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Abstract. Chosen-Ciphertext (IND-CCA) security is generally consid-
ered the right notion of security for a cryptosystem. Because of its central
importance much effort has been devoted to constructing IND-CCA se-
cure cryptosystems.

In this work, we consider constructing IND-CCA secure cryptosystems
from (group) homomorphic encryption. Our main results give natural
and efficient constructions of IND-CCA secure cryptosystems from any
homomorphic encryption scheme that satisfies weak cyclic properties,
either in the plaintext, ciphertext or randomness space. Our results have
the added benefit of being simple to describe and analyze.

1 Introduction

Since the definition of security against a Chosen-Ciphertext Attack (IND-CCA)
was given in [NY90], [RS91], much effort has been devoted to constructing effi-
cient IND-CCA secure cryptosystems under a variety of cryptographic hardness
assumptions.

The first construction of an IND-CCA secure cryptosystem was given by
Dolev, Dwork and Naor in [DDN9I]. Their construction builds on the ideas of
Naor and Yung [NY90], and relies on non-interactive zero-knowledge proofs, to
prove that a ciphertext was created honestly. The generic non-interactive zero-
knowledge proofs used in [DDN9I] are too inefficient for practical use, but the
idea of including some sort of “proof of validity” in the ciphertext has strongly
shaped this area of research, and many of the subsequent IND-CCA secure cryp-
tosystems can be viewed in this light.
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The first IND-CCA secure cryptosystem efficient enough to be used in prac-
tice was given by Cramer and Shoup in [CS98], and the security of their con-
struction rested on the Decisional Diffie-Hellman (DDH) assumption. Since then,
there have many fairly efficient IND-CCA secure schemes proposed under a wide
variety of cryptographic hardness assumptions.

Constructions based on the DDH assumption include those of [CS9§],[CS02]
and [PWO08]. Recently, new constructions were given based on the Computa-
tional Diffie-Hellman (CDH) assumption [HJKS10], [CHKI10]. IND-CCA secure
cryptosystems based on the RSA assumption are given in [CHKI0]. Schemes
based on the Quadratic Residuosity (QR) assumption are given in [CS02]. IND-
CCA secure cryptosystems based on lattice assumptions like Learning With
Errors (LWE) are given in [PW08] and [Pei09]. In the pairing world, IND-CCA
secure schemes can be based on the Bilinear Diffie-Hellman (BDH) assump-
tion [CHKO04],[BK05],[BCHKOT], or the Decisional Linear (D-Lin) assumption
[FGK™10]. Chosen-ciphertext secure cryptosystems have also been proposed
based on the Syndrome Decoding problem [DMQN09], [FGK™10).

For a notion as fundamental as secure encryption, it is important to consider
generic constructions as well as concrete instantiations, and in fact, many of
the above constructions are best viewed as part of general frameworks for con-
structing IND-CCA secure encryption. In [DDN9I], IND-CCA secure cryptosys-
tems were built from any one-way trapdoor permutation. In [CS02], Cramer
and Shoup gave a general construction based on universal hash proof sys-
tems, which can be viewed as an algebraic designated verifier proof system.
In [CHKO04],[BCHKOQT7], Boneh, Canetti, Halevi and Katz gave a general frame-
work for constructing IND-CCA secure encryption from any Identity-Based En-
cryption (IBE) scheme. In [PWOS], Peikert and Waters created lossy trapdoor
functions (LTDFs) as a method for constructing IND-CCA secure encryption.
The notion of lossy trapdoor functions has since been relaxed to correlated prod-
uct secure functions [RS09], and slightly lossy trapdoor functions [MY09], and
both relaxations were shown to still be sufficient to construct IND-CCA secure
encryption.

These frameworks provide many different constructions of IND-CCA secure
encryption, and help to locate IND-CCA secure encryption in the cryptographic
landscape. Despite their utility, these frameworks all rely on fairly complicated
underlying primitives, and the search continues for the simplest primitive that
can be shown to imply IND-CCA secure encryption. Perhaps the simplest prim-
itive that could imply IND-CCA secure encryption is IND-CPA secure encryp-
tion. This, however, is widely believed to be false, and the results of Gertner,
Malkin and Myers [GMMO07] give partial results towards the impossibility of
such a construction.

It is natural, then, to examine what additional properties of an IND-CPA
secure cryptosystem are sufficient to construct an IND-CCA secure cryptosys-
tem. One natural property, is that the IND-CPA secure cryptosystem supports a
group operation on the plaintext. Such cryptosystems are called homomorphic.
Indeed, one of the main open questions concerning homomorphic encryption is
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whether homomorphic encryption implies IND-CCA encryption, and this ques-
tion has attracted much attention over the years.

In this work, we will call an encryption scheme homomorphic if the plaintexts
form a group, the ciphertexts form a group, and E(pk, m1,r1) - E(pk, ma,r2) =
E(pk, mq+ma,r*). Unless explicitly stated, we will not assume that r* = r1+rq,
schemes that satisfy this additional property are said to be homomorphic over
their randomness[] Here we have written the group operation on the ciphertexts
multiplicatively and the group operations on the plaintexts additively. This is
simply a convention, but it is a natural one since it corresponds to the usual
method of writing the groups corresponding to Goldwasser-Micali [GM84], Pail-
lier [Pai99], and (additive) El-Gamal [Gam85]. We do not require our encryption
schemes to be fully homomorphic, as constructed in the breakthrough work of
Gentry [Gen09].

The consequences of the existence of homomorphic encryption have been well
studied, and many exciting results are known. Homomorphic encryption has been
show to imply Private Information Retrieval (PIR) [KO97],[Man98§],[IKO05|.
Since PIR implies Collision Resistant Hash Functions [IKOOQ5], Oblivious Trans-
fer [CMOO00], and lossy encryption [HLOVII], we immediately have construc-
tions of any of these primitives based on any homomorphic encryption. The
work of [AKP10] provides a clean abstraction of homomorphic encryption and a
discussion of homomorphic encryption and its relations to IND-CCA1 security.

It remains an important open question whether homomorphic encryption im-
plies IND-CCA secure cryptosystems, and in this work we present steps towards
closing the gap.

1.1 Previous Work

Chosen-ciphertext security was introduced by Rackoff and Simon in [RS91], and
the first cryptosystem provably secure in this model was given in [DDNO9I],
extending the work of [NY90]. Since that time, there has been a vast amount of
work done on the topic of IND-CCA secure encryption.

Our work draws most from the works of Cramer and Shoup on universal
hash proof systems [CS02], and Peikert and Waters on lossy trapdoor functions
[PW0S], and we briefly highlight some key ideas of their constructions below.

The first practical IND-CCA secure cryptosystem was given by Cramer and
Shoup in [CS98]. In [CS02], Cramer and Shoup created Universal Hash Proof
systems, generalizing their work in [CS9§|, and providing a framework for creat-
ing IND-CCA secure encryption. In [CS02], Cramer and Shoup defined a natural
algebraic object called a Diverse Group System, and showed that diverse group
systems imply universal hash proof systems, and diverse group systems are im-
plied by many natural cryptographic hardness assumptions that occur in groups.
The algebraic nature of diverse group systems suggests a possible connection

! Notice that our definition of homomorphic encryption implies that the randomness
space forms a group, since the randomness space is isomorphic to the subgroup of
encryptions of 0.
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between homomorphic encryption and IND-CCA secure encryption, and in this
work we explore this connection.

A different framework for constructing IND-CCA secure cryptosystems was
proposed by Peikert and Waters in [PWO0S]. In their work, Peikert and Wa-
ters defined Lossy Trapdoor Functions (LTDFs), and showed that LTDF's imply
IND-CCA secure cryptosystems. Roughly, a lossy trapdoor function, is a func-
tion that can operate in one of two computationally indistinguishable modes. In
injective mode, it is injective and has a trapdoor. In “lossy” mode, the function
statistically loses information about its input. In [PWO0§|, Peikert and Waters
leveraged the homomorphic properties of the El-Gamal cryptosystem and the
Regev [Reg05] cryptosystem to create LTDFs based on the DDH and LWE as-
sumptions. At the highest level, their construction proceeds as follows. The de-
scription of an LTDF in injective mode is simply the encryption of the identity
matrix using some underlying homomorphic cryptosystem, and the description
of an LTDF in lossy mode is the encryption of the zero matrix. To evaluate a
function on an input x, viewed as a bit vector, we compute the matrix product of
the ciphertext matrix with the input vector. By the homomorphic properties of
the underlying cryptosystem, this results in either a ciphertext vector encrypt-
ing x, or a ciphertext vector encrypting the zero vector. It is easy to see that
the IND-CPA security of the underlying cryptosystem implies that the injective
and lossy modes are indistinguishable, and the decryption algorithm provides
a trapdoor in injective mode. The difficulty is in showing that the lossy mode
statistically loses information about its input. Let us examine this further. The
output of a lossy function is the encryption of the zero vector, so it is clear that
the underlying plaintexts are statistically independent of the input z (since they
are all 0). It is, however, unclear whether the randomness of the ciphertexts
statistically encodes the vector x. The constructions of LTDFs given by Peik-
ert and Waters, modify the underlying homomorphic cryptosystems to ensure
that the randomness of the resulting ciphertext vector does not leak too much
information about the input z.

Both the works of [CS02] and [PW0S] give an indication of the connection
between homomorphic encryption and IND-CCA secure encryption, but despite
significant effort, no one has, as yet, been able to bridge the gap.

In this work, we show that if we have a homomorphic cryptosystem with some
natural cyclic structure, we immediately have IND-CCA secure encryption.

1.2 Owur Contributions

In this work, we consider the problem of constructing an IND-CCA secure cryp-
tosystem from homomorphic encryption schemes. By a homomorphic encryption
scheme, we mean an IND-CPA secure cryptosystem, for which the plaintext space
forms a group, the ciphertext space forms a group, and the group operation on
ciphertexts induces a group operation on plaintexts. Cryptosystems of this type
arise naturally, e.g. [Gam85l [GM84] [Pai99l Ben94l [OTU98, INS98| [D.J0OT, BGNO5].

It has been a long standing open question whether an IND-CCA secure cryp-
tosystem can be constructed from any homomorphic encryption scheme. In this
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work, we give a number of simple properties for a homomorphic encryption scheme,
any one of which allows us to construct an IND-CCA secure cryptosystem.
Our results can be summarized as follows:

Lemma (Lemma [ (informal)). If there exists a homomorphic encryption
with cyclic plaintext group X, and randomness space R, such that |X| > |R|,
then there exist lossy trapdoor functions.

Corollary (Corollary[dl (informal)). If there exists a homomorphic encryp-
tion with cyclic ciphertext space, with plaintext group X, and randomness space
R, such that | X| > |R|, then there exist lossy trapdoor functions.

Theorem (Main Theorem (informal)). If there exists a homomorphic en-
cryption with cyclic ciphertext space, then there exist universal hash proof sys-
tems, and hence IND-CCA secure encryption.

2 Preliminaries

2.1 Notation

If f: X — Y is a function, for any Z C X, we let f(Z) = {f(z) : € Z}. For
example, if F is an encryption algorithm E(pk,z, R) = {E(pk,z,r) : r € R}, is
the set of all encryptions of x. Similarly, E(pk, X, R) = {E(pk,z,r):x € X,r €
R} is the ciphertext space of E. If G is a group, and g1, ..., gq are elements of
G, then we use the notation (g1, ..., g4) to denote the subgroup of G generated
by gi,---,9d-

If A is a PPT machine, then we use a <+ A to denote running the machine
A and obtaining an output, where a is distributed according to the internal
randomness of A. If R is a set, and no distribution is specified, we use r + R to
denote sampling uniformly from the uniform distribution on R.

If X and Y are families of distributions indexed by a security parameter \, we say
that X is statistically close to Y, (written X a5 Y') to mean that for all polynomials
p and sufficiently large A, we have Y~ |Pr[X = z] — Pr[Y = z]| < p(l)\).

We say that X and Y are computationally close (written X =, Y') to mean
that for all PPT adversaries A, for all polynomials p, and for all sufficiently large
A, we have | Pr[AX = 1] — Pr[AY =1]| < 1/p(}).

2.2 Homomorphic Encryption

A public key cryptosystem given by algorithms (G, F, D) is called hormomorphic if

— The plaintext space forms a group X (written with group operation +).

— The ciphertexts are members of a group Y.

— For all zg,z1 € X, and for all rg, r; in the randomness space R, there exists
an r* € R such that

E(pk7 Zo + Z‘l,r*) = E(pk7x07r0)E(pk7 x1, r1)~
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Notice that we do not assume that the encryption is also homomorphic over the
randomness, as is the case of most homomorphic encryption schemes, e.g. El-
Gamal, Paillier, and Goldwasser-Micali. We also do not assume that the image
E(pk, X, R) is the whole group Y, only that F(pk, X, R) C Y. Since the homo-
morphic property implies closure, we have that E(pk, X, R) is a semi—groupE
Notice also, that while it is common to use the word “homomorphic” to describe
the cryptosystem, encryption is not a homomorphism in the mathematical sense
(although decryption is).

We now show some basic properties from all homomorphic encryption schemes.
These facts are commonly used but, since our definition is weaker than the (im-
plicit) definitions of homomorphic encryption that appear in the literature, it is
important to note that they hold under this definition as well.

— E(pk, X, R) is a group.

— E(pk,0, R) is a subgroup of E(pk, X, R).

— For all z € X, E(pk, z, R) is the coset E(pk,z,r)E(pk,0, R).

— For all zg, 21 € X, |E(pk, x0, R)| = |E(pk, z1, R)|.

— If y is chosen uniformly from E(pk,0, R), then yE(pk,x,r) is uniform in
E(pk,z, R).

— E(pk, X, R) is such that E(pk, X, R) ~ X x E(pk,0, R) and decryption is
the homomorphism

— If y is chosen uniformly from E(pk,0, R), then for any = € X, yE(pk, z,r)
is uniformly distributed in E(pk, X, R). This follows because the map

f: E(pk,0,R) — E(pk, X, R)
y — yE(pk,z,r)

is an injection because the group element F(pk,x,r) has an inverse in Y
(we do not need to assume that the inverse is a valid ciphertext). Thus
by counting, we see that f is in fact a bijection. Hence if y is uniformly
distributed, so is f(y).

We call a public key cryptosystem a homomorphic public key encryption scheme,
if it is IND-CPA secure and homomorphic.

2.3 Diverse Group Systems

In [CS02], Cramer and Shoup defined diverse group systems and used them as
a foundation for all their constructions of Universal Hash Proof Systems. We
review these definitions here.

Let Z,L,II be finite abelian groups written additively, with L C Z. Let
Hom(Z, IT) be the group of homomorphisms, ¢ : Z — II. This is also clearly an
abelian group under the operation (¢1 + ¢2)(x) = ¢1(x) + P2(z).

2 A semi-group satisfies the axioms of a group but is not guaranteed to have an identity
element or inverses.
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Definition 1 (Group System). Let Z, L, IT be finite abelian groups with L C
Z. Let H C Hom(Z, IT). We call

G = (H) Z7L7H))
a group system.

Definition 2 (Diverse Group System). We call a group system G =
(H, Z, L, II) diverse if for all z € Z \ L, there exists ¢ € H such that ¢(£) =0
for all ¢ € L, but ¢(z) # 0.

In [CS02] Cramer and Shoup show a natural method for constructing Universal
Hash Proof Systems from Diverse Group Systems.

Definition 3 (Hash Proof System Associated to a Diverse Group Sys-
tem). Let G = (H, Z, L, IT) be a diverse group system, and let g1,...,94 € L be
a set of generators for L. We define the associated Hash Proof system UHP =
(H,K,Z,L,11, S, o),

— For uniformly chosen k € K, Hy, is uniform on H.
Without loss of generality, we may assume K =H, and k = ¢ € H.
We maintain Universal Hash Proof notation to emphasize that Hy(-) that
someone who can calculate Hy(+) on elements of L may not know the under-
lying homomorphism ¢.

- S =14 and

a:K— S
k= (Hi(g1),-- -, Hi(gaq))-

2.4 Lossy Trapdoor Functions

We briefly review the notion of Lossy Trapdoor Functions (LTDFs) as described
in [PWO0§].

Intuitively, a family of Lossy Trapdoor Functions is a family of functions which
have two modes, injective mode, which has a trapdoor, and lossy mode which is
guaranteed to have a small image size. In particular, the preimage of any element
in the image will have a large size. Formally we have:

Definition 4 (Lossy Trapdoor Functions). A tuple (Siar, Fitat, Flgdlf) of
PPT algorithms is called a family of (n,k)-Lossy Trapdoor Functions if the fol-
lowing properties hold:

— Sampling Injective Functions: Syar(1*,1) outputs s,t where s is a func-
tion index, and t its trapdoor. We require that Fias(s, ) is an injective de-
terministic function on {0,1}", and Fj,};(t, Fisat(s, ) = @ for all x.

— Sampling Lossy Functions: Syat(1*,0) outputs (s, L) where s is a func-
tion index and Fiae (s, -) is a function on {0, 1}", where the image of Fitas(s, -)
has size at most 2",

— Indistinguishability: The first outputs of Siar(1*,0) and Syar(1*,1) are
computationally indistinguishable.
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3 Implications of Homomorphic Encryption

Much effort has been devoted studying the implications of homomorphic en-
cryption, and many results are now known. It is known that homomorphic en-
cryption implies Private Information Retrieval (PIR) [KO97],[Man98],[IKO05],
and since PIR implies Collision Resistant Hash Functions [IKO05], Oblivious
Transfer [CMOQ0Q], and lossy encryption [HLOV1I], we immediately have con-
structions of these primitives based on any homomorphic encryption. It remains
open, however, whether homomorphic encryption implies IND-CCA secure cryp-
tosystems.

Our main contributions are a step towards resolving this long-standing open
question.

3.1 Constructing Lossy Trapdoor Functions

As in Section 22 throughout the following section, let (G, E, D) be a homo-
morphic encryption with plaintext group X, and randomness space R. We write
the group operation on X additively and the group operation on ciphertexts
multiplicatively.

We begin by attempting to generalize the construction of lossy trapdoor func-
tions from the Damgérd-Jurik cryptosystem given by [BFORO0S|, [RS08] and
[FGK™10].

— Sampling Injective Functions: Siqt(1*,1), runs (pk,sk) < G(1*), and
chooses 7 < R, and sets e = E(pk, 1, 7). The function index s = (pk, e), and the
trapdoor t = sk.

— Sampling Lossy Functions: Syqa;(1%,0), runs (pk, sk) < G(1*), and chooses
r < R, and sets e = E(pk, 0, r). The function index s = (pk, e), and the trapdoor
t=1.

— Evaluation: Given s = e and an input a € {0,1,...,B — 1},

Etdf(s, a) = ea

— Inversion: Given t = sk, and a value ¢, set a = D(sk,c).

Fig. 1. Generalizing the DCR-based LTDFs

Lemma 1. Let (G, E, D) be a homomorphic encryption such that the plaintext
group X is cyclic, with |X| > B > |R|, for some publicly known bound B € Z,
then the construction given in Figure[dl is a family of lossy trapdoor functions.

Proof. Note that the homomorphic property of the cryptosystem ensures that
the product of two ciphertexts can be computed efficiently, so e® can be computed
efficiently using the square-and-multiply algorithm. Correctness of inversion fol-
lows immediately from the correctness of decryption. The indistinguishability of
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modes follows immediately from the IND-CPA security of (G, E, D). It remains
only to consider the lossiness of the lossy mode.

The output of the function in lossy mode is Fiat(s,a) = e®, where e =
E(pk,0,7), thus Fiiqs(s, a) is a valid encryption of 0, i.e. Fitae(s,a) € E(pk,0, R).
Since the size of |E(pk, 0, R)| < |R|, and there are B choices for a, with B > |R|,
the function is lossy. It is clear as well that as the ratio of B to |R| grows, the
functions become more lossy. If the size of X is efficiently computable, then it is
natural to take B = |X]|.

Lemma [T has an immediate corollary, that if we assume instead that the cipher-
text space is cyclic, we obtain the same result.

Corollary 1. If (G, E,D) is a homomorphic encryption such that the group
E(pk,X,R) is cyclic with |X| > |R)|, then the construction in Lemma [ is a
family of lossy trapdoor functions.

Proof. The decryption algorithm provides an isomorphism between E(pk, X, R)/
E(pk,0,R) and X, and since the quotient group of a cyclic group is cyclic, we
conclude that X must be cyclic, and the result follows from Lemma [l

The construction outline in Figure[Illeaves much to be desired, the three primary
drawbacks are:

1. This construction requires a known public bound B, separating the size of
the plaintext and randomness spaces. This condition seems extremely mild,
however, since the definition of IND-CPA security requires the plaintext
space be efficiently samplable, and the group is cyclic.

2. The requirement that the messages be longer than the randomness in Lemma
[ is rather strong. In fact, the Damgard-Jurik cryptosystem is the only ho-
momorphic cryptosystem known to have this propertyld In the next section,
we show how to remove this restriction on the size of the plaintext space.

3. Decryption involves a somewhat more subtle difficulty. A careful look at the

functions in Lemma [I] shows that the input is a € {0,...,B — 1}, yet the
trapdoor reveals 1-a € X. If a € Z can be recovered from 1-a € X (i.e. the
Discrete Log Problem is easy in XH), this will not be an issue.
In the case that the discrete-log problem is hard in the plaintext group
X, we can still apply Fitgr on random inputs, which may be enough for
some applications. To see this, notice that we can sample pairs x, Figae (s, x),
by sampling a < {0,1,...,B — 1}, setting x = 1-a € X, and setting
Firas(s, z) = e*. With this (slightly modified) definition, inversion becomes
efficient. We can no longer evaluate, Fiiqs(s,-) on given values of x, but we
can sample pairs x, Fitas(s, ), where x is chose (almost) uniformly. This is
not a serious restriction, however, since one-wayness only makes sense when
applying a function to a high min-entropy input.

3 Tt is trivial to construct non-homomorphic cryptosystems that have this property by
extending the randomness using a PRG.
4 As is the case with the Damgard-Jurik cryptosystem.
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Unfortunately, this is not enough to apply the constructions of IND-CCA
secure encryption from LTDFs given in [PWO08| [RS09, [MY09]. Although
these constructions require applying Fitq(s,-) on a random input, the de-
cryption algorithm requires inverting one function and then evaluating the
All-But-One function to the recovered input. This second evaluation cannot
be performed when the discrete-log problem is hard in the plaintext space X.

We can quantify the lossiness of the functions given in Figure[Ilbased on the ratio
of B to |R|. If |§| = w()), then we obtain strong lossy trapdoor functions, as
required for the constructions in [PWOS]. If we only have B/|R| > 1+1/poly(}\),
then we obtain slightly lossy trapdoor functions as defined by Mol and Yilek
IMYQ9]. The results of Mol and Yilek show that this is in fact sufficient for
constructing Correlated Product Secure Functions [RS09], and IND-CCA secure
cryptosystems

3.2 Constructing Diverse Group Systems

The generalization of the construction of the [BFORDS|, [RS08, [FGK™10] given
in Section B.J] leaves much to be desired. In this section, by applying a differ-
ent method, we are able to obtain a stronger resulf than in Section BIl under
a slightly different assumption. In particular, we show that any homomorphic
encryption with cyclic ciphertext space (e.g. Goldwasser-Micali, Paillier), im-
mediately implies Diverse Group Systems as defined by Cramer and Shoup in
[CS02]. This method does not suffer from many of the drawbacks of the previous
method.

Theorem 1. Let (G, E, D) be a homomorphic encryption with plaintext group X
and ciphertext group Y. If the group E(pk, X, R) is cyclic, then G = (H, Z, L, IT)
is a Diverse Group System. Let v = |E(pk, X, R)|.

— Z =E(pk,X,R) CY, is the group of all encryptions.

— H is the set of homomorphisms given by exponentiating in the group, i.e. for
ke{0,1,...,~}, and z € Z, Hy(z) = 2*. So |H| = |E(pk, X, R)| = | Z|.

— L = E(pk,0, R) is the group of all encryptions of 0.

II =7 =E({pk,X,R).

Proof. To show that G is diverse, we must show that for all z € Z \ L, there
exists a ¢ € H such that ¢(L) = (0), but ¢(z) # 0.

Let n = |L|, and v = |Z]. Since Z was assumed to be cyclic, and L is a
subgroup of Z, we know that L is cyclic and n = |L| divides |Z| = +. Now, it is
also a basic fact about cyclic groups that L is exactly the subgroup of elements
of Z whose order divides n, i.e. L ={z: 2z € Z,2" = 1}. For any z € Z \ L,

® Again, we reiterate, that to apply the results of [PW08| [RS09, MYQ9], the discrete-
log problem must be solvable in X.

5 We will construct a Diverse Group System which is known to imply LTDFs by
[HO12).
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Let d be the order of z, i.e. d is the smallest positive integer such that 2% = 1.
Since z ¢ L, we know that d doesn’t divide 7. Thus we may set k = n, (or any
multiple of 1 not divisible by d). In which case, we have Hy(z) = 27 # 0. But
Hy(¢) = £1" =0 for all £ € L. This shows that any cyclic group (with a proper
subgroup) gives rise to a Diverse Group System.

To prove security, however, we need to show that L and Z are indistinguish-
able. This follows easily, however, since L is the set of encryptions of 0, and Z
is the set of all encryptions, they are indistinguishable by the IND-CPA security
of (G, E, D).

Applying the results of [CS02], which show that Diverse Group Systems imply
universal hash proof systems, and universal hash proof systems imply IND-CCA
secure cryptosystems, we arrive at the following result.

Corollary 2. Homomorphic encryption with cyclic ciphertext space implies
IND-CCA secure encryption.

Applying the results of [HO12], which show that Diverse Group Systems imply
Lossy Trapdoor Functions, we have

Corollary 3. Homomorphic encryption with cyclic ciphertext space implies Lossy
Trapdoor Functions.

Applying the results of [BEORO§|, we have

Corollary 4. Homomorphic encryption with cyclic ciphertext space implies De-
terministic Encryption.

Corollary 5. If (G, E, D) is a homomorphic encryption with cyclic randomness
space, and there is an element xog € X such that the order of xg in the group X
is relatively prime to |R)|, then there is an IND-CCA secure cryptosystem.

Proof. We define a new cryptosystem (G’, E’, D'), with plaintext space X', and
randomness space R'. We set X' = (z9) C X, and R’ = R. We define G’ =
G, E'(pk,xz,r) = E(pk,x,r), for x € X', and D' = D. We claim that the
ciphertext space of (G', E’, D') is cyclic. To see this, notice first that the map
R — E(pk,0, R), given by r — E(pk,0,r) is a surjective homomorphism, thus
E(pk,0, R) is isomorphic to a quotient group of R. Since R is cyclic, all its
quotient groups are cyclic, so we see that E(pk, 0, R) is also cyclic, in addition
|E(pk, 0, R)| divides |R|. Since E(pk, 0, R) = E'(pk, 0, R’), we have |E’(pk, 0, R')|
divides |R|, and is thus relatively prime to the order of the cyclic group [{(zo)],
which has size equal to the order of z5. Thus the group (zg) x E'(pk,0, R') is
cyclic, but this group is isomorphic to E’(pk, X', R’), so we may apply Theorem
[ to construct an IND-CCA secure cryptosystem.

4 Conclusion

In this work, we examined the connection between homomorphic encryption and
chosen-ciphertext (IND-CCA) secure encryption. In particular, we showed that
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any homomorphic encryption with a large cyclic plaintext space implies Lossy
Trapdoor Functions, and when the discrete-log problem is easy in the plaintext
group, then this implies IND-CCA encryption.

More importantly, we showed that any homomorphic encryption with a cyclic
ciphertext space implies universal hash proof systems, and hence both Lossy
Trapdoor Functions and IND-CCA secure encryption.

Homomorphic encryption schemes arise naturally in many contexts, where
the security rests on a computational hardness assumption about groups. This
makes homomorphic encryption a natural candidate for creating more complex
cryptographic primitives.

Our constructions of IND-CCA secure cryptosystems from homomorphic en-
cryption over a cyclic space are efficient, and have the benefit of simple proofs
of security. Our results extend what is known to follow from homomorphic
encryption, and bring us one step closer to the long sought-after goal of a
generic construction of IND-CCA secure encryption from any homomorphic
cryptosystem.
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