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Abstract. This paper addresses the problem of evaluating the sched-
ules produced by list based scheduling algorithms, with metaheuristic
algorithms. Task scheduling in heterogeneous systems is a NP-problem,
therefore several heuristic approaches were proposed to solve it. These
heuristics are categorized into several classes, such as list based, cluster-
ing and task duplication scheduling. Here we consider the list scheduling
approach. The objective of this study is to assess the solutions obtained
by list based algorithms to verify the space of improvement that new
heuristics can have considering the solutions obtained with metaheuritcs
that are higher time complexity approaches. We concluded that for a
low Communication to Computation Ratio (CCR) of 0.1, the schedules
given by the list scheduling approach is in average close to metaheuristic
solutions. And for CCRs up to 1 the solutions are below 11% worse than
the metaheuristic solutions, showing that it may not be worth to use
higher complexity approaches and that the space to improve is narrow.

1 Introduction

The problems of task matching and scheduling, in general, are to resolve a com-
posite parallel program into several tasks and assign these tasks to a set of
processor elements (PEs) to execute. These tasks have restriction of priority
order to execute with each other due to its characteristic of data dependen-
cies. The relationship among the tasks can be represented by a weighted Direct
Acyclic Graph (DAG). Also, the processing elements are connected by a high
speed communication network. Task matching is to assign a specific task to a
suitable processing element to execute; and scheduling is to determine execu-
tion priority of each task among the composite parallel program. The general
form of the problem has already been proved to be NP — complete [2JTTIT4ITH].
Although it is possible to formulate and search for the optimal solution, the fea-
sible solution space quickly becomes intractable for larger problem instance. To
overcome the exponential time complexity, heuristic based scheduling algorithms
of been proposed that found a sub-optimal solution in polynomial time. These
heuristics are categorized into several classes, mainly list based, clustering and
task duplication scheduling. Among these, list scheduling algorithms are gener-
ally regarded as having a good cost performance trade-off because of their low
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cost and acceptable results. In list scheduling, tasks are sorted by their priorities
and scheduled accordingly [BIGIOIT3ITTITE]. Although these algorithms can find
a feasible solution in polynomial time they are not able to guarantee to find a
suitable solution when size of the problem becomes large. In this paper we eval-
uate the quality of the solutions obtained by two best list scheduling algorithms,
namely HEFT and CPOP [18], for heterogeneous systems by comparing with the
solutions obtained by metaheuristic algorithms. Once these last algorithms do
not guarantee the optimal solution, we obtain for each scheduling the best solu-
tion and measure the distance to the list scheduling solution. The metaheuristic
algorithms considered in this study are Ant Colony System (ACS), Simulated
annealing (SA) and Tabu Search (TA).

At first, we introduce the DAG scheduling problem, then describe two static
list scheduling algorithms, HEFT and CPOP. Followed by an introduction to the
Ant Colony System, Simulated Annealing and Tabu Search. Further, we describe
the design and the implementation on these algorithms with a discussion about
the results achieved.

2 DAG Scheduling

A scheduling system model represented by a direct acyclic graph (DAG),
G = (V, E, P,W,data, rate), where V is set of v tasks, F is the set of e edges
between tasks, and P is the set of processors available in the system. Each
edge(i,j) € E represents the task-dependency constraint such that task n;
should complete its execution before task n; can be started. A task with no
predecessors is called an entry task, nepiry, and neg;; is one with no successors.
W is a v X p computation cost matrix, where v is the number of tasks and p is
the number of processors in the system. Figure [Il shows an example of a DAG
comprising 12 tasks to illustrate these definitions graphically. It can be seen that
the immediate successors of t3 are tg, tg and t11; the immediate predecessors of
t10 is tg. Furthermore, t; is an entry task and t15 represents a pseudo exit-task.

Fig. 1. Example of a DAG and its computation costs matrix [CCR=0.8]

Each w; ; gives the estimated execution time to complete task n; on proces-
sor pj. The average of execution cost of a node n; is defined w; = (3_ ;¢ p wi j)/p.
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The data parameter is a v X v matrix of communication data, where data(i, j)
is the amount of data required to be transmitted from task n; to task n;. The
rate parameter is a p X p matrix and represent the data transfer rate between
processors. The communication cost of edge(i, j), which is for data transfer from
task n; (scheduled on processor p,,) to task n; (scheduled on processor p,), is
defined by ¢; ; = data(n;,n;)/rate(pm, pn). When both n; and n; are scheduled
on the same processor (p,, = pn), then ¢; ; becomes zero. The average commu-
nication cost of an edge is defined by ¢; ; = data(n;, n;)/rate, where rate is the
average transfer rate between the processors in the domain.

The EST(ni,p;) and EFT(n;,p;) are the Earliest Execution Start time
and the FEarliest Execution Finish Time of node n; on processor p;. For the
entry task EST (nentry,pj) = 0. For other tasks, the EST and EFT values are
computed recursively, starting from the entry task as shown by

EST(Tlmpj) = maX{TAvailable (Pj)7 maXnmEpred(m){AFT(nm) + Cm,i}}
EFT(ni,pj) =w;; + EST(ni,pj)

where pred(n;) is the set of immediate predecessor tasks of task n; and T'avaitasie (D;)
is the earliest time at which processor p; is available for task execution. The inner
maz block in the EST equation returns the ready time, i.e, the time when all data
needed by n; has arrived at the processor p;.

The objective function of the scheduling problem is to determine the assign-
ment of task of a given application to processors such that the schedule length or
makespan is minimized. After a task n; is scheduled on processor p;, the Actual
Start Time of node n; (AST(n;)) is equal to EST(n;) and the Actual Finish
Time of node n; (AFT(n;)) is equal to EFT(n;). After all nodes in the DAG
are scheduled, the schedule length will be makespan = max| AFT (negit)], i-e.
the Actual Finish Time of exit task.

The Critial Path (CP) of a DAG is the longest path from the entry node
to the exit node in the graph. The length of this path |CP| is the sum of the
computation cost of the nodes and inter-node communication costs along the
path. The |CP| value of a DAG is the lower bound of the schedule length.

3 List Scheduling Algorithms

The list scheduling technique [I2] has the following steps: a) determine the avail-
able tasks to schedule, b) assign a priorities to them and c¢) until all tasks are
scheduled, select the task with the highest priority and assign it to the processor
that allows the earliest start time.

Two attributes frequently used to define the tasks priorities are the upward and
the downward ranks. The downward rank of a node n; (ranky) is defined as the
length of the longest path from an entry node to n; (excluding n;). The upward
rank of a node n; (rank,,) is the length of the longest path from n; to an exit node.
The nodes of the DAG with higher rank, values belong to the critical path.
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3.1 HEFT Algorithm

The HEFT (Heterogeneous Earliest Finish Time) algorithm [I8] is highly com-
petitive in that it generates a comparable schedule length to other scheduling
algorithms, with a low time complexity. The HEFT algorithm is an application
scheduling algorithm for a bounded number of heterogeneous processors, which
has two major phases: a task prioritizing phase for computing the priorities of
all tasks and a processor selection phase for selecting the tasks in the order of
their priorities and scheduling each selected task on its best processor, which
minimizes the task’s finish time. In HEFT algorithm, tasks are ordered by their
scheduling priorities that are based on upward ranking (rank,,).

Algorithm 1. The HEFT algorithm

Compute rank,(n;) for all n, € V
ReadyTaskList < Start Node
while ReadyTaskList # Empty do
n; < node with the maximum rank, in ReadyTaskList
for all p; € P do
Compute EST(nq,p;)
EFT(ni,pj) — w;j + EST(TL“ pj)
end for
Map node n; on processor p; which provides its least EFT
Update T'_Available(p;) and ReadyTaskList
end while

3.2 CPOP Algorithm

The critical path (C'P)is the longest path in a DAG. The Critical Path on Pro-
cessor (CPOP) algorithm is a variant of the HEFT algorithm [I§]. CPOP adopts
a different mapping strategy for the critical path nodes and the non-critical path
nodes. A C'P processor is defined as the processor that minimizes the overall ex-
ecution time of the critical path assuming all the critical path nodes are mapped
onto it. If the selected node is a critical path node, it is mapped onto the C'P
processor. Otherwise, it is mapped onto a processor that minimizes its EFT
(like in the HEFT algorithm).

Algorithm 2. The CPOP algorithm

Compute rank,(n;) and rankq(n;) for all n, € V.
Identify the Critical Paths and mark the Critical Path Nodes
priority(n;) < rank,(n;) + rankq(n;)
ReadyTaskList < Start Node
while ReadyTaskList # Empty do
n; < node with the maximum rank, in ReadyTaskList
if n; € Critical Path then
Map n; on the C' P Processor
else
for all p; in P do
Compute EST (n;,p;)
EFT(n;,p;) < wi,; + EST(n;, pj)
end for
Map node n; on processor p; which provides its least EFT
end if
Update T'_Available(p;)
Update ReadyT askList
end while
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4 Metaheuristic Algorithms

4.1 Ant Colony System

Ant colony system (ACS) is a metaheuristic that was first proposed by Dorigo
and Gambardella [4], it is one of the most popular swarm inspired methods in
computational intelligence areas. And latter adapted to discrete optimization
problems [5]. The basic idea is to imitate the cooperative behaviour of real ants,
to solve optimization problems. At first, ants have no clue about which way
belongs to the shortest path to nest, so they choose randomly. Once the ants
discover a paths from nest to food, they changed pheromone on the path. So
another ants can follow the trails to find the food source. The ants that found
the shortest path will come back to nest sooner, than ants via longer paths,
and that path will have higher traffic. As this process continuous, the shortest
paths have a huge amount of pheromone and most of ants tend to choose these
paths. ACS includes five steps: (1) ants initialization to positioning (2) for each
ant applied a state transition rule to incrementally build a solution and a local
pheromone updating rule (3) Global pheromone updating (4) ending test to
evaluate the best solution that if it is not acceptable go to step 1.

To apply the ACS meta-heuristic to the task scheduling problem, we need to
translate this problem into the structure of ACS so that ants can find solutions.
For this purpose, we considered a Graph with two subgraphs GG; and G5, where
the first represents the set of tasks to schedule and the second denotes the set
of processors available. At each iteration, each ant selects a source node and a
suitable processor based on a selection rule. Then we add tasks that are ready
to schedule, i.e. tasks where their predecessors have been scheduled, and this
procedure continues until all task are scheduled.

In ACS (Ant Colony System) the state transition rule provides a direct way
to balance between exploration of new edges and exploitation of a priori and
accumulated knowledge about the problem. It is defined as follows: an ant
positioned on task i chooses the processor u to move to by applying the rule
given by

max [7(i,p) x [n(i,p)]’] if qo < g(exploitation)
Prob(i,p) = 76, p) > (i, p)] otherwise (biased exploration)

> (r(i.q) x (i, 9))?)

qeP

where ¢ is a random number uniformly distributed in [0..1] and ¢ is a parameter
(0 < go < 1). Tuning the parameter go allows modulation of the degree of
exploration and the choice of whether to concentrate the search of the system
around the best-so-far solution or to explore other tours, here qo = 0.7. And
n(n,p) = 1/AFT (n;,) is the heuristic function and 5 = 2 is a parameter which
determine the relative influence of the heuristic information.
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The Global Pheromone Update Rule is performed only by the best ants that
have the shortest path from source to sink. This rule besides the use of the
pseudo-random-proportional rule, cause to encourage the ants in next iterations
to search in a neighbourhood of the best path found up to current iteration.
After all ants finished their tour, we can perform global updating for current
iteration. The pheromone level is updated by applying the global updating rule
T(t,p) = (1 = p) - 7(i,p) + p - A7(i,p) where Ar(i,p) for global best tour is
AT(i,p) = 1/ [AFThest ant(nexit)] and for other nodes is Ar(i,p) = 0. Also,
0 < p < 1 is the pheromone decay parameter and here is p = 0.1. In ad-
dition to the global pheromone trail updating rule, in ACS the ants use a
Local Pheromone Update rule in each iteration since each ant by choosing a
processor p for task i, is applied by 7(i,p) = (1 — &) - 7(¢,p) + £ - 70 where
0 < £ < 1 denotes the pheromone decay parameter and 79 = I‘lf\ is the initial
value of pheromone on all edges. Experimentally, a good value for ¢ was found
to be ¢ =0.1.

4.2 Simulated Annealing

Simulated Annealing (SA) is a generic probabilistic meta-algorithm proposed by
Kirpatrick, Gelett and Vecchi [10] and Cerny [I] used to find an approximate
solution to global optimization problems. It is inspired by annealing in metal-
lurgy which is a technique of controlled cooling of material to reduce defects.
In simulated annealing, a cost function to be minimized is defined in terms of
the parameters of the problem at hand. The cost minimization process is gov-
erned by a cooling temperature which varies from a given high value to a low
value slowly. At every temperature, we generate a fixed number of scheduling
and calculate cost function(makespan) for each of them. If the cost function
is less than the previous cost, the new configuration is accepted. If the cost
is more than the previous one, the new configuration is chosen with a proba-
bility r < exp(—AC/Ty) where r € [0, 1]. Probabilistic acceptance of costlier
solutions is behind the success of the simulated annealing process. Actually,
when AC' < 0, we have a downhill step, that means a search for a new solu-
tion around a best solution. But if this condition is not satisfied, we can use
the new solution instead of the best solution, with higher cost (uphill step)
and helps the solution process overcome the possibility of getting trapped in
a local minimum and move toward the global minimum. The three most im-
portant parts are: (1)Cost Function that is the schedule length of the solu-
tion; (2) Generating mechanism to randomly generate a scheduling of a set of
tasks; and, (3) Cooling mechanism that initializes the temperature to a value
Ty, and in each step, it decreases by Tx+1 = o x T}, and o = 0.1 if we use a
higher value for a we will move faster and we would have less exploration of the
search space.

In our implementation the length of Markov chain is |V|, final temperature
is 0.01, initial temperature is [bestmakesmn(si) — worstmakesmn(&)]/10g(0.9),
where S; is the initial solution, and the initial value of the cost function C is
given by the makespan.
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Algorithm 3. The Simulated Annealing algorithm

Create an initial(feasible) solution s;
Set an initial temperature Ty (with k < 0);
Set number of trials at each temperature level (level-length) o
while termination criterion not satisfied do
for i = 0 — lengthprarkov chain dO
Create new neighbour s’ by applying a random move to s;
Calculate cost difference AC between s’ and s : AC = C(s’) — C(s);
if AC <0 then
Switch over to solution s’ (current solution s is replaced by s);
else
Create random number r € [0, 1];
if r < exp(—AC/Ty) then
Switch over to solution s’ (current solution s is replaced by s’);
end if
end if
end for
Update best found solution (if necessary);
Set k < k + 1 and Set / Update temperature value T}, for next level k;
end while
return Best found solution

4.3 Tabu Search

Tabu search (TS) is one the a heuristic methods proposed by Glover [7] [§].
Unlike other meta-heuristics, in TS, we have an intelligent search to perform a
systematic exploration of the solution space. The main idea in TS is to use the
information about search history to guide local search approaches to overcome
local optimality. In general we examine a path sequence of solutions and moves
to the best neighbour of the current solution and, to avoid cycling, solutions
that were recently examined are forbidden or tabu. Elements of Tabu Search:
1) Tabu List (short term memory): to record solutions to prevent revisiting a
visited solution; 2) T'abu tenure: number of iterations a tabu move is considered
to remain tabu; 3) Aspiration criteria: accepting an improved solution even if
generated by a tabu move 4) Long term memory: to record attributes of elite
solutions to be used in: a) Intensification (giving priority to attributes of a set
of elite solutions); b) Diversification (Discouraging attributes of elite solutions
in selection functions in order to diversify the search to other areas of solution
space).

Algorithm 4. The Tabu Search algorithm

S < random valuation of variables;

iter < 0;

initialize randomly the tabu_list

while (eval(S)> 0) and (iter < Mawiter) do
choose a move < V,v’ > with the best performance among the non-tabu moves and the
moves satisfying the aspiration criteria;
introduce < V,v > in the tabu_list, where v is the current value of V'
remove the oldest move from the tabu_list
assign v’ to V;
iter < iter + 1;

end while

return S
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5 Results and Conclusions

In this section, we evaluate and compare the solution performance of the HEFT
and CPOP with metaheuristic algorithms for single DAG scheduling using an ex-
tensive simulation setup. The metrics used for comparison are the SLR
(schedule length ratio) and the Speedup (used in [I§]). In fact, the SLR metric
make a normalization on the schedule length to a lower bound.

min [n; wi )]

makespan(solution)

makespan(solution)

SLR = .
ZnieCPMIN miny; e p (w(i’j))

Speedup =

The denominator in SLR is the minimum computation of tasks on critical path.
With any algorithm, there is no makespan less than the denominator of SLR
equation. Therefore, the algorithm with lower SLR is the best algorithm. Av-
erage SLR values over several task graphs are used in our results. In Speedup,
the sequential time is obtained by the sum of the processing time on the pro-
cessor that minimizes the total computation cost [I8]. The DAGs used in this
simulation setup were randomly generated using the program in [I6] which con-
siders the following parameters: width as the number of tasks on the largest level;
reqularity is the uniformity of the number of tasks in each level; density is the
number of edges between two levels of the DAG. These parameters may vary
between 0 and 1. An additional parameter, jump, indicates that an edge can go
from level [ to level I + jump. In this paper, we consider DAGs with 10, 20, 30
and 40 tasks; the number of processors equal to 4, 8, 16, and 32; CCR of 0.1, 0.5,
0.8 and 1; width equal to 0.1, 0.2, 0.8; density equal to 0.2, 0.8; and jumps of
1, 2, and 4. These combinations give 1152 different DAG types. Since 5 random
DAGs were generate for each combination, the total number of DAGs used in
our experiment was 5760. We do not considers CCR above 1 because for a high
speed network it would not be a realistic value.

HEFT —6— HEFT —6—
CPOP CPOP
26 1 SA ¥ 35| SA -
TS % : TS %
ACS ACS 2
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x 23 g 3 T
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§ 2 g —
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z 2
. - S
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p—" 4
i o} 1.5
&
1.4 1
10 20 30 40 10 20 30 40
Number of tasks Number of tasks
(a) SLR (b) Speedup

Fig. 2. The SLR and Speedup average values for each size graph and CCR=[0.1 0.5
0.8 1.0]
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Figure 2 shows the results of SLR and Speedup for list scheduling algorithms
(HEFT and CPOP) and metaheuristic algorithms (ACS, TS and SA). It can
be observed that in average there is a consistent gap between the two types
of algorithms, being the best solutions obtained by the Simulated Annealing
metaheuristic. Also HEFT has always better performance than CPOP, as shown
in [I8]. Considering the results shown on table[l] it can be concluded that for low
CCR (0.1) the HEFT gives near results comparing to metaheuristic approaches.
This means that the effort of using a higher time complexity approach may not
be worth. For higher CCRs up to 1.0 the improvement is always below 11%,
which means that the improvement is not very high in order to compensate
the usage of metaheuristic algorithms. For illustrative purpose, in figure [3 we
can see an example of the makespan obtained by HEFT, AS, TS and ACS
algorithms, for the DAG represented in Figure [[l Task 12 in HEFT is delayed
due to communication costs from task 7.

Table 1. SLR improvement observed with
HEFT

N=10 N=20
CCR SA TS ACS SA TS ACS
0.1 0.80% 0.60% 0.53% 1.64% 1.38% 0.62%
0.5 7.03% 5.70% 5.74% 7.09% 5.66% 4.04%
0.8 9.96% 6.91% 8.27% 10.0% 6.80% 6.45%

metaheuristic algorithms compared to

N=30 N=40
SA TS ACS SA TS ACS
3.16% 2.94% 1.35% 4.07% 3.90% 1.79%
7.97% 6.50% 2.84% 7.93% 6.74% 2.88%
9.93% 6.49% 4.09% 9.48% 6.61% 1.87%

1.0 10.0% 6.23% 7.74% 10.2% 5.65% 6.14% 9.45% 5.85% 2.98% 10.9% 6.98% 2.51%
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Fig. 3. Scheduling of task graph with HEFT, SA, TS, ACS

In conclusion, we can say that for low CCR (0.1) HEFT produces schedules
competitive with metaheuristic approaches, with a lower time complexity. For
higher CCRs up to 1, the improvement achieved with SA is below 11%, being
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also competitive the schedules produced by HEFT. These results show also that
new heuristic base algorithms have a narrow space of improvement over HEFT.
Regarding the metaheuristic algorithms, SA showed to achieve consistently bet-
ter scheduling solutions for DAG scheduling in heterogeneous systems.
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