
Efficient Implementation of a CCA2-Secure

Variant of McEliece Using Generalized
Srivastava Codes

Pierre-Louis Cayrel1, Gerhard Hoffmann2, and Edoardo Persichetti3

1 Université Jean Monnet, Saint-Etienne, France
2 Technische Universität Darmstadt, Germany

3 University of Auckland, New Zealand

Abstract. In this paper we present efficient implementations of McEliece
variants using quasi-dyadic codes. We provide secure parameters for a
classical McEliece encryption scheme based on quasi-dyadic generalized
Srivastava codes, and successively convert our scheme to a CCA2-secure
protocol in the random oracle model applying the Fujisaki-Okamoto
transform. In contrast with all other CCA2-secure code-based cryptosys-
tems that work in the random oracle model, our conversion does not
require a constant weight encoding function. We present results for both
128-bit and 80-bit security level, and for the latter we also feature an
implementation for an embedded device.

1 Introduction

The McEliece and Niederreiter public-key encryption schemes are based on error-
correcting codes. One drawback are the large public keys. There have been few
implementations reported; we cite for instance [29] and [30] for 32-bit software
implementations. An alternative scheme, called HyMES (Hybrid McEliece cryp-
tosystem), was implemented by Sendrier and Biswas [11], combining ideas from
both the previous schemes.

Recently, implementations of the McEliece and Niederreiter cryptosystems for
embedded devices have been presented, respectively by Eisenbarth et al. in [13]
and by Heyse in [18], with the disadvantage of an external memory requirement
for storing the key. A first proposal to deal with this issue from an implemen-
tational point of view is to make use of the quasi-dyadic variant of Misoczki
and Barreto [25]. This was done by Heyse in [19], along with the extension to
a CCA2-secure protocol. Unfortunately, the fields underlying the Goppa codes
chosen are still too big to fit on the flash memory of the embedded device and
this has repercussions in the speed of the implementation, since the use of tower
field arithmetic becomes necessary.

In our paper, we provide an alternative construction based on the more general
framework of generalized Srivastava codes described by Persichetti in [27]. We
then convert the encryption scheme into a CCA2-secure protocol with the help
of the Fujisaki-Okamoto transform [17]. To the best of our knowledge, a scheme

M. Fischlin, J. Buchmann, and M. Manulis (Eds.): PKC 2012, LNCS 7293, pp. 138–155, 2012.
c© International Association for Cryptologic Research 2012

Efficient Implementation of a CCA2-Secure Variant 139

based on this family of codes has never been implemented before; moreover, we
use McEliece with a twist, and we don’t require any constant weight encoding
function [32] for our conversion. This is also a novelty, and it allows to simplify
the construction and save computational costs at the same time. The finite fields
in use are much smaller than previous proposals, and fit completely on the flash
memory, with the result that our implementation is much faster.

We note that there exist schemes, such as Dowsley et al. [12] and Freeman
et al. [22], that provide CCA2-secure encryption based on coding theory in the
standard model, but these schemes are completely impractical.

The paper is organized as follows: in Section 2 the McEliece and Niederre-
iter encryption schemes are introduced, along with an overview of constructions
based on structured matrices. Security definitions such as IND-CCA2 and their
instantiations are discussed in Section 3, and the technical details about the im-
plementations with the respective timings are provided in Section 4, both for a
C++ code, and for implementation on an embedded device. Finally, we conclude
in Section 5.

2 Code-Based Public-Key Encryption Schemes

2.1 The McEliece Cryptosystem

The first cryptosystem based on coding theory was introduced in 1978 by Robert
J. McEliece [23] and, for an appropriate choice of parameters, is still unbroken. In
the original proposal, binary Goppa codes are used as a basis for the construction,
and the security comes from the hardness of the General Decoding Problem
(GDP).

Definition 1 (GDP). Let C be an [n, k] linear code over Fq and let y be a
vector of Fn

q .
Find the codeword closest to y, i.e. find c ∈ C such that d(c, y) is minimal.

This corresponds to correcting a certain number of errors occurred on the code-
word c, represented by an error vector e, that is y = c + e. A unique solution
exists if the weight of e is less than or equal to w = �d−1

2 �, where d is the
minimum distance of the code C.

This problem is well known and was proved to be NP-complete [7]. Moreover,
GDP is believed to be hard on average, and not just on the worst-case instances.
The general framework proceeds as follows:

Key Generation: Pick a k × n generator matrix G for a w-error correcting
linear code with an efficient decoding algorithm over the finite field Fq, a k × k
invertible matrix S and an n×n permutation matrix P at random, then compute
G′ = SGP , which is another valid generator matrix. The private key consists of
G,S, P , and the public key is G′.The system parameters n, k, w are also public.

Encryption: To encrypt a plaintext x ∈ F
k
q , compute the corresponding code-

word xG′ and add a random error vector e of weight at most w, obtaining the
ciphertext y = xG′ + e.

140 P.-L. Cayrel, G. Hoffmann, and E. Persichetti

Decryption: Given a ciphertext y, calculate yP−1 = xG′P−1+ eP−1 = xSG+
eP−1, and since the weight of eP−1 is still the same, it is enough to apply the
decoding algorithm for the code to retrieve xS and consequently x.

The other computational assumption underlying the security is that the k ×
n matrix G′ so obtained is computationally indistinguishable from a uniform
matrix of the same size, hence an attacker that does not know the private key
is faced with solving GDP.

Remark. The encryption process is dominated by the cost of computing xG′,
which requires at most k×n field multiplications. Hence this is fast. On the other
hand, decryption requires performing a decoding algorithm and is not usually so
fast. Therefore, McEliece is most suitable for applications where encryption is
required to be fast. This is analogous to RSA using small encryption exponents.

2.2 The Niederreiter Cryptosystem

A first alternative version of the McEliece cryptosystem has been proposed by
Niederreiter [26] in 1986, and has been proved to be equivalent in terms of
security. It is often considered as a “dual” version, as the trapdoor is given by
the parity-check matrix rather than the generator matrix. The underlying hard
problem is the Syndrome Decoding Problem.

Definition 2 (SDP). Let H be an r × n matrix over Fq, s a vector of Fr
q and

w > 0.
Find a vector e in F

n
q of weight ≤ w such that HeT = s.

If H is the parity-check matrix for an [n, k] linear code C, then r = n− k and it
is immediate to see that the two problems are equivalent: in fact, for y = c+e we
have HyT = HcT +HeT but HcT = 0 since c is a codeword so HyT = HeT = s,
which means that SDP in this case corresponds, again, to finding an error vector
of weight less or equal to w.

This is a description of Niederreiter’s scheme:

Key Generation: Pick an (n − k) × n parity-check matrix H for a w-error
correcting linear code with an efficient decoding algorithm over the finite field
Fq, an (n− k) × (n − k) invertible matrix S and an n × n permutation matrix
P at random, then evaluate H ′ = SHP , which is another valid parity-check
matrix. The private key consists of H,S, P , and the the public key is H ′.The
system parameters n, k, w are also public.

Encryption: A plaintext here is a vector e ∈ F
n
q of weight at most w; to encrypt,

compute the corresponding syndrome, obtaining the ciphertext y = H ′eT .

Decryption: Given a ciphertext y, calculate first S−1y = HPeT , and then
apply the decoding algorithm for the code to retrieve PeT and consequently e.

Efficient Implementation of a CCA2-Secure Variant 141

2.3 Structured Matrices

Definition 3. Given a ring R (in our case the finite field Fqm) and a vector
h̄ = (h0, . . . , hn−1) ∈ Rn, the dyadic matrix Δ(h̄) ∈ Rn×n is the symmetric
matrix with components Δij = hi⊕j, where ⊕ stands for bitwise exclusive-or on
the binary representations of the indices. The sequence h̄ is called its signature.
Moreover, Δ(t, h̄) denotes the matrix Δ(h̄) truncated to its first t rows. Finally,
we call a matrix quasi-dyadic if it is a block matrix whose component blocks are
t× t dyadic submatrices.

If n is a power of 2, then every 2k×2k dyadic matrix can be described recursively
as

M =

(
A B
B A

)

where each block is a 2k−1 × 2k−1 dyadic matrix (and where any 1 × 1 matrix
is dyadic).

Definition 4. Given two sequences x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn) ∈ F
n
q ,

a Generalized Reed-Solomon (GRS) code of order � is defined by a parity-
check matrix related to the Vandermonde form, i.e. the matrix with components
Hij = yjx

i−1
j :

H =

⎛
⎜⎜⎜⎝

y1 . . . yn
y1x1 . . . ynxn
...

...
...

y1x
�−1
1 . . . ynx

�−1
n

⎞
⎟⎟⎟⎠.

If the resulting code is then restricted to Fq it is called an Alternant code.

Definition 5. For m,n, s, t ∈ N and a prime power q, let ᾱ = (α1, . . . , αn),
w̄ = (w1, . . . , ws) be n+ s distinct elements of Fqm , and (z1, . . . , zn) be nonzero
elements of Fqm . The Generalized Srivastava (GS) code of order st and length
n is defined by a parity-check matrix of the form:

H =

⎛
⎜⎜⎜⎝
H1

H2

...
Hs

⎞
⎟⎟⎟⎠

where each block is

Hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
α1 − wi

. . .
zn

αn − wi

z1
(α1 − wi)2

. . .
zn

(αn − wi)2
...

...
...

z1
(α1 − wi)t

. . .
zn

(αn − wi)t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

142 P.-L. Cayrel, G. Hoffmann, and E. Persichetti

The parameters for such a code are the length n ≤ qm − s, dimension k ≥
n−mst and minimum distance d ≥ st+ 1.

GS codes are part of the family of Alternant codes, and therefore benefit of
an efficient decoding algorithm. More information about this class of codes can
be found in [21, Ch. 12, §6].

2.4 Secure Parameters

Both the previous schemes share some common traits: a very fast and efficient
encryption procedure, and very big public keys. Our proposal to deal with these
issues is to use structured codes, and in particular, quasi-dyadic codes. See Ap-
pendix B for a summary of the key generation process.

Misoczki and Barreto in [25] give an assessment of the hardness of
decoding quasi-dyadic codes, providing a reduction to the Syndrome Decoding
Problem.

Keeping in mind the scope of the paper, the parameters proposed in [27, Table
3] seem to fit our proposal best; we report the table here for completeness.

Table 1. Quasi-dyadic GS codes [27, Table 3]. The column “Size” indicates the size
of the public key, while in the column “Security level” are reported the approximate
cost of general decoding attacks (log2 of binary operations).

Base Field m n k s t Errors Size (bytes) Security level1

F25 2 992 416 25 9 144 4680 128
F24 3 768 432 24 7 56 4536 80
F25 2 512 256 24 23 64 2560 80

3 CCA-Secure Schemes

Until now, we have been considering only the weakest notion of security for a
public-key encryption scheme, that is, One-Way Encryption (OWE). The fol-
lowing are formal definitions of public-key encryption and one-way security.

Definition 6. A Public-Key Encryption (PKE) scheme consists of a 6-tuple
(K,P , C,G, E ,D) defined as follows:

– K = Kpubl ×Kpriv is the key space.

– P is the set of messages to be encrypted, or plaintext space.

– C is the set of the messages transmitted over the channel, or ciphertext
space.

– G is a probabilistic key generation algorithm that takes as input a security
parameter 1δ and outputs a public key pk ∈ Kpubl and a private key sk ∈
Kpriv.

1 http://www2.mat.dtu.dk/people/C.Peters/isdfq.html

Efficient Implementation of a CCA2-Secure Variant 143

– E is a (possibly probabilistic) encryption algorithm that receives as input a
public key pk ∈ Kpubl and a plaintext x ∈ P and returns a ciphertext ψ ∈ C.

– D is a deterministic decryption algorithm that receives as input a private key
sk ∈ Kpriv and a ciphertext ψ ∈ C and outputs either a plaintext x ∈ P or
the failure symbol ⊥.

Definition 7 (One-Way). A One-Way adversary is a polynomial-time algo-
rithm A that takes as input a public key pk ∈ Kpubl and a ciphertext ψ ∈ C. We
say that a PKE is One-Way Secure if the probability of success of any adversary
A is negligible in the security parameter, i.e.

Pr[pk ←− Kpubl, x←− P : A(pk, Epk(x)) = x] ∈ negl(δ)

The standard definitions for Indistinguishability, and the attack models CPA
and CCA2 are omitted here due to space requirements.

3.1 CCA2 Security Conversions

There are standard ways to obtain an IND-CCA2 secure encryption scheme
from one that only has OW-CPA, for example the Fujisaki-Okamoto transform
[17]. The construction achieves CCA2-security by integrating an asymmetric
encryption scheme with a symmetric scheme.

Definition 8. A Symmetric Encryption (SE) scheme consists of a 5-tuple
(K,P , C, E ,D) defined as follows:

– K is the key space.

– P is the set of messages to be encrypted, or plaintext space.

– C is the set of the messages transmitted over the channel, or ciphertext
space.

– E is a deterministic encryption algorithm that receives as input a key χ ∈ K
and a plaintext x ∈ P and returns a ciphertext ψ ∈ C.

– D is a deterministic decryption algorithm that receives as input a key χ ∈ K
and a ciphertext ψ ∈ C and outputs a plaintext x ∈ P.

The Fujisaki-Okamoto conversion requires an additional property of the encryp-
tion scheme called γ-uniformity. We define it here.

Definition 9. Let Π be a PKE defined as above and let’s call R the set where
the randomness to be used in the (probabilistic) encryption is chosen. For given
(pk, sk) ∈ K, x ∈ P and a string y, we define

γ(x, y) = Pr[r
$←− R : y = Epk(x, r)]

where the notation Epk(x, r) makes explicit the role of the randomness r. We say
that Π is γ-uniform if, for any (pk, sk) ∈ K, any x ∈ P and any y, γ(x, y) ≤ γ
for a certain γ ∈ R.

144 P.-L. Cayrel, G. Hoffmann, and E. Persichetti

Table 2. The Fujisaki-Okamoto conversion. H1 and H2 are hash functions.

Encryption of x Decryption of ψ

σ
$←− PPKE ψ := (ψ1||ψ2)

r := H1(σ, x) σ̂ := DPKE
sk (ψ1) (return ⊥ if decryption fails)

ψ1 := EPKE
pk (σ, r) x̂ := DSE

H2(σ̂)(ψ2) (return ⊥ if decryption fails)

ψ2 := ESE
H2(σ)(x) r̂ := H1(σ̂, x̂)

if EPKE
pk (σ̂, r̂) == ψ1 return x := x̂

return ψ := (ψ1||ψ2) else return ⊥

In a successive paper [20], Kobara and Imai proposed three alternative construc-
tions in a similar fashion, tailored specifically for the McEliece cryptosystem
rather than a general OWE encryption scheme. The biggest contribution of the
new constructions is that the amount of overhead data (i.e. difference between
the bit-length of the ciphertext and the bit-length of the plaintext) is consider-
ably reduced.

While this is certainly an important issue for some applications, in the com-
mon cryptographic practice it will never constitute a serious concern. In fact,
the aim of public key cryptography is not to encrypt a whole, large plaintext,
but rather to encrypt just a small (e.g. 128 or 256 bits) key for a more efficient
symmetric scheme, that will be then used to encrypt the message. From a com-
putational point of view the Kobara-Imai encryption process seems to be more
expensive; in fact, the whole construction is rather complex.

Table 3. The Kobara-Imai hybrid conversion γ for the McEliece (McE) public-key
encryption scheme. H is a hash function, Gen a random number generator, Conv a
constant weight encoding function and Const a (predetermined) public constant.

Encryption of x Decryption of ψ

r
$←− {0, 1}∗ ψ := (y5||y′)

y1 := Gen(r)⊕ (x||Const) y3 := DMcE
sk (y′)

y2 := r ⊕H(y1) y3G
′ ⊕ y′

(y5||y4||y3) := (y2||y1) y4 := Conv−1(z)
z := Conv(y4) (y2||y1) := (y5||y4||y3)

r := y2 ⊕H(y1)
(x̂||Const′) := y1 ⊕Gen(r)
if Const′ == Const return x := x̂

return ψ := (y5||EMcE
pk (y3, z)) else return ⊥

Note that the Fujisaki-Okamoto decryption process includes an encoding
operation in the final check. This makes decryption slower. The cost of the
process, though, is still dominated by the decoding operation rather than the

Efficient Implementation of a CCA2-Secure Variant 145

matrix-vector multiplication. Moreover, as we already remarked, we argue that
the distinctive feature of the McEliece scheme is the fast encryption process,
and the Fujisaki-Okamoto conversion preserves fast encryption better than the
Kobara-Imai approach.

3.2 Applying Fujisaki-Okamoto to McEliece

We give here a new way to use McEliece together with the Fujisaki-Okamoto
transform. Previous approaches always needed a constant weight encoding func-
tion to convert H1(σ, x) into an error vector. Our idea is to swap the message
and the error in the McEliece scheme, with a technique similar to the one used
by Micciancio in [24]. This means that we interpret EMcE

G′ (x, r) = rG′ + x, en-
coding the message in the error vector rather than in the codeword. This is
possible because, unlike other PKE’s, the decryption process of McEliece, con-
sisting mainly of decoding, returns both x and r, allowing to recover, in addition
to the plaintext, also the randomness used. With this simple trick, we avoid
having to use a (costly) constant weight encoding function and we simplify the
encryption process considerably.

For simplicity we take the symmetric encryption scheme to be the one-time
pad with an ephemeral key generated as H2(σ) where H2 is a random oracle
with arbitrary length output. This symmetric encryption scheme satisfies the
Find-Guess security property. In practice, one might use a block cipher in CBC
mode.

Table 4. The Fujisaki-Okamoto transform applied to McEliece

Encryption of x Decryption of ψ

σ
$←− Wn,w ψ := (ψ1||ψ2)

r := H1(σ||x) σ̂ := DMcE
G (ψ1) (return ⊥ if decoding fails)

ψ1 := rG′ + σ x̂ = H2(σ̂)⊕ ψ2

ψ2 := H2(σ)⊕ x r̂ := H1(σ̂||x̂)
if r̂G′ + σ̂ == ψ1 return x := x̂

return ψ := (ψ1||ψ2) else return ⊥

The following lemma is fundamental to prove that our scheme enjoys the
γ-uniformity required by the conversion.

Lemma 1. The McEliece encryption scheme described above is γ-uniform for

γ =
1

qk
.

Proof. Let G′ be a public key that is a generator matrix for the code C; in our
setting, y is a generic string in F

n
q . Then clearly:

146 P.-L. Cayrel, G. Hoffmann, and E. Persichetti

γ(σ, y) = Pr[r
$←− F

k
q : y = rG′ + σ] =

⎧⎪⎨
⎪⎩

0 if y − σ /∈ C

1

qk
if y − σ ∈ C

and that concludes the proof.
�
Theorem 1. If the assumptions of indistinguishability and decoding hardness
of the McEliece PKE hold, the encryption scheme described in Table 4 is IND-
CCA2 secure.

Proof. The scheme enjoys one-way security because of the computational as-
sumptions in the hypothesis. Moreover, Lemma 1 provides the γ-uniformity as
required. Finally, the symmetric scheme used (one-time pad) satisfies the re-
quired security property (Find-Guess). It is then possible to apply [17, Th. 12].

�

4 Efficient Implementation

The implementation was done in C++ and is based on the library SBCrypt
(Syndrome-Based Cryptography Library) by Barreto, Misoczki and Villas
Boas [3].

We subsequently converted our code to run on an embedded device, namely
the microcontroller ATxmega256A3 from the AVR XMEGA family. It has 264
Kbytes of Flash memory, 16 Kbytes of SRAM memory and is running at a clock
frequency of 32 MHz.

To represent the finite fields we used exponential/antilog tables [21, Ch. 4,
§5], which is possible as our extension fields are small enough to fit completely in
the available memory (apart from the first code, for which the private trapdoor
would be too big). This is a key feature of our scheme and one of the main
reasons to choose GS codes over Goppa codes. In fact, when using GS codes,
it is possible to choose secure parameters even for codes defined over relatively
small extension fields. See Appendix C for a summary of the security discussion.
More information can be found in [27].

As for the hash functions H1 and H2, we opted for the Keccak family [10], one
of the five remaining SHA-3 finalists, with assigned output length equal to k, in
the first instance, or equal to the plaintext length (128 bits in our case), in the
second. Its flexibility also allows for using it as stream cipher, and we deployed
it for randomly choosing error vectors of weight w.

The procedure to generate error vectors for encryption is as follows: at first,
the error vector is initialized to zero. Next, we ask Keccak for β = �log2 n
 bits
and interpret the result as an index into the error vector. If the interval is greater
than n then we reject and re-sample. Now, in case this index is still a zero en-
try, we ask Keccak for additional bits to be read as a field element. Otherwise, we

Efficient Implementation of a CCA2-Secure Variant 147

ask Keccak for the next bits to be interpreted as the next index to be examined.
This simple procedure is iterated until the error vector has the desired weight.

It is clear that this process samples uniformly from Wn,w.
The test results for the C++ code have been executed on an Intel(R) Core

(TM) 2 Duo CPU E8400@3.00GHz running Ubuntu/Linux 2.6.32, where the
source has been compiled with gcc 4.4.3. Similar results have been obtained
using the Intel compiler icpc/icc. As for the embedded microcontroller, the code
has been simulated on AVR Studio 5.0 [1].

McEliece Based on GS Codes. We have measured two different operations:
the encoding step xG + e for x ∈ F

k
q and the decoding of a ciphertext y ∈ F

n
q .

Results are presented in Table 5 (timings expressed in milliseconds (ms)).

Table 5. Profiling results for McEliece using GS codes

Code Name Base Field m n k s t Errors Encoding Decoding

A F25 2 992 416 25 9 144 0.287 5.486
B F24 3 768 432 24 7 56 0.179 1.578
C F25 2 512 256 24 23 64 0.093 1.234

It is easy to see that the decoding process dominates the runtime.
The following tables report the results obtained when running the same op-

erations on the microcontroller, for the last two codes. The costs displayed are

Table 6. Details of the costs of encryption and decryption steps for codes B and C

Operation Code B Code C

Generate error vector e 313,114 316,568
Load the plaintext x 4,313 2,553
Encode xG 3,418,292 1,603,854
Add e 8,818 5,944

Encoding total 3,744,537 1,928,919

Operation Code B Code C

Compute syndrome HyT 6,910,742 5,440,245
Solve key equation 955,597 1,192,400
Compute error positions 2,061,066 1,571,689
Compute error values 611,898 794,463
Correct the errors 8,641 5,121

Decoding total 10,547,944 9,003,918

148 P.-L. Cayrel, G. Hoffmann, and E. Persichetti

in clock cycles; for a conversion to the standard time units, keep in mind that
the device runs at 32MHz, hence we have 32 million cycles per second.

Note on Decoding. In our scheme, we have implemented a standard alternant
decoder (see for example [21, Ch. 12, §9]). That consists of extrapolating the
key equation from the syndrome and then solve it and compute the error po-
sitions as the roots of the error locator polynomial. To find the roots, we use
the Horner scheme in the sense that we directly evaluate the polynomial on the
support. More sophisticated root-finding algorithms are available, for instance
Berlekamp’s trace algorithm [6]. However, our codes are punctured codes, and,
as also stated in [19], Berlekamp’s trace algorithm is not designed for such a case.
Moreover, although Berlekamp’s algorithm does find the roots of the polynomial,
there is an additional step necessary to find them in the support sequence, which
is not the case when using the Horner scheme and direct evaluation. Finally, one
can see from the timings of the decoding operation, that the by far dominating
part is the syndrome computation. For the time being, we therefore refrained
from implementing Berlekamp’s algorithm, opting for the much simpler Horner
scheme instead.

CCA2-McEliece Based on GS Codes. The performances of the scheme
are given in Table 7 and Table 8, respectively for the C++ code and for the
microcontroller.

Table 7. Profiling results for CCA2-McEliece using GS codes

Code Name Base Field m n k s t Errors Encryption Decryption

A F25 2 992 416 25 9 144 0.323 5.914
B F24 3 768 432 24 7 56 0.213 1.814
C F25 2 512 256 24 23 64 0.114 1.382

Table 8. Details of the costs of the encryption and decryption steps of CCA2-McEliece

Operation Code B Code C

Generate error vector σ 322,109 321,812
Load the plaintext x 1,019 1,019
Hash r = H(σ, x) 282,285 281,497
Encode rG 3,426,700 1,591,031
Add σ 1,103 1,314
Hash K(σ) 137,704 137,720
Pad K(σ)⊕ x 1,814 1,811

Encryption total 4,171,734 2,336,204

Efficient Implementation of a CCA2-Secure Variant 149

Table 8. (Continued)

Operation Code B Code C

Compute syndrome HψT
1 7,029,985 5,425,696

Solve key equation 954,522 1,202,032
Compute error positions 2,031,514 1,561,946
Compute error values 611,944 794,524
Correct the errors 1,108 5,112
Hash K(σ̂) 147,822 144,768
Pad K(σ̂)⊕ ψ2 1,585 1,586
Hash r̂ = H(σ̂, x̂) 282,066 282,278
Encode r̂G 3,426,721 1,591,049
Add σ̂ 1,113 1,273
Check equality 9,207 6,135

Decryption total 14,497,587 11,016,399

Comparing the results in Table 5 and Table 7 (as well as Table 6 and Table 8),
we see that indeed the computational overhead is quite low.

For simplicity, the comparison of the total timings for both cases is reported
in Tables 9 and 10.

Table 9. Summary of the timings (ms) for the C++ code

Code Encoding CCA2 Encryption Decoding CCA2 Decryption

A 0.287 0.323 5.486 5.914
B 0.179 0.213 1.578 1.814
C 0.093 0.114 1.234 1.382

Table 10. Summary of the timings (clock cycles) for the embedded device

Code Encoding CCA2 Encryption Decoding CCA2 Decryption

B 3,744,537 4,171,734 10,547,944 14,497,587
C 1,928,919 2,336,204 9,003,918 11,016,399

5 Conclusions

In this paper we propose the implementation of a construction based on quasi-
dyadic generalized Srivastava codes. We first implement a plain McEliece encryp-
tion scheme, and then convert it to a CCA2-secure scheme using the Fujisaki-
Okamoto transform. The results are initially given for a C++ implementation,
and successively for an embedded device.

An independent work proposing a CCA2-secure scheme based on quasi-dyadic
Goppa codes has been recently presented at PQCrypto 2011 by Stefan Heyse

150 P.-L. Cayrel, G. Hoffmann, and E. Persichetti

[19]. The performance indicated for encryption and decryption on the embedded
device are slower than our results (the simulator program is the same, AVR
Studio, although in a slightly older version). Part of the reason is due to the use
a constant weight encoding function (more than three times as costly as hashing)
that we avoid thanks to the particular configuration of our scheme. However,
the major difference comes from the fact that our vector-matrix multiplication,
despite performing operations over non-binary fields, is at least two times faster,
and this is the dominating part in the encryption process and is also a very high
cost in the decryption process. This is a direct consequence of the structure of the
scheme. In fact, the construction in [19] makes use of binary Goppa codes, which
for security reasons [14] need to be defined over the extension field F216 : this is
too big to fit the corresponding log/antilog tables on the flash memory of the
device. The result is that, in order to avoid using additional, external memory,
the tables for F28 are represented instead, and operations are performed using
tower field arithmetic, which is much slower. For example, a multiplication over
a tower F(28)2 is equivalent to performing 5 multiplications over F28 .

Another disadvantage is constituted by the fact that the public key G′ is
computed as SG like in the original McEliece (P is supposed to be implicit into
the support of the code), and the scramble matrix S occupies a great amount of
memory (131,072 bytes, see [19, Table 3]). This is completely redundant, as the
reduction to the systematic form is enough to mask the trapdoor and provide
one-way security [11].

On the other hand, the length of the encrypted plaintext is about 10 times
the length of our plaintext (1288 bits, as opposed to 128 bits); however, we stress
again that, in a “real-world” scenario, public-key encryption would only be used
for encrypting a small amount of data, for obvious reasons. So if a large number
of bits needs to be encrypted, with every probability a PKE would be used to
exchange a small key (usually 128 or 256 bits) and then the plaintext would be
encrypted with a symmetric encryption scheme.

If we follow this approach in our case, the timings that we obtain strongly
support our claim. The latest benchmark speed indicated for AES-128 is about
16 cycles per byte2. Hence, if we want to encrypt, for a comparison, a plaintext
of length 1288 bits = 161 bytes, it would take only 2,576 clock cycles; even
on an embedded device, this number is very small compared to the rest of the
encryption process. In total, our encryption process ranges from around 1.5 to
2.7 times faster than [19].

Table 11. Cost of encrypting a plaintext of length 1288 bits

Code Cost (clock cycles)

Goppa + Kobara-Imai 6,358,952
Code B 4,174,310
Code C 2,338,780

A similar argument holds for decryption.

2 http://www.cryptopp.com/benchmarks.html

Efficient Implementation of a CCA2-Secure Variant 151

Finally, we would like to highlight that we are using Keccak to represent
both our hash functions and a random number generator; the flexibility that it
provides is evident. Other SHA-3 competitors like the function Blue Midnight
Wish (BMW) used in [19] have been proved to be faster [16], but do not reach
the same level of security, and for this have been discarded: although, as noted in
the announcement of the finalists, “none of these candidates was clearly broken”,
several attacks have been presented3.

Further investigation is certainly still required, but for a totally detailed anal-
ysis probably even a comparison at source code level would become necessary,
and that falls beyond the scope of this paper.

Acknowledgments. We would like to thank Steven Galbraith for many fruitful
discussions and his constant support throughout the development of the paper.

References

1. Atmel Corporation, “AVR Studio 5.0”, http://www.atmel.com/avrstudio
2. Barreto, P.S.L.M., Cayrel, P.-L., Misoczki, R., Niebuhr, R.: Quasi-Dyadic CFS

Signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584,
pp. 336–349. Springer, Heidelberg (2011)

3. Barreto, P.S.L.M., Misoczki, R., Villas Boas, L.B.: SBCRYPT - Syndrome-Based
Cryptography Library

4. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of
the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

5. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic
use. Design, Codes and Cryptography 35, 63–79 (2005)

6. Berlekamp, E.R.: Factoring polynomials over finite fields. Bell System Technical
Journal 46, 1853–1859 (1967)

7. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems. IEEE Transactions on Information Theory 24, 384–
386 (1978)

8. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

9. Bernstein, D.J., Lange, T., Peters, C., van Tilborg, H.C.A.: Explicit bounds for
generic decoding algorithms for code-based cryptography. In: Pre-proceedings of
WCC 2009, pp. 168–180 (2009)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak sponge function
family, http://keccak.noekeon.org/

11. Biswas, B., Sendrier, N.: McEliece Cryptosystem Implementation: Theory and
Practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
47–62. Springer, Heidelberg (2008)

12. Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2 Secure Public Key
Encryption Scheme Based on the McEliece Assumptions in the Standard Model.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 240–251. Springer, Hei-
delberg (2009)

3 http://ehash.iaik.tugraz.at/wiki/Blue Midnight Wish

http://www.atmel.com/avrstudio
http://keccak.noekeon.org/

152 P.-L. Cayrel, G. Hoffmann, and E. Persichetti

13. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Em-
bedded Devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
49–64. Springer, Heidelberg (2009)

14. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of
McEliece Variants with Compact Keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

15. Faugère, J.C., Otmani, A., Perret, L., Tillich, J.P.: Algebraic Cryptanalysis of
Compact McEliece’s Variants - Toward a Complexity Analysis. In: International
Conference on Symbolic Computation and Cryptography, SCC 2010, pp. 45–56
(2010)

16. Fleischmann, E., Forler, C., Gorski, M.: Classification of the SHA-3 Candidates,
http://drops.dagstuhl.de/volltexte/2009/1948/pdf/

09031.ForlerChristian.Paper.1948.pdf

17. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–
554. Springer, Heidelberg (1999)

18. Heyse, S.: Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcon-
trollers. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 165–181.
Springer, Heidelberg (2010)

19. Heyse, S.: Implementation of McEliece Based on Quasi-dyadic Goppa Codes for
Embedded Devices. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
143–162. Springer, Heidelberg (2011)

20. Kobara, K., Imai, H.: Semantically Secure McEliece Public-Key Cryptosystems-
Conversions for McEliece PKC. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 19–35. Springer, Heidelberg (2001)

21. MacWilliams, F.J., Sloane, N.J.: The theory of error-correcting codes. North Hol-
land, Amsterdam (1977)

22. Mandell Freeman, D., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Con-
structions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidel-
berg (2010)

23. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory. In: DSN
Progress Report 44, pp. 114–116. Jet Propulsion Lab (1978)

24. Micciancio, D.: Improving Lattice Based Cryptosystems Using the Hermite Normal
Form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

25. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece Keys from Goppa Codes. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009)

26. Niederreiter, H.: A Public-Key Cryptosystem Based on Shift Register Sequences.
In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 35–39. Springer,
Heidelberg (1986)

27. Persichetti, E.: Compact McEliece keys based on Quasi-Dyadic Srivastava codes.
IACR Cryptology ePrint Archive, (2011) (preprint)

28. Peters, C.: Information-Set Decoding for Linear Codes over Fq. In: Sendrier, N.
(ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010)

29. Preneel, B., Bosselaers, A., Govaerts, R., Vandewalle, J.: A software implementa-
tion of the McEliece public-key cryptosystem. In: Proceedings of the 13th Sympo-
sium on Information Theory in the Benelux, Werkgemeenschap voor Informatieen
Communicatietheorie, pp. 119–126. Springer (1992)

http://drops.dagstuhl.de/volltexte/2009/1948/pdf/09031.ForlerChristian.Paper.1948.pdf
http://drops.dagstuhl.de/volltexte/2009/1948/pdf/09031.ForlerChristian.Paper.1948.pdf

Efficient Implementation of a CCA2-Secure Variant 153

30. Prometheus. Implementation of McEliece cryptosystem for 32-bit microprocessors
(c-source), http://www.eccpage.com/

31. Schechter, S.: On the inversion of certain matrices. Mathematical Tables and Other
Aids to Computation 13(66), 73–77 (1959)

32. Sendrier, N.: Encoding information into constant weight words. In: IEEE Confer-
ence, ISIT 2005, pp. 435–438 (September 2005)

A Additional Definitions

We present here some additional definitions needed for the key generation process.

Definition 10. Given two disjoint sequences v̄ = (v1, . . . , v�) ∈ F
�
q and L̄ =

(L1, . . . , Ln) ∈ F
n
q , the Cauchy matrix C(v̄, L̄) is the matrix with components

Cij =
1

vi − Lj , i.e.

C(v̄, L̄) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

v1 − L1
. . .

1

v1 − Ln
...

...
...

1

v� − L1
. . .

1

v� − Ln

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Cauchymatrices have the property that all of their submatrices are invertible [31].

Definition 11. Fix a finite field Fq and an integer m > 1. Choose a polynomial
g(z) in Fqm [z] of degree t < n/m and a sequence of distinct elements α1, . . . , αn ∈
Fqm such that g(αi) �= 0 for all i. The polynomial g(z) is called the Goppa poly-
nomial. The set of words c̄ = (c1, . . . , cn) ∈ F

n
qm with

∑n
i=1

ci
z−αi

≡ 0 (mod g(z))
defines an [n, n− t] linear code over Fqm . The corresponding Goppa code is the
restriction of this code to Fq, i.e. the set of elements c̄ = (c1, . . . , cn) ∈ F

n
q which

satisfy the above condition.

Alternatively (and usually) a Goppa code is defined by means of its parity-check
matrix, which is of the form:

H =

⎛
⎜⎜⎜⎜⎜⎝

1

g(α1)
. . .

1

g(αn)
...

...
...

αt−1
1

g(α1)
. . .

αt−1
n

g(αn)

⎞
⎟⎟⎟⎟⎟⎠

It is clear then that a Goppa code has dimension k ≥ n − mt. The minimum
distance is t+ 1, or 2t+ 1 in the special binary case (q = 2).

http://www.eccpage.com/

154 P.-L. Cayrel, G. Hoffmann, and E. Persichetti

Goppa codes are a particular instance of Alternant codes, with xi = αi,
yi = 1/g(αi).

B Quasi-Dyadic Key Generation

Misoczki and Barreto in [25] first introduced a scheme based on quasi-dyadic
Goppa codes, making use of codes simultaneously in dyadic [25, Th. 2] and
Cauchy form [21, Ch. 12, Pr. 5]. Necessary conditions are that the generator
polynomial has to be monic and without multiple zeros, and that the code needs
to be defined over a field of characteristic 2, with a dyadic signature satisfying

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
. (1)

The scheme was subsequently extended and generalized to the case of GS codes
[27], with multiple benefits including security improvements (described in the
next section). Since it can be easily proved that every generalized Srivastava
code with t = 1 is a Goppa code, the two cases are in fact just two instances
of the same scheme. For the construction, we follow the steps presented in [27,
Section 4].

Equation (1) is the core of the key generation algorithm. The procedure takes
input parameters n, s, t such that n = n0s, mst < n for s a power of 2 and a
finite field Fqm = F2u where q = 2λ, u = mλ, then assigns distinct values at
random to the elements h2j for j = 1, . . . , log2 (n− 1), in the meantime fixing
the elements between h2j and h2j+1 by using (1).

An initial block in dyadic form is formed from the signature h̄ just built; this
is equivalent to a Goppa code. In case t > 1, the other blocks are computed by
successive powering, up to the power of t. The parity-check matrix eventually
obtained is projected onto the base field and finally, we retain the non-trivial
part of its systematic form to be used as trapdoor.

We refer to [27] for a fully detailed description of the construction process.

C Resistance to Structural Attacks

The main threat against quasi-dyadic schemes is represented by the so-called
FOPT attack [14]. It relies on the fundamental property H ·GT = 0 to build an
algebraic system, using then Gröbner bases techniques to solve it. The special
properties of codes in quasi-dyadic form are of key importance, as they con-
tribute to considerably reduce the number of unknowns of the system. Also,
the parameters m and t come into account as they define the dimension of the
solution space.

The aim is to find a valid parity-check matrix for the code, that is, a matrix
H in Alternant form, H = {yjxij}; these elements are represented by two sets
of unknowns {Xi} and {Yi}. The first step of the attack is then generating the
following system of equations:

{
gi,0Y0X

j
0 + · · ·+ gi,n−1Yn−1X

j
n−1 = 0 | i = 0, . . . , k − 1, j = 0, . . . , �− 1

}
. (2)

Efficient Implementation of a CCA2-Secure Variant 155

As is easy to see, the case j = 0 produces a set of linear equations involving only
the Yi. These can be further reduced with the help of some properties derived
from the dyadicity and the key-generation algorithm [14, Pr. 5]; in particular,
we have that Yis+j = Yis for each block, i.e. i = 0, . . . , n0 − 1, j = 1, . . . s (a
proof is given for the case t = 1; for the adaptation to the case t > 1 see [27]).
This results in having only n0 − 1 unknowns Yi, since we can arbitrarily choose
one of them. Moreover, the linear equations are identical for all the rows of each
dyadic block, hence only n0−mt distinct equations remain after eliminating the
redundant ones.

As in any linear system, the difference between these two numbers gives the
number of free variables of the system: in this case, mt − 1. If it is possible to
recover the free variables (if the number of those is very small, even just by
guessing) it is possible to reduce (2) to a simplified system involving only the
Xi. Once the reduction is done, a linearization trick is used to solve and retrieve
the remaining unknowns.

Hence, it is crucial to keep the dimension of the solution space (number of
free variables) high enough to prevent the attack to succeed; the authors in [15]
indicate that this number should be not smaller than 20. In this case in fact,
the computational effort required to solve the system is too high: experimental
results indicate a complexity of approximately 2128 bit operations.

Additional security comes from another phenomenon that occurs when the
base field is F2. In this case the Gröbner basis necessary to solve the system is
easy to compute, but somehow “trivial” (reduced to one equation) and doesn’t
provide enough information, hence the attack cannot be completed.

	Efficient Implementation of a CCA2-SecureVariant of McEliece Using Generalized
Srivastava Codes
	Introduction
	Code-Based Public-Key Encryption Schemes
	The McEliece Cryptosystem
	The Niederreiter Cryptosystem
	Structured Matrices
	Secure Parameters

	CCA-Secure Schemes
	CCA2 Security Conversions
	Applying Fujisaki-Okamoto to McEliece

	Efficient Implementation
	Conclusions
	References
	Additional Definitions
	Quasi-Dyadic Key Generation
	Resistance to Structural Attacks

