feature survives, the more meaningful or coarse the feature
is for shape description. Vice-versa, noise and shape details are characterized by
a shorter life. For further details we refer to [1,9].

The filtration {Xu}u∈R is used to define persistent homology groups as follows.
Given u ≤ v ∈ R, we consider the inclusion of Xu into Xv. This inclusion induces
a homomorphism of homology groups Hk(Xu) → Hk(Xv) for every k ∈ Z.
Its image consists of the k-homology classes that live at least from Hk(Xu) to
Hk(Xv) and is called the kth persistent homology group of (X,ϕ) at (u, v). When
this group is finitely generated, we denote by βu,v

k (X,ϕ) its rank.
A simple and compact description of persistent homology groups of (X,ϕ)

is provided by the so-called persistence diagrams, i.e. multisets of points whose
abscissa and ordinate are, respectively, the level at which a new k-homology class
is created and the level at which it is annihilated through the filtration.

We use the following notation: Δ+ = {(u, v) ∈ R
2 : u < v}, Δ = {(u, v) ∈

R
2 : u = v}, and Δ+ = Δ+ ∪Δ.

Definition 1 (Multiplicity). Let k ∈ Z and (u, v) ∈ Δ+. The multiplicity
μk(u, v) of (u, v) is the finite non-negative number defined by

lim
ε→0+

(
βu+ε,v−ε
k (X,ϕ)− βu−ε,v−ε

k (X,ϕ)− βu+ε,v+ε
k (X,ϕ) + βu−ε,v+ε

k (X,ϕ)
)
.
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Definition 2 (Persistence Diagram). The persistence diagram Dk(X,ϕ) is
the multiset of all points (u, v) ∈ Δ+ such that μk(u, v) > 0, counted with their
multiplicity, union the points of Δ, counted with infinite multiplicity.

We will call proper points the points of a persistence diagram lying on Δ+.

p

q’

p’

q’

p’
matching

p

(a) (b) (c) uuu

vvvX Yϕ ψ

Fig. 1. (a) The height function ϕ on the space X, and the associated persistence
diagram D0(X,ϕ). (b) The height function ψ on the space Y , and the associated per-
sistence diagram D0(Y, ψ). (c) The matching between D0(X,ϕ) and D0(Y, ψ) realizing
their matching distance.

Figures 1 (a)− (b) show two examples of persistence diagrams for k = 0. For
instance, in Figure 1 (a) a surface X ⊂ R

3 is filtered by the height function ϕ.
The sole proper point of D0(X,ϕ) is p. Its abscissa corresponds to the level at
which a new connected component is born, while its ordinate identifies the level
at which this connected component merges with the existing one. To see, for
instance, that μ0(p) = 1, letting p = (ū, v̄), it is sufficient to observe that, for
every ε > 0 sufficiently small, it holds that βū+ε,v̄−ε

0 (X,ϕ) = 2, βū−ε,v̄−ε
0 (X,ϕ) =

βū+ε,v̄+ε
0 (X,ϕ) = βū−ε,v̄+ε

0 (X,ϕ) = 1, and apply Definition 1.
The matching distance between two persistence diagrams measures the cost of

finding a correspondence between their points. In doing this, the cost of taking
a point p to a point p′ is measured as the minimum between the cost of moving
one point onto the other and the cost of moving both points onto the diagonal,
see Figure 1 (c) for an example. In particular, the matching of a proper point p
with a point of Δ can be interpreted as the destruction of the point p. Formally:

Definition 3 (Matching Distance). Let D1
k, D

2
k be two persistence diagrams.

The matching distance dmatch

(
D1

k, D
2
k

)
is defined as

dmatch(D
1
k, D

2
k) = min

σ
max
p∈D1

k

d(p, σ(p)),

where σ varies among all the bijections between D1
k and D2

k and

d ((u, v) , (u′, v′)) = min

{
max {|u− u′|, |v − v′|} ,max

{
v − u

2
,
v′ − u′

2

}}
(1)

for every (u, v) , (u′, v′) ∈ Δ+.
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The importance of the matching distance in persistence is based on the fact that
persistence diagrams are robust with respect to it. Roughly, small changing in a
given filtering function (w.r.t. the max-norm) produces just a small changing in
the associated persistence diagram w.r.t. the matching distance [7,9].

Remark 1. From Definition 3 it follows that dmatch(D
1
k, D

2
k) ≤ (V − U)/2, with

U = min
(u,v)∈L

u, V = max
(u,v)∈L

v and L = D1
k ∪D2

k. Indeed, (V − U)/2 upper bounds

the cost of the bijection between D1
k and D2

k, taking all the points of L onto Δ.
Since dmatch is realized by the cheapest bijection between D1

k and D2
k, we have

the claim.
This result will be useful later.

3 Theoretical Setting and Results

Computationally, evaluating the matching distance between two persistence di-
agrams takes O(h2.5) [6], being h the total amount of their proper points.

As stressed before, in CRC applications involving large databases, comput-
ing the matching distance for any possible shape comparison can imply a high
computational cost. In fact, noisy or detailed shape models can produce persis-
tence diagrams with a large number of proper points. Our goal is to reduce this
computational complexity by contenting, at first, of a rough estimation of the
metric induced by the matching distance over a database, to be possibly refined
whenever it is not sufficient to distinguish between different shapes.

The key point here is the observation that, in most cases, realizing that two
shapes are very dissimilar does not require to compute the exact matching dis-
tance between the associated persistence diagrams. Deciding, e.g., whether an
elephant is different from an ant requires only a first glance at the two animals.
In our framework, such a “first glance” could be equivalent to a rough estima-
tion of the matching distance – and hence faster than its exact computation –
between the persistence diagrams associated with the “elephant shape” and the
“ant shape”, respectively. On the contrary, a different level of accuracy could
be necessary to distinguish, e.g., the “wolf shape” from the “German shepherd
shape”. This would lead to a sharper estimation of the matching distance be-
tween the associated persistence diagrams, possibly to its actual computation.

In light of these considerations, we propose a multi-scale construction of our
matching distance-based (dis)similarity metric.

Let Dk be a persistence diagram. For every p = (u, v) ∈ Δ+ and every δ > 0,
let Qδ(p) be the open square centered at p of side equal to 2δ, and let us denote
by �(Qδ(p), Dk) the number of points of Dk contained in Qδ(p).

Theorem 1 (Dissimilarity Criterion). Let D1
k, D

2
k be two persistence dia-

grams for which a point p = (u, v) ∈ Δ+ and two real numbers δ, ε > 0 ex-
ist, such that Qδ+ε(p) ⊂ Δ+ and �(Qδ(p), D

1
k) − �(Qδ+ε(p), D

2
k) > 0. Then

dmatch(D
1
k, D

2
k) ≥ ε.
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Proof. Since �(Qδ(p), D
1
k) > �(Qδ+ε(p), D

2
k), for every bijection σ : D1

k → D2
k

there exists at least one proper point q̄ = (ū, v̄) ∈ D1
k such that q̄ ∈ Qδ(p) and

σ(q̄) = q̄′ = (ū′, v̄′) ∈ D2
k, with q̄′ 	∈ Qδ+ε(p). Then, from (1) it holds that

d(q̄, q̄′) ≥ min

{
ε,max

{
v̄ − ū

2
,
v̄′ − ū′

2

}}
≥ min

{
ε,

v̄ − ū

2

}
= ε. (2)

Indeed, in (2), the first inequality holds because both |ū − ū′| and |v̄ − v̄′| are
not smaller than the difference between the semi-sides of Qδ(p) and Qδ+ε(p);
the second inequality is obvious; the equality follows from both the facts that
v̄− ū > (v−δ)− (u+δ), being (ū, v̄) ∈ Qδ(p) and (u+δ, v−δ) ∈ Δ+ the bottom
right vertex of Qδ(p), and (v− δ− ε)− (u+ δ+ ε) ≥ 0, i.e. (v− δ)− (u+ δ) ≥ 2ε,
being (u + δ + ε, v − δ − ε) ∈ Δ+ the bottom right vertex of Qδ+ε(p). Hence
max
q∈D1

k

d(q, σ(q)) ≥ ε for every bijection σ and, by Definition 3, the claim is proved.

(a) (b) (c)

(d) (e) (f)

uuu

u uu

vvv

v vv

ε

δp

Fig. 2. (a)− (b) Two persistence diagrams D1
k and D2

k. (c) The overlapping of D1
k and

D2
k, and the two squares Qδ(p) and Qδ+ε(p) for a certain p ∈ Δ+. (d)− (f) Algorithm

1 in action: three steps are necessary to find squares in which Theorem 1 holds.
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Figures 2 (a)− (c) show an example of Theorem 1 in action. Figures 2 (a)− (b)
represent twopersistence diagrams, sayD1

k andD
2
k, respectively. InFigure 2 (c) the

twomultisets of points are overlapped, and the two squaresQδ(p) andQδ+ε(p) are
depicted. As can be seen, it holds that �(Qδ(p), D

1
k)− �(Qδ+ε(p), D

2
k) = 1. Hence,

by Theorem 1 we get that surely dmatch(D
1
k, D

2
k) ≥ ε.

The issue here is to find a suitable way to apply Theorem 1, so to improve
our CRC framework. This is what the following Algorithm 1 is thought for.

Algorithm 1 takes as input the lists A and B of proper points of two persis-
tence diagrams, and a parameter Exp. It runs a number of iterations equal to

hExp� where h = |A| + |B| is the sum of the number of points of A and B,
and Exp is an arbitrary positive rational number. During each iteration, a finer
grid is created on a triangular region T ⊂ Δ+ with vertices (U − ε, U − ε), (U −
ε, V +ε), (V +ε, V +ε), being U and V as in Remark 1, containing all the points
belonging to A and B. In particular, at each iteration n, the algorithm produces
n(n+1)/2 small squares with side equal to (n+5)th part of the side of T. It then
evaluates Theorem 1 on each small square compared with the square having its
same center and side three times greater. The algorithm returns the maximum
value for which Theorem 1 holds. Algorithm 1 makes use of two different subrou-
tines: Matrix(i, j) which simply generates a two dimensional matrix 0i×j and
CountPoints(S, p, q) (Algorithm 2) whose output is the sum of the entries of
the 3×3 submatrix S[p−1, p, p+1; q−1, q, q+1] which is nothing more than the
number of points of the largest square into which we are going to evaluate the
theorem. Algorithm 3 gives as output the actual or the approximated distance
between two persistence diagrams. An example of Algorithm 1 in action is shown
in Figures 2 (d)− (f).

Algorithm 1. MatchDistGridApprox(A,B,Exp)

1: N ⇐ �(|A|+ |B|)Exp� 16: qB(i, j) ⇐ qB(i, j) + 1
2: Res⇐ 0 17: end for
3: ε⇐ (V − U)/10 18: for p = 2 to (t− 1) do
4: Side⇐ V − U + 2ε 19: for q = (p+ 3) to (t− 1) do
5: for n = 1 to N do 20: QA⇐ CountPoints(qA, p, q)
6: t⇐ 5 + n 21: QB ⇐ CountPoints(qB, p, q)
7: sSide⇐ Side/t 22: r1 ⇐ (QA < qB(p, q))
8: qA⇐ Matrix(t, t) 23: r2 ⇐ (QB < qA(p, q))
9: qB ⇐ Matrix(t, t) 24: if (r1 or r2) and (Res < sSide) then

10: for all a ∈ A do 25: Res⇐ sSide
11: (i, j) ⇐ �(a− U + ε)/sSide� 26: end if
12: qA(i, j) ⇐ qA(i, j) + 1 27: end for
13: end for 28: end for
14: for all b ∈ B do 29: end for
15: (i, j) ⇐ �(b− U + ε)/sSide� 30: return Res

The computational complexity C of Algorithm 1 can be formalized as

C(h,Exp) = c1 +
hExp
∑

n=1

(

c2 + 2c3(n+ 5)2 + c4 · h+
n+4∑

p=2

n+4∑

q=p+3

c5

)

,
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with c4 · h the cost of lines 10− 17, c3(n+ 5)2 the cost of lines 8− 9, c3 and c4
being constants as well as c1 (lines 1− 4), c2 (lines 6− 7) and c5 (lines 20− 30).

Making some simple mathematical manipulations we obtain that

C(h,Exp) = c1 + hExp(c2 + c4 · h) + 2c3 ·
hExp
∑

n=1

(n+ 5)2 +

hExp
∑

n=1

n+3∑

p=1

n−p+1∑

q=1

c5.

Now, by counting the total number of squares on which the theorem is evaluated
on a run of the algorithm, which is

hExp
∑

n=1

n+3∑

p=1

n−p+1∑

q=1

1=
hExp
∑

n=1

n+3∑

p=1

(n−p+1)=
hExp
∑

n=1

n(n+ 1)

2
=

h3Exp + 3h2Exp + 2hExp

6
,

we can conclude that the computational complexity of Algorithm 1 is O(h3Exp).
Hence, by choosing Exp ≤ 2.5

3 we can ensure that Algorithm 1 has a computa-
tional complexity asymptotically lower than the one we would have by calculat-
ing the matching distance.

Algorithm 2. CountPoints(S, p, q) Algorithm 3. MetricApprox(A,B,Exp, thresh)

1: for i = (p− 1) to (p+ 1) do 1: Res =MatchDistGridApprox(A,B,Exp)
2: for j = (q − 1) to (q + 1) do 2: if Res > thresh then
3: Res⇐ Res+ S(i, j) 3: V al = [(V − U)/2 +Res]/2
4: end for 4: else
5: end for 5: V al = dmatch(A,B)
6: return Result 6: return V al

4 Experimental Results

Our goal is to validate the theoretical framework introduced in the previous
section. Through some experiments on persistence diagrams for 0th homology
degree (a.k.a. formal series [10]), associated with 3D-models represented by tri-
angle meshes, we will prove that our algorithm allows us to reduce the compu-
tational complexity in defining a matching distance-based metric over a given
database, without greatly affecting the goodness of results (in terms of database
classification).

To test the proposed framework we considered a database of 228 3D-surface
mesh models introduced in [2]. The database is divided into 12 classes, each
containing 19 elements obtained as follows: A null model taken from the Non
Rigid World Benchmark [3] is considered together with six non-rigid transfor-
mations applied to it at three different strength levels. An example of the trans-
formations and their strength levels is given in Table 1. To define the considered
filtering functions, we proceeded as follows: For each triangle mesh M of vertices
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{P1, . . . , Pn}, the center of mass B is computed, and the model is normalized to
be contained in a unit sphere. Further, a vector w is defined as

w =

∑n
i=1(Pi −B)‖Pi −B‖
∑n

i=1 ‖Pi −B‖2 .

Three filtering functions ϕ1, ϕ2, ϕ3 are computed on the vertices of M : ϕ1 is the
distance from the line parallel to w and passing through B, ϕ2 is the distance
from the plane orthogonal to w and passing through B, and ϕ3 is the distance
fromB. The values of ϕ1, ϕ2 and ϕ3 are then normalized so that they range in the
interval [0, 1]. These filtering functions are translation and rotation invariant, as
well as scale invariant because of a priori normalization of the models. Moreover,
the considered models are sufficiently generic (no point-symmetries occur etc...)
to ensure that the vector w is well-defined over the all database, as well as its
orientation is stable.

Taking a filtering function ϕ, we can now induce a metric over our database
by computing the matching distances dϕij = dmatch(D0(Mi, ϕ), D0(Mj , ϕ)) for
every i, j = 1, . . . , 228. To approximate such a metric, we applied Algorithm 1
to get a lower bound for each dϕij , say Resϕij . This procedure is controlled by
a threshold, threshϕ, obtained as follows: For every class in the database, 4
elements are (randomly) selected, and an average of the matching distances on
this small subset is evaluated. The final value of threshϕ is then the average over
all the classes in the database. In this perspective, the value threshϕ represents
the average matching distance between two elements of the same class.

Now, if Resϕij > threshϕ, then we can assume that the shapes of Mi and
Mj are quite dissimilar (compared w.r.t. ϕ) and therefore it is sufficient to have
just an estimation of dϕij : We opted for ((V − U)/2 + Resϕij)/2, with V and U
taken according to Remark 1. If Resϕij ≤ threshϕ, then the exact value of dϕij is
computed. The overall process is described in Algorithm 3.

Table 2 (first column) shows the average precision/recall (PR) graphs induced
by ϕ1, ϕ2 and ϕ3, respectively, when considering the computation of the match-
ing distances on the whole database and on some subparts of it after running
Algorithm 1, with Exp set at two different values. As can be seen, our approxima-
tion strategy does not affect so much the PR performances even in the displayed
worst case (filtering function ϕ2).

Table 2 (second column) gives a more general overview of the obtained results.
From top to bottom, each graph shows the reduction in the computational costs
– in terms of the percentage of computed matching distances used to build the
metric approximations – and an evaluation of the PR performances according to
the chosen values of Exp, for the filtering functions ϕ1, ϕ2 and ϕ3, respectively.
In particular, for a given value of Exp the evaluation of results is expressed as
the average L1-distance between the PR graph associated to that value Exp and
the one obtained by computing all the matching distances between the elements
in the database. The “critical Exp” depicted in all plots represents the value of
Exp such that the cost of applying Algorithm 1 equals the one of computing the
matching distance between two persistence diagrams.
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Table 1. The null model “Centaur0” and the 3rd strength level for each deformation

Table 2. First column: PR graphs related to ϕ1, ϕ2, ϕ3 computing dmatch on the whole
database (black), and on subparts of it (PR approx) by virtue of Algorithm 1 for two
different values of Exp (shaded); Second column: varying Exp, how the percentage of
dmatch computed and the distance between PR graph and PR approx vary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

 

 

PR graph for function 1

PR approx, Exp = 0.3

PR approx, Exp = 0.5

0 0.2 0.4 0.6 0.8 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exp

 

 

d(PR approx,PR graph)

% DMatch computed

Critical Exp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

 

 

PR graph for function 2

PR approx, Exp = 0.4

PR approx, Exp = 0.5

0 0.2 0.4 0.6 0.8 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exp

 

 

d(PR approx,PR graph)

% DMatch computed

Critical Exp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

ci
si

o
n

 

 

PR graph for function 3

PR approx, Exp = 0.4

PR approx, Exp = 0.6

0 0.2 0.4 0.6 0.8 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exp

 

 

d(PR approx,PR graph)

% DMatch computed

Critical Exp



Multi-scale Approximation of the Matching Distance for Shape Retrieval 137

As our plots show, it is possible to greatly reduce the computational costs by
approximating the matching distance-based metric over the database, obtaining
PR graphs which are quite close to the best possible.

5 Conclusions

In this paper we introduced a multi-scale strategy to evaluate a (dis)similarity
metric on a database of shapes – to be used for CRC purposes – using the con-
cepts of persistence diagrams and matching distance. The proposed framework
has been validated through experiments on 3D models represented by triangle
meshes: The obtained results show that it is possible to provide an approx-
imation of the metric induced by the matching distance between persistence
diagrams without compromising the goodness of results – in terms of retrieval
performance – and greatly reducing the computational costs coming from the
exact evaluation of the matching distance.

For the next future we plan to generalize Algorithm 1 in such a way that
the lower bound provided by Theorem 1 could be better exploited. We plan
to do this by randomly generating the largest squares in the triangular area T,
considered in Algorithm 1, allowing in this way partial covering of T and squares
overlapping, and making that the smallest squares vary inside the wider ones.
The expected result is to produce statistically better estimates of the matching
distance lower bound through the use of a more flexible tool not stuck on a fixed
tessellation like the one produced by Algorithm 1.

Acknowledgments. The authors wish to thank P. Frosini for suggesting the
problem. However, the authors are solely responsible for any possible errors.
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