Experimental Framework for Injecting Logic
Errors in a Virtual Machine to Profile
Applications for Soft Error Resilience

Nathan DeBardeleben®, Sean Blanchard!, Qiang Guan®-2,
Ziming Zhang!?, and Song Fu?

! Los Alamos National Laboratory, Ultrascale Systems Research Center
High Performance Computing Division, Los Alamos NM 87544, USA
{ndebard,seanb}@lanl.gov
2 University of North Texas, Dependable Computing Systems Lab
Department of Computer Science and Engineering, Denton TX 76203, USA
{QiangGuan,ZimingZhang}@my.unt.edu, Song.FuQunt.edu

Abstract. As the high performance computing (HPC) community con-
tinues to push for ever larger machines, reliability remains a serious ob-
stacle. Further, as feature size and voltages decrease, the rate of transient
soft errors is on the rise. HPC programmers of today have to deal with
these faults to a small degree and it is expected this will only be a larger
problem as systems continue to scale.

In this paper we present SEFI, the Soft Error Fault Injection frame-
work, a tool for profiling software for its susceptibility to soft errors.
In particular, we focus in this paper on logic soft error injection. Using
the open source virtual machine and processor emulator (QEMU), we
demonstrate modifying emulated machine instructions to introduce soft
errors. We conduct experiments by modifying the virtual machine itself
in a way that does not require intimate knowledge of the tested applica-
tion. With this technique, we show that we are able to inject simulated
soft errors in the logic operations of a target application without affecting
other applications or the operating system sharing the VM. We present
some initial results and discuss where we think this work will be useful
in next generation hardware/software co-design.

Keywords: soft errors, resilience, fault tolerance, reliability, fault injec-
tion, virtual machines, high performance computing, supercomputing.

1 Introduction

Reliability is recognized as one of the core challenge areas for extreme-scale
supercomputers by a number of studies including the Defense Advanced Re-
search Projects Agency (DARPA)[S] and the International Exascale Software
Project[7]. Additionally, the US Department of Energy’s Office of Advanced Sci-
entific Computing Research (ASCR) has held several workshops that produced
reports on this subject. Furthermore, several studies specifically on reliability

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part II, LNCS 7156, pp. 282 2012.
© Springer-Verlag Berlin Heidelberg 2012

Experimental Framework for Injecting Logic Errors in a Virtual Machine 283

have found that major undertakings would be required to create resilient next-
generation systems[6l5]. High performance computing (HPC) systems of today
already struggle with reliability and these concerns are expected to only amplify
as systems are pushed to even larger scales.

The high performance computing (HPC) field of resilience aims to find ways to
run applications on often unreliable hardware with emphasis on making timely
progress toward a correct solution. The goal of resilience is to move beyond
merely tolerating faults but coexisting with failure to a point where failure is
recognized as the norm and not the exception.

One of the more daunting areas of resilience research is soft errors - those errors
which are generally transient in nature and difficult or impossible to reproduce.
Often these errors cause incorrect data values to be present in the system. While
soft errors are generally rare, there is evidence to believe that the rate is increas-
ing as feature sizes and voltages decrease[I0]. Not only will these increasingly
common errors negatively impact performance while hardware corrects some of
them, we believe these errors will occur not only in the more familiar memory
but in logic circuits where traditional techniques will neither detect or be able
to correct the error. This leads us to believe that next generation systems will
either have to be hardened to get around these errors or application program-
mers will have to learn to design for systems that give incorrect answers with
some noticeable probability.

In this work we present SEFI, the Soft Error Fault Injection framework, a tool
aimed at quantifying just how resilient an application is to soft errors. While our
goal is to look at both corrupted data in memory and corrupted logic circuits, we
start our research by examining the latter. We choose to focus on logic errors as
faults in memory have been studied in the past and, to a large extent, hardware
to detect and correct such errors exists. Our software tools inject soft errors in the
logic operations at known locations in an application which allows us to observe
how the application responds to faulty behavior of the simulated hardware.

The rest of this paper is organized as follows: Section [presents an overview
of the logic soft error injection framework and then Section [3] outlines an initial
experiment and discusses the results. In Section Fl we discuss the importance of
this work and its intended uses. Section [compares our approach with other
work in the field. Finally, Section [0] discusses the future work and we conclude
with our findings in Section [

2 Overview of Methodology

SEFT’s logic soft error injection operational flow is roughly depicted in Figure [l
First, the guest environment is booted and the application to inject faults into
is started. Next, we probe the guest operating system for information related to
the code region of the target application and notify the VM which code regions
to watch. Then the application is released, allowing it to run. The VM observes
the instructions occurring on the machine and augments ones of interest. A more
detailed explaination of these techniques follows.

284 N. DeBardeleben et al.
STARTUP PROBE FAULT INJECTION
Boot guest OS in VM Extract application Opcodes changed to
Attach debugger memory region give anomalous results

Fig. 1. Overview of SEFI

2.1 Startup

Initial startup of SEFI begins by simply booting a debug enabled Linux kernel
within a standard QEMU virtual machine. QEMU allows us to start a gdbserver
within the QEMU monitor such that we can attach to the running Linux kernel
with an external gdb instance. This allows us to set breakpoints and extract
kernel data structures from outside the guest operating system as well as from
outside QEMU itself. This is a fairly standard technique used by many Linux
kernel developers. Figure 2l depicts the startup phase.

Qemu monitor
gdbserver started

Linux

- f External gdb
| gdb started »| attaches to gdbserver

Fig. 2. SEFI’s Startup Phase

[probe]

2.2 Probe

Once the guest Linux operating system is fully booted and sitting idle we use
the attached external gdb to set a breakpoint at the end of the sys exec call
tree but before an application is sent to a cpu to be executed. We are currently
focused on only ELF binaries and have therefore set our breakpoint at the end
of the load elf binary routine. This is trivial to generalize to other binary
formats in future work. With the breakpoint set we are free to issue a continue
via gdb to allow the Linux kernel to operate. The application of interest can
now be started and will almost immediately hit our set breakpoint and bring
the kernel back to a stopped state. By this point in the exec procedure the
kernel has already loaded an application’s text section into physical memory
in a memory region denoted by the start code and end code elements of the
task’s mm struct memory structure. We can now extract the location in memory
assigned to our application by the kernel by walking the task list in the kernel.
Starting with the symbol init task, we can find the application of interest either
by comparing a binary name to the task struct’s comm field or by searching for
a known pid which is also contained in the task struct. The physical addresses
within the VM of the application’s text region can now be fed into our fault

Experimental Framework for Injecting Logic Errors in a Virtual Machine 285

injection code in the modified QEMU virtual machine. Currently this is done
by hand but we have plans to automate this discovery and transfer using scripts
and hypervisor calls.

Figure Bl depicts the probe phase of SEFI.

Qemu

Linux
start app
V'
gdb gdb
[setup] set break at end of task—>mm-—>start_code [fault injection]
load_elf_binary task—>mm-—>end_code

Fig. 3. SEFI’s Probe Phase

2.3 Fault Injection

In figure M we see that once QEMU has the code segment range of the target
application, the application is resumed. Next, when any opcode is called in the
guest hardware that we are interested in injecting faults into, QEMU checks the
current instruction pointer register (EIP). If that instruction pointer address is
within the range of the target application (obtained during the probe phase),
QEMU now is aware that the application we are targeting is running this par-
ticular instruction. At this point we are able to inject any number of faults and
have confidence that we are affecting only the desired application.

Qemu Qemu Qemu
mod opcodes but only 5 A
for application ops Linux Linux
- application runs application completes
with mod opcodes behavior analyzed
Y

4

gdb

remove breakpoint
continue

[probe]

Fig. 4. SEFT’s Fault Injection Phase

The opcode fault injection code has several capabilities. Firstly, it can simply
flip a bit in the inputs of the operation. Flipping a bit in the input simulates
a soft error in the input registers used for this operation. Secondly, it can flip
a bit in the output of the operation. This simulates either a soft error in the
actual operation of the logic unit (such as a faulty multiplier) or soft error in

286 N. DeBardeleben et al.

the register after the data value is stored. Currently the bit flipping is random
but can be seeded to produce errors in a specified bit-range. Thirdly, opcode
fault injection can perform complicated changes to the output of operations by
flipping multiple bits in a pattern consistent with an error in part but not all of
an opcodes physical circuitry. For example, consider the difference in the output
of adding two floating point numbers of differing exponents if the a transient
error occurs for one of the numbers while setting up the significant digits so that
they can be added. By carefully considering the elements of such an operation
we can alter the output of such an operation to reflect all the different possible
incorrect outputs that might occur.

The fault injector also has the ability to let some calls to the opcode go
unmodified. It is possible to cause the faults to occur after a certain number of
calls or with some probability. In this way the fault can occur every time which
closely emulates permanently damaged hardware or can be used to emulate
transient soft errors by causing a single call to be faulty.

3 Experiments

To demonstrate SEFI’s capability to inject errors in specific instructions we
provide two simple experiments. For each experiment we modified the translation
instructions inside of QEMU for each instruction of interest. Once the instruction
was called, the modified QEMU would check the current instruction pointer
(EIP) to see if the address was within the range of the target application. If
so, then a fault could be injected. We performed two experiments in this way,
injecting faults into the floating point multiply and floating point add operations.

3.1 Floating Point Multiply Fault Injection

For this experiment we instrumented the floating point multiply operation,
“mulsd”, in QEMU. We created a toy application which iteratively performs
Equation [11 40 times. The variable y is initialized to 1.0.

y=1y%*0.9 (1)

Then, at iteration 10 we injected a single fault into the multiplication operation
by flipping a random bit in the output. Figure [plots the results of this experi-
ment. The large, solid line, represents the output as it is without any faults. The
other five lines represent separate executions of the application with different
random faults injected. Each fault introduces a numerical error in the results
which continues through the lifetime of the program.

In Figure [6l we focus on two areas of interest from the plot in Figure Bl In
Figure the plot is zoomed in to focus on the point where the five faults are
injected so as to make it easier to see. Figure is focused on the final results
of the application. In this figure it becomes clear that each fault caused an error
to manifest in the application through to the final results.

Experimental Framework for Injecting Logic Errors in a Virtual Machine 287

y *= 0.9 (initially y = 1) - with and without injected faults

1
I I I I I I No faults ' —
09 | Run 1 with fault injected at iteration 10 i
' \\ Run 2 with fault injected at iteration 10
08 L Run 3 with fault injected at iteration 10
: R Run 4 with fault injected at iteration 10
07 L Run 5 with fault injected at iteration 10 = ==1==
0.6
05
04 |
03
02
0.1
0
0

Iterations

Fig.5. The multiplication experiment uses the floating point multiply instruction
where a variable initially is set to 1.0 and is repeatedly multiplied by 0.9. For five
different experiments a random bit was flipped in the output of the multiply at itera-
tion 10, simulating a soft error in the logic unit or output register.

0.44 T T 0.035

0.025 g

L L L L
10 11 12 35 36 37 38 39 40

(a) Multiply Experiment - area of interest: (b) Multiply Experiment - area of interest:
injected faults final results

Fig. 6. Experiment #1 with the focus on the injection point (a) and the effects on the
final solution (b). In (a) it can be seen that each of the five separately injected faults
all cause the value of y to change - once radically, the other times slightly. In (b) it can
be seen that the final output of the algorithm differs due to these injected faults.

288 N. DeBardeleben et al.

Table 1. Results of Addition Tests

A B ¢ D E F G H
30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
31.0 31.125 32.0 481.0 23.0 8.5 128849018881.0 1966081.0
32.0 32.125 33.0 482.0 24.0 9.5 128849018882.0 1966082.0

3.2 Floating Point Addition Fault Injection

To demonstrate SEFI’s capability to inject faults into different instructions, we
provide another simple experiment which uses the floating point add operation,
“addsd”. This experiment simply added the value 1.0 repeatedly, as in Equa-
tion 2l At iteration 31 we had SEFI inject an error into the resulting addsd
instruction. As can be seen from Table [I the error is varied and sometimes
appears in the exponent and other times in the mantissa of the binary repre-
sentation. In the table we focus only on the iterations of importance for brevity.
Column A represents the correct answer while the remaining columns all contain
an error on the second row (31%¢ iteration).

y=y+10 (2)

These experiments were crafted to demonstrate the capability of SEFI to inject
errors into specific instructions and clearly do not represent interesting applica-
tions. The next steps will be to inject faults into benchmark applications (such as
BLAS and LAPACK) to study the soft error vulnerability of those applications.

4 Intended Uses

It is our intention to use SEFI to study the susceptibility of applications to
soft errors (logic initially, and later followed by memory). We expect to be able
to produce reports on the vulnerability of applications at a fine grain level -
at least at the functional level and perhaps at the instruction level. We have
demonstrated that we can inject logic faults at specific assembly instructions but
translating those instructions back to original higher level language instructions
will likely prove complex.

Hardware designers expend a great deal of resources to protect soft errors
from propagating into the software stack. While current wisdom is that these
protections are necessary, there are a variety of applications that could survive
with a great deal less protection and would willingly trade resilience for increases
in performance or decreases in power or cost. We believe SEFT begins to present
a way to experiment with and quantify the level of resilience of an application
to soft errors and might be useful in co-design of future systems.

5 Related Work

The work presented in this paper builds on years of open source research on
QEMU[I], a processor emulator and virtual machine. Bronevetsky, et. al[3/42]

Experimental Framework for Injecting Logic Errors in a Virtual Machine 289

is probably the closest related work to SEFT in the high performance computing
field. In [2] they create a fault injection tool for MPI that simulates MPI faults
that are often seen on HPC systems, such as stalls and dropped messages. In
[3/4] they performed random bit flips of application memories and observed how
the application responded.

It is important to understand the difference between our approach and that
presented in the memory bit flipping work of Bronevetsky. Bronevetsky’s ap-
proach most likely closely simulates a bit flip caused by a transient soft error in
that the bit flip happens randomly in memory. While they target these bit flips
at a target application, there appears to be no correlation to whether the mem-
ory region will be used by the application. As stated, this closely approximates
a real transient soft error. Our work, on the other hand, directly targets specific
instructions and forces corruption to appear at those lines. This approach is
directly targeted more at hardening a code from soft errors. It is our intention
to add functionality similar to Bronevetsky’s approach as a plug-in to SEFT in
future work.

Naughton, et. al, in [9] developed a fault injection framework that either
uses ptrace or the Linux kernel’s built-in fault injection framework. The kernel
approach allows injection of three different types of errors: slab errors, page
allocation errors, and disk I/O errors. While both approaches in this work are
similar to SEFI, our technique allows us to probe a wider range of possible faults.

TEMUIJLI] is a tool built upon QEMU like SEFI. The TEMU BitBlaze infras-
tructure is used to analyze applications for “taint” in a security context. This
tool does binary analysis using the tracecap software. We have not yet had the
time to determine of this suite of tools is usable for our interests but it does
appear promising that we can build upon TEMU.

NFTAPE[12] is a tool which is similar to SEFI in that it provides a fault
injection framework for conducting experiments on a variety of types of faults.
NFTAPE is a commercial tool, however, and therefore we have not had the
luxury of experimenting with it to this point.

6 Future Work

In order to validate our simulation of soft errors in logic we plan to test the same
applications we use in the VM on actual hardware subjected to high neutron
fluxes. Neutrons are well known to be the component of cosmic ray showers
that causes the greatest damage to computer circuits[13]. Neutrons are known
to cause both transient errors due to charge deposition and hard failures due to
permanent damage. We will use the neutron beam at the Los Alamos Neutron
Science Center (LANSCE) to approximate the cosmic ray induced events in a
logic circuit over the lifetime of a piece of computational hardware. Previous
work using the LANSCE beam has shown its usefulness in inducing silent data
corruption (SDC) in applications of interest.

Future versions of SEFI will include plugins to simulate more sophisticated
types of faults. Logic errors are unlikely to consist of simple random bit flips.

290 N. DeBardeleben et al.

We believe the combination of SEFI testing and neutron beam validation will
allow us to build realistic models of specific types of logic failures. We also plan
on extending SEFI to model multi-bit memory errors which are undetectable by
current memory correction techniques.

7 Conclusion

In this paper we have demonstrated the capability to inject simulated soft errors
into a virtual machine’s instruction emulation facilities. More importantly, we
have demonstrated how to target these errors so as to be able to reasonably
conduct experiments on the soft error vulnerability of a target application. This
type of experimentation is usually complicated because faults that are introduced
cause errors in other portions of the system, especially the operating system, and
often results in outright crashes. This makes getting meaningful data about the
injected faults difficult. The approach presented in this paper gets around these
limitations and provides quite a bit of control.

Acknowledgements. Ultrascale Systems Research Center (USRC) is a collab-
oration between Los Alamos National Laboratory and the New Mexico Con-
sortium(NMC). NMC provides the enviroment to foster collaborative research
between LANL, universities and industry allowing long-term interactions in Los
Alamos for professors, students and industry visitors.

This work was supported in part by the U.S. Department of Energys National
Nuclear Security Administration under contract DE-AC52-06NA25396 with Los
Alamos National Security, LLC.

References

1. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005, p. 41.
USENIX Association, Berkeley (2005)

2. Bronevetsky, G., Laguna, 1., Bagchi, S., de Supinski, B., Schulz, M., Anh, D.: Statis-
tical fault detection for parallel applications with automaded. In: IEEE Workshop
on Silicon Errors in Logic - System Effects, SELSE (March 2010)

3. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra
methods. In: Workshop on Silicon Errors in Logic - System Effects, SELSE (April
2007)

4. Bronevetsky, G., de Supinski, B.R., Schulz, M.: A foundation for the accurate
prediction of the soft error vulnerability of scientic applications. In: IEEE Workshop
on Silicon Errors in Logic - System Effects (March 2009)

5. Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B., Snir, M.: Toward exascale
resilience. International Journal of High Performance Computing Applications 23,
374-388 (2009)

6. DeBardeleben, N., Laros, J., Daly, J., Scott, S., Engelmann, C., Harrod, B.: High-
end computing resilience: Analysis of issues facing the hec community and path-
forward for research and development (December 2009),
http://institute.lanl.gov/resilience/docs/HECResilience.pdf

http://institute.lanl.gov/resilience/docs/HECResilience.pdf

10.

11.

12.

13.

Experimental Framework for Injecting Logic Errors in a Virtual Machine 291

Dongarra, J., et al.: The international exascale software project roadmap. Interna-
tional Journal of High Performance Computing Applications 25, 3-60 (2011)
Kogge, P., et al.: Exascale computing study: Technology challenges in achieving
exascale systems (2008)

Naughton, T., Bland, W., Vallee, G., Engelmann, C., Scott, S.L.: Fault injection
framework for system resilience evaluation: fake faults for finding future failures. In:
Proceedings of the 2009 Workshop on Resiliency in High Performance, Resilience
2009, pp. 23-28. ACM, New York (2009)

Quinn, H., Graham, P.: Terrestrial-based radiation upsets: A cautionary tale. In:
Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pp. 193-202. IEEE Computer Society, Washington, DC
(2005)

Song, D., Brumley, D., Yin, H., Caballero, J., Jager, 1., Kang, M.G., Liang, Z., New-
some, J., Poonsankam, P., Saxena, P.: A high-level overview covering vine, temu,
and rudder. In: Proceedings of the 4th International Conference on Information
Systems Security (December 2008)

Stott, D., Floering, B., Burke, D., Kalbarczpk, Z., Iyer, R.: Nftape: a framework
for assessing dependability in distributed systems with lightweight fault injectors.
In: Proceedings of IEEE International Computer Performance and Dependability
Symposium, IPDS 2000, pp. 91-100 (2000)

Ziegler, J.F., Lanford, W.A.: The effect of sea level cosmic rays on electric devices.
Journal Applied Physics 528 (1981)

	Experimental Framework for Injecting Logic Errors in a Virtual Machine to Profile Applications for Soft Error Resilience

	Introduction
	Overview of Methodology
	Startup
	Probe
	Fault Injection

	Experiments
	Floating Point Multiply Fault Injection
	Floating Point Addition Fault Injection

	Intended Uses
	Related Work
	Future Work
	Conclusion
	References

