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Abstract. In this paper we present a new data partitioning algorithm
to improve the performance of parallel matrix multiplication of dense
square matrices on heterogeneous clusters. Existing algorithms either use
single speed performance models which are too simplistic or they do not
attempt to minimise the total volume of communication. The functional
performance model (FPM) is more realistic then single speed models be-
cause it integrates many important features of heterogeneous processors
such as the processor heterogeneity, the heterogeneity of memory struc-
ture, and the effects of paging. To load balance the computations the
new algorithm uses FPMs to compute the area of the rectangle that is
assigned to each processor. The total volume of communication is then
minimised by choosing a shape and ordering so that the sum of the half-
perimeters is minimised. Experimental results demonstrate that this new
algorithm can reduce the total execution time of parallel matrix multi-
plication in comparison to existing algorithms.

Keywords: Parallel matrix multiplication, functional performance
models, heterogeneous platforms, load balance, data partitioning.

1 Introduction

In this paper, we deal with the problem of partitioning matrices across a cluster of
heterogeneous processors in order to improve the performance of parallel matrix
multiplication. Computation time can be minimised by partitioning the work
so that all processors finish their work in the same time. Communication time
can be reduced by arranging the partitioning in such a way as to minimise the
total volume of communication. Communication time can also be reduced by
measuring the interconnect speed between all nodes and choosing a partitioning
based on this; however, this approach is beyond the scope of this paper.

Two-dimensional decomposition of matrices yields more efficient parallel al-
gorithms then one-dimensional decomposition. Hence, ScaLAPACK [2], a linear
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algebra library designed for homogeneous platforms, implements the two-
dimensional regular grid partitioning in the parallel outer-product routine. In
addition, this routine has a blocking factor, b, designed to take advantage of
processor cache. Each matrix block contains b× b elements, and each step of the
routine involves updating one block.

To balance the load on heterogeneous platforms, irregular partitioning schemes
are used. This approach is based on a concept of the computational unit, the
smallest amount of work that can be given to a processor. All units require the
exact same number of arithmetic calculations and have the same data storage
requirements. The computational load is balanced by distributing computational
units in proportion to the speeds of processors. In the case of two-dimensional
matrix multiplication, the computational unit is the update of a b × b block.
Each processor Pi is responsible for computing a rectangle of mi × ni blocks.

There are no existing algorithms to find the general solution of irregular par-
titioning. However, there are some algorithms that find sub-optimal solutions
under certain restrictions on the arrangements of rectangles. One such algorithm
(KL) [7] implements a column-based partitioning. Processors are arranged into
columns, and all processors in a column are allocated rectangles of the same
width. The widths of all the columns sum to the N dimension of the matrix.
The heights of rectangles in a column sum to the M dimension of the matrix.
This algorithm does not minimise the total volume of communication and uses
a basic partitioning algorithm based on single speed values.

In another column-based algorithm (BR) [1], the area of rectangles is defined
by the relative cycle-times of processors. The shape and ordering of rectangles is
calculated to minimise the sum of half-perimeters

∑p̂
i=1 mi + ni. Therefore, this

algorithm partitions a matrix in proportion to processor performance in such a
way as to reduce the total volume of communication.

Many traditional data partitioning algorithms use a similar approach for cal-
culating relative processor performance, where processor speed is represented
by a single positive number. These algorithms were designed for medium sized
problems run on general purpose single core workstations. It has since been
demonstrated in [8] that processor speed is not invariant with problem size.
Speed represented by a function of problem size has proven to be more real-
istic than the constant performance models because it integrates many impor-
tant features of heterogeneous processors such as the architectural heterogeneity,
the heterogeneity of memory structure, the effects of paging and so on. A bet-
ter partitioning can be achieved by using the algorithms based on functional
performance models (FPM).

The functional performance model proposed in [8] is one-dimensional and
represented by a line in 2D space. In two-dimensional matrix partitioning, the
problem size is composed of two parameters, m and n. Hence, the functional
performance model becomes a surface in 3D space, where the z axes represents
speed. In [11], these surfaces are used as more realistic performance models of
processors in order to improve the KL partitioning algorithm. It iteratively slices
2D plains through the 3D space at positions that represent the column width,
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reducing the problem to a series of one-dimensional partitioning. FPM-based
algorithm is used to find optimal partitioning within each column, while the
column widths are found using the basic partitioning algorithm based on single
values.

This algorithm does find a good partitioning but it has a number of disadvan-
tages: (i) communication cost is not taken into account and any prime number of
processors cannot be used efficiently; (ii) convergence is not guaranteed because
it uses the basic partitioning algorithm as demonstrated in [3]; (iii) building full
2D models is expensive.

In this paper, we present a modification of the (BR) algorithm. Instead of
simplistic performance models of processors, we use more accurate functional
performance models. We reduce the complexity of matrix partitioning from two
parameters down to one by using the area of rectangles d = m× n. This allows
us to build less expensive one-dimensional functional performance models and to
solve the partitioning problem in one step with help of the FPM-based algorithm.
The result of this partitioning is the areas of rectangles, which are then arranged
by the (BR) algorithm so that the total volume of communication is minimised.
Therefore, we achieve more optimal data partitioning, which is based on more
accurate performance model of processors, while also minimising communication
volume.

The rest of the paper is organised as follows. In Section 2, we review existing
algorithms for two-dimensional matrix partitioning designed for heterogeneous
platforms. In Section 3, we present the main contribution of this paper, namely,
the FPM-based modification of the BR algorithm. In Section 4, we present
the experimental results for parallel matrix multiplication on a heterogeneous
cluster.

2 Related Work

In this section, we summarize existing heterogeneous partitioning algorithms for
parallel matrix multiplication. The common features of these algorithms are the
following: (i) computational units are mapped to processors in proportion to their
speed; (ii) to reduce the space of possible solutions of this mapping, a column-
based restriction is applied. These algorithms determine the partitioning for a
heterogeneous implementation of the blocked ScaLAPACK outer product [2].

2.1 Column-Based Partitioning (KL)

Column-based partitioning of matrices was first introduced in [7]. This algorithm
distributes a unit square between p̂ heterogeneous processors arranged into q
columns, each of which is made of pj processors, j ∈ [1, ..., q]:

– Let the relative speed of the i-th processor from the j-th column, Pij , be sij
such that

∑q
j=1

∑pj

i=1 sij = 1.
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– Then, we first partition the unit square into c vertical rectangular slices such
that the width of the j-th slice is nj =

∑pj

i=1 sij . This partitioning makes
the area of each vertical slice proportional to the sum of the speeds of the
processors in the corresponding column.

– Second, each vertical slice is partitioned independently into rectangles in
proportion to the speed of the processors in the corresponding processor
column.

This algorithm has some drawbacks. Namely, it does not take communication
cost into account, and it relies on inaccurate, single-value performance model of
the processor speed. These issues are addressed by the algorithms in Section 2.2
and 2.3 respectively.

2.2 Minimising Total Communication Volume (BR)

The BR algorithm [1] minimises the total volume of communication as follows.
The objective is to tile the unit square into p̂ non-overlapping rectangles, where
each rectangle is assigned to a processor, in such a way as to achieve load bal-
ancing and minimise communication. Then, this unit square can be scaled to the
size of the matrix. The general solution to this problem is NP complete, how-
ever, by applying a restriction that all processors in the same column have the
same width, the authors of [1] were able to produce an algorithm of polynomial
complexity.

First, the relative speed of each processor is calculated from the relative cycle-

times ti: si =
1/ti∑
(1/ti)

. This speed gives the area di of the rectangle assigned to

the processor Pi. However, there are degrees of freedom with regards to the shape
and ordering of the rectangles.

In each iteration, the number of elements of matrix A that each processor
either sends or receives is directly proportional to its height mi and the number
of elements of matrix B sent or received is proportional to its width ni. The
total volume of data exchange is proportional to the sum of the half perimeters
H =

∑p−1
i=0 (mi+ni). Communication cost can be reduced by minimising H . This

is achieved by arranging the rectangles so that they are as square as possible.
The optimum number of columns c and the optimum number of processors in
each column rj is calculated by the algorithm. The processors are sorted in order
of increasing speed. A table is built to summarise the communication costs for
1 to p columns, i.e. from all processors in the same column to each processor in
an individual column. The algorithm then works backwards through the table,
selecting values for c and rj which minimise the half perimeter.

The main disadvantage of this algorithm is that cycle-times is not an accurate
measure of the processor performance. This may result in poor performance of
parallel matrix multiplication.

2.3 Functional Performance Model-Based Partitioning (FPM-KL)

The assumption that the absolute speed of the processor is independent of the
size of the computational task becomes less accurate in the following situations:
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– The partitioning of the problem results in some tasks either not fitting into
the main memory of the assigned processor and hence causing paging or fully
fitting into faster levels of its memory hierarchy.

– Some processing units involved in computations are not traditional general-
purpose processors (say, accelerators such as GPUs or specialized cores). In
this case, the relative speed of a traditional processor and a non-traditional
one may differ for two different sizes of the same computational task even if
both sizes fully fit into the main memory.

– Different processors use different codes to solve the same problem locally.

Functional performance models more accurately represent the speed of pro-
cessors then traditional constant models [8]. The speed of each processor is
represented by a continuous positive function of problem size (Fig. 1(a)). These
functions are obtained by benchmarking a serial code that is equivalent to one
step of the parallel routine. There are two approaches to building the models.
If the application is to be run multiple times on a set of machines (or a sub-set
of these machines) then an exhaustive full functional performance model can
be built for each unique machine. This process is time consuming but needs to
be done only once for each routine on each unique machine, it can be done at
compile time. An alternative approach, suitable for more dynamic environments,
where the available machines change regularly, is to dynamically build only the
necessary parts of the models at run-time. This approach has been demonstrated
in [10]. Dynamically built models are perfectly applicable to the algorithm pro-
posed in the next section, however for clarity of results, we will use full functional
performance models in the remainder of this paper.
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Fig. 1. (a) Functional performance models for 4 nodes from the Grid’5000 Lille site. (b)
Two-dimensional models for two nodes from our local heterogeneous cluster, showing
hcl16 is a faster node with less memory then hcl13.

The partitioning algorithm based on functional performance models proposed
in [8] is designed for partitioning with one parameter. However, the ScaLAPACK
outer-product routine requires two partitioning parameters,mij and nj , for each
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processor Pij . An two-dimensional iterative algorithm to overcome this short-
coming is proposed in [9]. The strategy is similar to that described in Section 2.1.
However, functional performance models are used in place of simplistic single
value performance models. The two parameters, m and n, gives two degrees of
freedom which leads a model consisting of a surface in 3D space (Fig. 1(b)). The
z axes represents processor speed.

Processors are arranged into a p × q grid. Initially column widths are given
by nj = N/q ∀j. Iterating:
1. A 2D plane is sliced through the 3D space at positions equal to nj. This

gives one-dimensional functional performance models which can be used by
the algorithm in [8] to find the optimum partitioning within each column,
mij . Single value speeds for this partitioning can then be found from the
model sij .

2. If the maximum relative difference between execution times is less then some
ε the algorithm finishes, otherwise it continues.

3. New column widths ni are calculated in proportion the single value speed of
each column

∑p
i=1 sij

This algorithm does find a good partitioning but it has a number of disadvan-
tages: (i) it does not take communication cast into account; (ii) the processor
grid is fixed and the algorithm is unable to change the ordering of the processors;
(iii) it relies on a constant performance model to find the location of the next
slice so there is no guarantee of convergence; (iv) building full 2D models requires
more time consuming benchmarking (while a 1D model requires x experimental
points to achieve a given accuracy, a 2D model requires x2 points).

2.4 Other Related Work

A matrix partitioning algorithm for a heterogeneous combination of FPGA and
general purpose processors is presented in [12]. Their model does consider mem-
ory hierarchy, however detailed knowledge of the architecture is requires and
each memory level requires a parameter in their partitioning algorithm. Hence,
it is not self adaptable to new environments.

The authors of [4] present interesting algorithms for minimising the total vol-
ume of communication and for partitioning with respect to both computational
power and communication speed. However, these algorithms are targeted for a
master-worker platform and so are not directly applicable to our target platform.

A different approach for load balancing is taken in [6]. The problem is broken
down into many small processes, each requiring an equal amount of work and
data storage. Processes are then mapped to processors in proportion to proces-
sor performance. This approach allows for easy adaptation of existing homoge-
neous algorithms to heterogeneous platforms, however it is unable to achieve
fine grained load balancing without incurring an overhead penalty for running a
large number of processes per processor.
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3 New FPM-BR Two-Dimensional Matrix Partitioning
Algorithm

The efficient heterogeneous ScaLAPACK outer-product routine requires two
partitioning parameters for each processor. Load balancing with 1D functional
performance models only works with problems with one degree of freedom. The
existing 2D FPM-KL partitioning algorithm does not take communication cost
into account while the BR algorithm minimises communication volume but uses
a too simplistic model for processor performance. To overcome these shortcom-
ings, we present a new FPM-BR algorithm that combines the strengths of these
algorithms.

The height mi and width ni parameters can be combined into one parameter,
area di = mi×ni. Our computational unit is a b× b block, and benchmarking is
done for square areas m = n =

√
d, for 0 < d ≤ M ×N . We can then partition

using the one-dimensional FPM-based algorithm [8] to determine the areas of
the rectangles that should be partitioned to each processor. The BR algorithm
is then used to calculate the optimum shape and ordering of the rectangles so
that the total volume of communication is minimised.

In the algorithm proposed above we have made the assumption that a bench-
mark of a square area will give an accurate prediction of computation time of
any rectangle of the same area, namely s(x, x) = s(x/c, c.x). However, in general
this does not hold true for all c (Fig. 2(a)). Fortunately, in order to minimise
the total volume of communication the BR algorithm arranges the rectangles
so that they are as square as possible. We have verified this experimentally by
partitioning a medium sized square dense matrix using our new algorithm for
1 to 1000 nodes from the Grid’5000 platform (incorporating 20 unique nodes),
and plotted the frequency of the ratio m : n in Fig. 2(c). Fig. 2(b), showing a
detail of Fig. 2(a), illustrates that if the rectangle is approximately square the
assumption holds.

4 Experimental Results

To demonstrate the effectiveness of the new FPM-BR matrix partitioning al-
gorithm we applied it to a heterogeneous MPI implementation of the blocked
ScaLAPACK outer product routine [2]. The high performance, cross-platform
multi-threaded GotoBLAS2 [5] library was used for the BLAS implementation.
Dense square matrices are filled with random numbers. A block size of b = 16 was
chosen, increasing block size allows the GotoBLAS2 dgemm subroutine to make
more efficient use of cache levels, however this reduces the granularity available
to the partitioner. The total matrix dimension is given by N b = N × 16, where
N is the dimension used by the partitioner algorithm.

A benchmark to build the functional performance model must be done inde-
pendently of other nodes. Serial code, which closely resembles one iteration of the
parallel code, is timed. Memory is allocated and freed in the same order and MPI
point-to-point communications are sent to itself. Statistics are applied so that
benchmarks are repeated until a specified confidence interval has been achieved.
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Fig. 2. Showing speed against the ratio of the sides of the partitioned rectangles. Lines
connect rectangles of equal area. The centerline at 1 : 1 represents square shape. In
general speed is not constant with area (a). However when the ratio is close to 1 : 1,
speed is approximately constant (b). (c) Shows the frequency distribution of the ratio
of m : n using the new partitioning algorithm for 1 to 1000 machines (incorporating
20 unique hardware configurations).

Table 1. Lille Site Hardware Specifications

Nodes Processor Cores Memory

20 2.6GHz Opteron 4 4
20 2.83GHz Xeon 8 8
19 2.4GHz Xeon 8 16
5 2.4GHz Xeon 8 8

Four partitioning algorithms (even homogeneous, BR, FPM-KL, FPM-BR)
are applied to parallel matrix multiplication on 64 nodes from Grid’5000 Lille
site. The total execution time for a range of problem sizes was recorded and plot-
ted in Fig. 3. The nodes are from 4 interconnected clusters with 4 unique hard-
ware configurations (Table 1, Fig. 1(a)). Our new FPM-BR algorithm was able
to efficiently partition for all problem sizes up a maximum size of N b = 160000
at which point all of the available memory is used. The BR algorithm works
successfully for medium sized problems but fails for problems with N b > 80000
because it uses a too simplistic model of processor speed. The FPM-KL algo-
rithm is also able to partition up to the maximum size but performance is lower
than FPM-BR because the total volume of communication is not minimised.



458 D. Clarke, A. Lastovetsky, and V. Rychkov

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20000  40000  60000  80000  100000  120000

T
ot

al
 E

xe
cu

tio
n 

T
im

e 
(s

ec
)

Total Matrix size Nb

Homogeneous Distribution
BR

FPM-KL
FPM-BR

Fig. 3. Total time to execute parallel square dense matrix multiplication for a range
of problem sizes using the three algorithms discussed in this paper and an even homo-
geneous distribution. The experiment is conducted on 64 nodes from Grid’5000 Lille
site (incorporating 4 unique hardware configurations).

The speedup for FPM-BR algorithm over FPM-KL algorithm is more pro-
nounced for non-square number of processes, for example 14 as shown in Fig. 4.
The total volume of communication is reduced by 17.1% and there is a cor-
responding 13.6% reduction in total computation time. The difference can be
accounted for by an increase, with the FPM-BR algorithm, in the number of
point-to-point communications to send matrix A horizontally. Namely in the
first iteration processor 03 must send to 7 processors (04, 14, 10, 12, 08, 05, 06)
(Fig. 4(b)). With the FPM-KL algorithm, processor 03 needs only send horizon-
tally to 3 processors (10, 13, 14) (Fig. 4(a)). Collective communications are used
to broadcast elements of matrix B vertically.

Fig. 4. Matrix partitioning for 14 heterogeneous nodes, with a problem size ofN = 840.
Using: (a) FPM-KL and (b) FPM-BR algorithms. The normalised total volume of com-
munication is 9 and 7.457. Total computation time was 192 sec and 166 sec respectively.

The presented experimental results demonstrate that by combining functional
performance models with the BR algorithm we are able to achieve both optimi-
sation goals, namely partitioning the workload in proportion to processor speed
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and reducing the total volume of communication. This algorithm also allows us
to use the simpler one-dimensional models rather then the more complex 2D
models to partition for the two-parameter matrix multiplication routine.
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A. (eds.) Euro-Par 2009. LNCS, vol. 6043, pp. 91–101. Springer, Heidelberg (2010)

11. Lastovetsky, A., Reddy, R.: Two-Dimensional Matrix Partitioning for Parallel
Computing on Heterogeneous Processors Based on Their Functional Performance
Models. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer, A., Prodan, R.,
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