
User Centric Service Level Management

in mOSAIC Applications�

Massimiliano Rak, Rocco Aversa,
Salvatore Venticinque, and Beniamino Di Martino

Dipartimento di Ingegneria dell’Informazione, Seconda Università di Napoli
massimiliano.rak@unina2.it

Abstract. Service Level Agreements (SLAs) aims at offering a simple
and clear way to build up an agreement between the final users and the
service provider in order to establish what is effectively granted by the
cloud providers. In this paper we will show the SLA-related activities
in mOSAIC, an european funded project that aims at exploiting a new
programming model, which fully acquires the flexibility and dynamicity
of the cloud environment, in order to build up a dedicated solution for
SLA management. The key idea of SLA management in mOSAIC is that
it is impossible to offer a single, static general purpose solution for SLA
management of any kind of applications, but it is possible to offer a set of
micro-functionalities that can be easily integrated among them in order
to build up a dedicated solution for the application developer problem.
Due to the mOSAIC API approach (which enable easy interoperability
among moSAIC components) it will be possible to build up applications
enriching them with user-oriented SLA management, from the very early
development stages.

1 Introduction

Cloud Computing is the emerging paradigm in distributed environments. In
cloud solutions everything from hardware to application layers are delegated to
the network. Following this main idea many different technologies and solutions
are born and assumed the cloud hat.

Cloud Computing technologies are moving along two orthogonal directions:
on one side they aim at transforming existing datacenters into Cloud Providers,
which offer everything in the form of a service (as a service paradigm); on the
other side they aim at building applications and solutions that, as much as
possible, fit with user’s needing.

As an example, one of the more important effects of the Cloud Computing
paradigm is the extreme flexibility in application and system re-configurability: it
is incredibly simple to acquire new resources and to cut away them if they are not
required. Due to this flexibility and capability of self-adaptation to the request,
cloud applications become User Centric. It means that the role of the final user
is central. The quality metrics (availability, performance, security) should aim at

� This research is partially supported by FP7-ICT-2009-5-256910 (mOSAIC).

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part II, LNCS 7156, pp. 106–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

User Centric Service Level Management in mOSAIC Application 107

improving the quality perceived from users, while resource administration and
optimization assume the role of acquiring the right amount of resources, which
are compliant with the needing of the final users, instead of optimizing the usage
of already acquired ones.

Service Level Agreements (SLAs) aim at offering a simple and clear way to
build up an agreement between the final users and the service provider in order
to establish what is effectively granted. A Service Level Agreement (SLA) is
an agreement between a Service Provider and a Customer, that describes the
Service, documents Service Level Targets, and specifies the responsibilities of
the Provider and the Customer.

From User point of view a Service Level Agreement is a contract that grants
him about what he will effectively obtain from the service. From Application
Developer point of view, SLAs are a way to have a clear and formal definition
of the requirements that the application must respect.

But, in such a context, how it is possible for an application developer to take
into account the quality perceived by EACH final user of his application? This
problem is solved by the adoption of SLA templates (i.e. predefined agreements
offered to final users). This means that developers must identify at design time
the constraints to be fulfilled, the performance index to be monitored and the
procedure to be activated in case of risky situations (i.e. when something happens
that may lead to disrespect the agreement).

At the state of art many research efforts have been spent in order to de-
fine standards for SLA description (WS-Agreement [1], WSLA [6]) or operative
framework for SLA management (SLA@SOI[10,2], WSAG4J[11]). As it is shown
more in detail in the related work section 2, it is fully recognized the needing
of SLA management in the cloud context, but there are, at the state of art, no
clear proposals about an innovative approach to SLA management that takes
into account the User Centric view, which is typical of the cloud environment.

In this context the mOSAIC project [4,7] proposes a new, enhanced program-
ming paradigm that is able to exploit the cloud computing features, building
applications which are able to adapt themselves as much as possible to the avail-
able resources and to acquire new ones when needed (more details in section
3). mOSAIC offers together an API for development of cloud applications which
are flexible, scalable, fault tolerant, provider-independent and a framework for
enabling their execution and access to different technologies.

The key idea of SLA management in mOSAIC is that it is impossible to offer
a single, static, general purpose solution for SLA management of any kind of
applications, but it is possible to offer a set of micro-functionalities that can be
easily composed in order to build up a dedicated solution for the application
developer problem. In other words, thanks to mOSAIC API approach (which
enables easy interoperability between moSAIC components) it will be possible
to build up applications with user-oriented SLA management features, from the
very early development stages.

The reminder of this paper is organized as follows: next section (section 2)
summarizes the state of art of SLA management solutions, while the following

108 M. Rak et al.

one briefly summarizes the main concepts related to mOSAIC API and how it
is possible to develop applications using mOSAIC. Section 4 proposes the vision
of the SLA problem in the context of cloud applications, which is detailed in
the section dedicated to the architectural solution 5. A brief section dedicated
to examples (section 6) shows how the approach has been applied in simple case
studies. The paper ends with a section dedicated to the current status, future
work and conclusions.

2 Related Work

As anticipated in the introduction a lot of research work exists on the problem
of Service Level Management in cloud. The biggest part of this work focuses on
building solutions which make possible to a cloud provider to offer (using the
SLA) its services with a granted quality. In this direction the most interesting
results come from SLA@SOI [10,2]. It is an European project that aims (together
with other relevant goals) at offering an open source based SLA management
framework. SLA@SOI results are extremely interesting and offer a clear start-
ing basis for the SLA management in complex architectures. The main target
of the project goes in the direction of enriching the Cloud Provider offer: they
aims at developing a solution that can be integrated with Cloud technologies
(like Open Nebula) in order to offer Cloud Services (mainly Infrastructures and
image management services) trough an SLA-based approach. SLA@SOI offers
solutions to design SLAs together with the offered services and to generate and
manage them trough many different representations. The CONTRAIL project
[3] proposes a complex architecture for building cloud providers for both Infras-
tructures and Platform as a services solutions. In their proposal they assumed an
heavy role for the SLA management: each service request is enriched with a SLA,
and service evolution in the architecture is traced together with its own SLA.
They are reusing and applying many of the SLA@SOI technologies in order to
build up their solutions. Even in the OPTIMIS project [8], which aims at build-
ing a Platform as a service solution on the basis of federated clouds (i.e they
offer a complex dynamic system able to acquire virtual machines and storage
resources from many different providers and deploy over them enterprise solu-
tions), the role of SLA is very relevant. In Optimis, moreover, they have special
care in managing the dynamicity and elasticity of acquired resources. OPTIMIS
needing puts in evidence an additional aspect of the SLA management in cloud
environment: the autonomicity, the needing of building solutions which are able
to self-manage themselves. SLA and Autonomic approaches are strictly related
each other, but partially in conflict: how to grant an agreement for a given
specific service on resources that dynamically adapt their behavior due to the
dynamic workload changes (how many requests, which kind of requests, ...) in a
completely independent way? This topic is completely open and, at the best of
author’s knowledge there are no available solutions. mOSAIC Project assumes
that these two requirements are complementary and equally needed: the appli-
cation developer needs solutions able to self-adapt themselves and, at the same

User Centric Service Level Management in mOSAIC Application 109

time, to have a clear and full notion of the state of the system allowing him to
take decisions, which lead to offer the grants needed in SLA management.

3 mOSAIC API

In mOSAIC a Cloud Application is developed as a composition of inter-connected
building blocks. A Cloud ”Building Block” is any identifiable entity inside the
cloud environment. It can be the abstraction of a cloud service or of a software
component. It is controlled by user, configurable, exhibiting a well defined behav-
ior, implementing functionalities and exposing them to other application compo-
nents, and whose instances run in a cloud environment consuming cloud resources.

Simple examples of components are: a Java application runnable in a plat-
form as a service environment; or a virtual machine, configured with its own
operating system, its web server, its application server and a configured and
customized e-commerce application on it. Components can be developed fol-
lowing any programming language, paradigm or in-process API. An instance of
a cloud component is, in a cloud environment, what an instance of an object
represents in an object oriented application.

Communication between cloud components takes place through cloud re-
sources (like message queues – AMPQ, or Amazon SQS) or through non-cloud
resources (like socket-based applications).

Cloudlets are the way offered to developers by mOSAIC API to create compo-
nents. Cloudlet runs in a cloudlet container that is managed by the mOSAIC Soft-
ware platform. A Cloudlet can havemultiple instances, but it is impossible at run-
time to distinguish between two cloudlet instances. When a message is directed to
a cloudlet, it can be processed by anyone of the cloudlet instances. The number of
instances is under control of the cloudlet container and ismanaged in order to grant
scalability (respect to the cloudlet workload). Cloudlet instances are stateless.

Cloudlets use cloud resources trough connectors. Connectors are an abstrac-
tion of the access model of cloud resources (of any kind) and are technology in-
dependent. Connectors control the cloud resource trough technology-dependent
Drivers. As an example, a cloudlet is able to access to Key-Value store systems
trough a KVstore Connector, it uses an interoperability layer in order to control
a Riak, or a MemBase KV driver.

Therefore a Cloud Application is a collection of cloudlets and cloud compo-
nents interconnected trough communication resources.

Details about the mOSAIC programming model and about the Cloudlet con-
cept, whose detailed description is out of the scope of this paper can be found
in [4,5,7].

4 Vision and Approach

Consider a service developer who is using the mOSAIC project solution in order
to build up a new cloud application that offers complex services to its own users.

Providers offer simple SLA, just granting the availability of the resources
and (in some cases) the bandwidth and latency for the access network (see

110 M. Rak et al.

Parameters). The cloud application will be accessed by a web interface, whose
main functionalities are complex operations which may need some seconds to be
performed. The developer would like to offer to its user a SLA, in order to grant
average and maximum response time, together with a given availability. The SLA
problem for a Cloud Application can be now described in the following terms:
how can the developer ensure the user requirements in terms of SLA (parameters
like average and maximum response time, service availability, ...) using resources
which are not under its control and whose SLA grants different kind of service
properties (e.g. availability of the VM)?. What the mOSAIC Platform should
offer to developers in order to solve this problem?

The problem of Service Level Agreement in mOSAIC can be modeled by two
layers. At each layer there is a different agreement: (1)Agreement between final
users and Application (2) Agreement between Application and Cloud providers
The agreement between users and the application (point 1) means that the
application and the user shares an SLA. Inside the cloud application a negotiator
concludes the agreement that will be shared with the final user. Moreover, from
the developer’s point of view, we need tools able to predict the application
behavior, to monitor its evolution, to modify the application behavior and/or
the cloud resources acquired in order to: (a) accept/refuse the agreements, (b)
identify risky situations for stipulated agreements, (c) apply the actions needed
to grant a stipulated agreements.

About the cloud resources to be acquired (point 2), the developer has to search
and choose the Cloud Providers, negotiating with them (acting as a client) the
SLA and monitoring the promised service levels. Note that the application is
forced to search for a provider which allow to grant as much as possible the
ones offered to the user. Moreover, at the state of the art, no Cloud Provider
offers negotiable SLA, but they just offer a set of static SLAs. It is the mission
of a federation framework (like mOSAIC) to build up a SLA negotiation sys-
tem on the top of the existing ones. Agreement enforcement, instead, implies
a large set of different problems: monitoring the state of the resources in order
to identify risky situations, execution of recovery procedures in order to react
to dangerous states and, last but not least, agreement mapping or delegation.
Agreement mapping (or delegation), means definition of the SLA terms which
can be offered to final users on the basis of the SLA offered by the providers.
Agreement enforcement implies the capability of predicting the application be-
havior. This is strictly dependent on the application and can be performed only
from the service developer, using techniques and tools application dependent
(i.e. Petri Nets, simulation techniques or analytical models). From the mOSAIC
point of view the above presented problem can be managed as follows: the first
Agreement problem (user-application) should be solved at Software Platform
Level, i.e. including in the API a set of components which let the final applica-
tion to easily build up a negotiation system and using tools able to change the
kind or the quantity of acquired cloud resources. The second Agreement problem
(application-providers) is solved by the Cloud Agency.

User Centric Service Level Management in mOSAIC Application 111

5 General Overview of the SLA Architecture

The main assumptions in SLA management for mOSAIC applications can be
summarized as follows:

– microfunctionality approach: mOSAIC will offer a set of cloudlets and com-
ponents whose interface is defined in terms of exchanged messages. Appli-
cation developers have to simply use the default components, connect them
trough queues and develop the ones needed to build up his own custom
solution.

– User Centric Approach, which means that it should be possible for an appli-
cation developer to maintain information for each user, taking into account
his requirements and what the application promised to him.

– Support for autonomicity of the components. In cloud environment a lot of
efforts exists in development of applications, resources, services with elastic
features, i.e. able to change their behavior due to execution conditions.

The key idea of the microfunctionalities approach is to provide a set of compo-
nents, even for SLA management, to be composed together the functional ones
according to the application requirements and to its logic. This choice is manda-
tory because there is not only one solution that solves the SLA general problem
independently from the application.

mOSAIC global architecture is composed of: mOSAIC API, which includes
the SLA components, the framework, which uses a provisioning system (Cloud
Agency) and the tools needed to run the mOSAIC applications (cloudlet con-
tainers, application deployers, ..).

Negotiation of SLA with cloud providers on a federation basis is completely
solved by the Cloud Agency [9]. Here the Cloud Agency is used as a black box
that can book on user behalf the best set of cloud resources for his application,
after that the developer has defined requirements of desired resources. Cloud
Agency will be able to offer negotiable SLAs on the top of many different com-
mercial cloud providers. The Cloud Agency solves the problem of Agreement
between applications and Cloud Providers, offering the Negotiator, which im-
plements the SLA negotiation towards a large set of different CPs and, once the
SLA is approved, delivers the resources to the application.

SLA User Negotiation. This module contains all the cloudlets and compo-
nents which enable interactions between user and the application in terms
of SLA negotiation.

SLA Monitoring/Warning System. This module contains all the cloudlets
and components needed to detect the warning conditions and generates
alerts about the difficulty to fulfill the agreements. It should address both
resource and application monitoring. It is connected with the Cloud Agency.

SLA Autonomic System. This module includes all the cloudlets and com-
ponents needed to manage the elasticity of the application, and modules
that are in charge of making decisions in order to grant the respect of the
acquired needed to fulfill the agreements.

112 M. Rak et al.

Fig. 1. mOSAIC SLA Module Organization

6 An Example of mOSAIC Approach

In the following we aim at showing in practice how the approach works on a
simple example, derived from the mOSAIC Case studies. The mOSAIC Service
Developer has an application developed on the top of a job submission system
and aims at developing a cloud application, which offers SLAs and controls the
job submission system, varying parameters like the number of virtual machines
running in the cloud. User’s behaviour can be easily described: each user has a
job description that is filled in a User Request file, the user invokes the cloud
application offering the file as a parameter. On the Service Provider portal the
user is able to access the state and available results of the application execution.

The mosaic developer aims at building an application, which acquires virtual
clusters from commercial cloud providers, configured in order to be able to exe-
cute the requested jobs. Moreover the developer will like to offer the same service
at different quality levels (varying grants like exclusive use of machine or the maxi-
mum cpu consumption allowed), expressed trough SLAs. The developer needs the
ability to monitor the SLA and to know what is granted to each different user.

Adopting an SLA based approach, the user’s behaviour changes as follows:
(a) User subscribes to the application signing an Agreement (SLA) (Agreement
use case) (b) User submits his job request to the application (Submit use case)
(c) User queries the portal about the status of his requests (Check).

In order to manage the SLAs, the application has the following duties:

– maintains the list of all the agreements signed;
– maintains the list of all the requests done;
– acquires and maintain resources from cloud provider in order to execute the

requests of the users;
– monitors the SLA fullfillment;
– activates procedures in risky situations.

User Centric Service Level Management in mOSAIC Application 113

The complexity of the application depends on the grants offered by the SLA
and on the kind of target application running on the top of the job submission
system (as an example: is it easy to predict its response time?). The complexity
due to the application behaviour (its predictability, the action to take in order
to grant application dependent parameters, ..) cannot be defined in general. On
the other side the management of the SLA toward the user (negotiation), the
monitoring of resource status, the management of the SLA storage are common
to all the applications. In the following we will focus on the components offered
in mOSAIC for such requirements.

As a first step we design the SLA that the developer aims at offering to
the users, in order to simplify the approach we model it just by two simple
parameters: the maximum amount of Credits the final user wants to pay and
the maximum number of requests the user is allowed to submit. Moreover the
application assures that the services will be offered on dedicated resources (they
will not sell the same resources to two users). This agreement is represented as
a WS-Agreement template, some pieces of them are described in listing 1.1

Listing 1.1. Example of User SLA request in WS-Agreement

[..]

<wsag:VariableSet >

<wsag:Variable wsag:Name ="UserRequests " wsag:Metric ="

xs:integer ">

<wsag:Location >

$this/wsag:Terms /wsag:All /

wsag:ServiceDescriptionTerm

[@wsag:Name = ’Term1’]/ mosaic:JobSubmission /

MaxRequests

</wsag:Location >

</wsag:Variable >

<wsag:Variable wsag:Name ="UserCredit " wsag:Metric ="

xs:integer ">

[..]

<wsag:GuaranteeTerm wsag:Name ="MaxCredit ">

<wsag:ServiceLevelObjective>

<wsag:KPITarget >

<wsag:KPIName >MaxCreditLevel </wsag:KPIName >

<wsag:CustomServiceLevel>UserCredit GT 0</

wsag:CustomServiceLevel>

</wsag:KPITarget >

</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm >

<wsag:GuaranteeTerm wsag:Name ="MaxRequests ">

[..]

Note that the monitoring of the SLA can be done independently from the state
of the acquired resources, but just by tracing the requests. This means that we
will not use the autonomic and monitoring modules of the SLA architecture.

114 M. Rak et al.

Once the SLA has been defined, we show briefly how to design the application,
whose behaviour includes the SLA negotiation and agreement storing, once it
has been signed. For each user’s request the application evaluates the acquired
resources, the available credit, eventually starts new resources and then submits
the job to the acquired VC.

Following the microfunctionalities approach the application can be designed
as in picture 2. The mOSAIC API offers a simple SLAgw component, which im-
plements the WS-Agreement protocol (toward the final user) and sends messages
on predefined queues in order to update the application. As a consequence the
programmer has to develop few cloudlets: an Agreement Policy Cloudlet,
which has the role to accept or not an SLA, a Request Cloudlet, which has
the role of fowarding the user requests to the job suibmission system, and two
cludlets,Resource Policy Cloudlet and Guarantee Policy Cloudlet, which
have respectively the role of tracing the acquired resources and generate warning
for risky conditions. Cloudlets cooperate only trough message exchange, coor-
dinating their actions. As an example, Agreement Policy Cloudlet receives the
messages from SLAgw each time a new SLA requests takes place. Moreover it
sends messages to the SLAgw in order to update the agreement state and to
query about the status of the Agreements. Messages data are represented in
JSON (that helps when data need to be stored in a KV store). As an example
the messages sent by the SLAgw are JSON representations of ServiceTypes and
GuaranteeTerms extracted from the WS-Agreement. Note that they can be cus-
tomized by the final user (WS-Agreement standard is open to this) and only final
user knows how to represent them. The Monitoring cloudlet regularly checks the
status of each user and eventually applies penalties (not reported in the WSAG
for simplicity and sake of space).

Fig. 2. Example of SLA-based application

7 Conclusions

As outlined in section 2, the management of Service level agreement is an hot
topic in cloud environment. In the mOSAIC project, which aims at designing

User Centric Service Level Management in mOSAIC Application 115

and developing a cloud provider independent API, we propose a set of features
that should help the application developer to integrate SLA management in his
aplications. In this paper we have outlined the vision and approach proposed in
mOSAIC, the organization of the framework dedicated to SLA management and
a simple example in which we have designed a SLA management system around
a simple cloud application.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification
(ws-agreement). In: Global Grid Forum. The Global Grid Forum, GGF (2004)

2. Comuzzi, M., Kotsokalis, C., Rathfelder, C., Theilmann, W., Winkler, U., Za-
cco, G.: A Framework for Multi-level SLA Management. In: Dan, A., Gittler,
F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 187–196.
Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-16132-2-18 ,
doi:10.1007/978-3-642-16132-2-18

3. CONTRAIL: Contrail: Open computing infrastructres for elastic computing
(2010), http://contrail-project.eu/

4. Leymann, F., Ivanov, I., van Sinderen, M., Science, B.S.S., Publications, T. (eds.):
Towards a cross platform Cloud API. Components for Cloud Federation (2011)

5. IEEE (ed.): Building an Interoperability API for Sky Computing (2011)
6. Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service level

agreements for web services. Journal of Network and Systems Management 11(1),
57–81 (2003)

7. mOSAIC: mosaic: Open source api and platform for multiple clouds (2010),
http://www.mosaic-cloud.eu

8. optimis: Optimis: the clouds silver lining (2010),
http://www.optimis-project.eu/

9. Venticinque, S., Aversa, R., Di Martino, B., Petcu, D.: Agent based cloud provi-
sioning and management, design and prototypal implementation. In: Leymann, F.,
et al. (eds.) 1st Int. Conf. Cloud Computing and Services Science (CLOSER 2011),
pp. 184–191. ScitePress (2011)

10. Theilmann, W., Yahyapour, R., Butler, J.: Multi-level SLA Management for
Service-Oriented Infrastructures. In: Mähönen, P., Pohl, K., Priol, T. (eds.) Ser-
viceWave 2008. LNCS, vol. 5377, pp. 324–335. Springer, Heidelberg (2008)

11. Waeldrich, O.: Wsag4j (2008),
https://packcs-e0.scai.fraunhofer.de/wsag4j/

http://dx.doi.org/10.1007/978-3-642-16132-2-18
http://contrail-project.eu/
http://www.mosaic-cloud.eu
http://www.optimis-project.eu/
https://packcs-e0.scai.fraunhofer.de/wsag4j/

	User Centric Service Level Management in mOSAIC Applications

	Introduction
	Related Work
	mOSAIC API
	Vision and Approach
	General Overview of the SLA Architecture
	An Example of mOSAIC Approach
	Conclusions
	References

