
Enabling e-Science Applications

on the Cloud with COMPSs

Daniele Lezzi1,2,�, Roger Rafanell1, Abel Carrión4,
Ignacio Blanquer Espert4, Vicente Hernández4, and Rosa M. Badia1,3

1 Barcelona Supercomputing Center, Centro Nacional de Supercomputación
(BSC-CNS)

2 Universitat Politècnica de Catalunya (UPC)
3 Artificial Intelligence Research Institute (IIIA),
Spanish Council for Scientific Research (CSIC)

{daniele.lezzi,roger.rafanell,rosa.m.badia}@bsc.es
4 Instituto de Instrumentación para Imagen Molecular (I3M),

Centro mixto CSIC, Universitat Politècnica de València, CIEMAT
iblanque@dsic.upv.es, {abcarcol,vhernand}@i3m.upv.es

Abstract. COMP Superscalar (COMPSs) is a programming framework
that provides an easy-to-use programming model and a runtime to ease
the development of applications for distributed environments. Thanks
to its modular architecture COMPSs can use a wide range of compu-
tational infrastructures providing a uniform interface for job submission
and file transfer operations through adapters for different middlewares.
In the context of the VENUS-C project the COMPSs framework has
been extended through the development of a programming model enact-
ment service that allows researcher to transparently port and execute
scientific applications in the Cloud.

This paper presents the implementation of a bioinformatics workflow
(using BLAST as core program), the porting to the COMPSs framework
and its deployment on the VENUS-C platform. The proposed approach
has been evaluated on a Cloud testbed using virtual machines managed
by EMOTIVE Cloud and compared to a similar approach on the Azure
platform and to other implementations on HPC infrastructures.

1 Introduction

The design of a framework that allows the porting and execution of scientific ap-
plications on top of virtualized infrastructures is currently a common topic in the
distributed computing community. Programming frameworks are not currently
aligned to highly scalable applications and thus do not exploit the capabili-
ties of Clouds. These technologies are mainly based on virtualization and ser-
vice orientation combined to provide elastic computing service and storage in a
pay-per-use model.

� Corresponding author.

M. Alexander et al. (Eds.): Euro-Par 2011 Workshops, Part I, LNCS 7155, pp. 25–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



26 D. Lezzi et al.

The first issue to be solved is the existence of multiple Cloud solutions that
are not interoperable. One of the most pressing problem with respect to Cloud
computing is the current difference between the individual vendor approaches,
and the implicit lack of interoperability. This problem has to be solved inside the
runtime of the programming framework, developing the appropriate interfaces
to interact with the several Cloud middlewares thus allowing the applications to
run on federated infrastructures without having to adapt the applications.

An important property of Cloud computing that poses another requirement
in the design of the runtime, is infinite scaling and elasticity, i.e. the capabil-
ity to provision (and de-provision) resources on demand, and to scale up or
down the number of available resources as needed by the users and the applica-
tion. The runtime should be able to request the provision of additional virtual
resources from the underlying Cloud infrastructure. Furthermore, automated
decisions could be performed based on observations of dynamic properties and
system behaviors.

The COMPSs[1] framework has been recently extended in the context of the
VENUS-C project, an European funded initiative whose aim is to support re-
searchers to leverage modern Cloud computing for their existing e-Science ap-
plications. The COMPSs Enactment Service[2] provides the users of VENUS-C
platform with those interoperability and transparency features with regarding
to the computational infrastructure, providing dynamic scaling of resources and
keeping a straightforward programming model for enabling applications in the
Cloud.

This paper presents the porting of a bioinformatics application to COMPSs
in the VENUS-C platform. The rest of the paper is structured as follows: sec-
tion 2 briefly describes COMPSs in the VENUS-C platform, section 3 contains
the description of porting a bioinformatics application to COMPSs, section 4
analyzes the performance of the ported application and section 5 concludes the
paper.

2 COMPSs and the VENUS-C Platform

VENUS-C develops and deploys an industrial-quality service-oriented Cloud
computing platform based on virtualization technologies, to serve to the research
and industrial user communities by taking advantage of previous experiences and
knowledge on Grids and Supercomputing environments. The ultimate goal is to
eliminate the obstacles to the wider adoption of Cloud computing technologies by
designing and developing a shared data and computing resource infrastructure
that is less challenging to implement and less costly to operate.

The programming models are a major contribution of the VENUS-C project
to the scientific community. In conjunction with the data access mechanisms,
these programming models provide researchers with a suitable abstraction for
scientific computing on top of plain virtual resources that enable them with a
scientific Platform-as-a-Service.



Enabling e-Science Applications on the Cloud with COMPSs 27

In order to shield the researcher from the intricacies of the concrete implemen-
tation of different programming models, each one is enacted behind a specific
enactment service that researchers can use to submit jobs and manage their
scientific workload. Each VENUS-C supported programming model exposes its
functionality through an OGF BES/JSDL[3][4] compliant web service interface.
COMPSs and the Microsoft Generic Worker[5] are the available frameworks to
enable applications in the infrastructure. The Generic Worker allows the exe-
cution of binaries on the Windows Azure platform while COMPSs provides a
programming framework for the definition of complex workflows.

Fig. 1 depicts a high level view of the VENUS-C job management middleware
architecture.

Fig. 1. The architecture of the VENUS-C Job Management Middleware

In VENUS-C, an e-Science application is separated in two parts: the core
algorithmic part is ported to the Cloud through the programming models while
the user interacts with the platform through a specific client, usually a graphical
user interface (GUI), to prepare and modify data, visualize results, and start the
scientific computation.

Each enactment service enables a specific instance of an application on the
underlying computational infrastructure that includes Windows Azure and Unix
virtual machines made available through several open source Cloud middle-
wares such OpenNebula[6] and EMOTIVE Cloud[7]. Interoperability with these
providers is achieved through the use of an OCCI[8] connector and OVF[9]
format to describe the Cloud resource capabilities. Moreover, COMPSs is also
used to dispatch classical HPC workloads into a Supercomputing infrastructure
allowing them to be provided as a service to the VENUS-C consumer.

The VENUS-C data management SDK supports the Cloud Data Management
Interface (CDMI)[10] specification, pushed forward by the Storage Networking



28 D. Lezzi et al.

Industry Association (SNIA). This interface includes both a deployable web ser-
vice which exposes the CDMI interface, and the support libraries for different
language bindings, that ease the call of the CDMI Service. The COMPSs enact-
ment service implements a CDMI client that allows the access to different Cloud
storage implementations through the same interface. This allows the user of the
enactment service to run applications using data already available on a site thus
avoiding him to be locked to a specific storage technology.

3 Evaluation of an e-Science Application

In order to validate the described framework a bioinformatics application has
been adapted to run in a Cloud environment through the COMPSs enactment
service. The aim is twofold: first, evaluating the complexity of porting the ap-
plication to COMPSs in the VENUS-C platform; second, comparing the perfor-
mance of the proposed solution to MPI and cloud implementations.

BLAST[11] is a widely-used bioinformatics tool for comparing primary biolog-
ical sequence information, such as the amino-acid sequences of different proteins
or the nucleotides of DNA sequences with sequence databases, identifying se-
quences that resemble the query sequence above a certain threshold. The work
performed by BLAST is computationally intensive and embarassingly parallel,
which makes it a good candidate to benefit from Cloud.

Fig. 2. The COMPSs BLAST Workflow



Enabling e-Science Applications on the Cloud with COMPSs 29

The BLAST workflow contains three blocks as depicted in Fig. 2:

– Split: the query sequences file is splitted in N fragments.
– Alignment: each sequence fragment is compared against the database by

the blast binary.

– Assembly: assembly process combines all intermediate files into a single
result file.

3.1 Porting of the Application

The porting of an application to COMPSs includes two steps; in the first step
an interface file has to be provided by the programmer to select which methods,
called from the application, will be executed remotely. The second step involves
the preparation of the user code that implements these methods; in VENUS-C
the interface file, the application code and the BLAST binary are assembled
in a package that is stored into an application repository and deployed by the
COMPSs enactment service when an execution is requested. This relieves the
user of taking care of manual deployment of the binaries on the infrastructure
and allows different versions of the same application to be available.

3.2 The COMPSs Application Interface

The interface declares the methods of the user application that have to be man-
aged by the COMPSs runtime to be executed remotely; information about the
method and its parameters is provided through the use of Java annotations; such
metadata includes the name of the class that implements the method(s) and, for
each parameter, its type (primitive, file, ...) and direction (in, out or in/out).
The user can also express capabilities that a resource must fulfill to run a certain
method (CPU number and type, memory, disk size, etc...).

public interface BlastItf {

@Method(declaringClass = "blast.worker.BlastImpl")

@Constraints(storageElemSize = 0.3f, processorCPUCount = 4)

void alignment(

@Parameter(type = Type.STRING, direction = Direction.IN)

String db,

@Parameter(type = Type.FILE, direction = Direction.IN)

String fragment,

@Parameter(type = Type.FILE, direction = Direction.OUT)

String resFile,

@Parameter(type = Type.STRING, direction = Direction.IN)

String blastBinary,

@Parameter(type = Type.STRING, direction = Direction.IN)

String cmdArgs);

}



30 D. Lezzi et al.

3.3 Application Implementation

In the BLAST porting, the main application code splits the input sequences file
in a number of fragments specified by the user. For each fragment, the alignment
method is called. Each generated output is assembled by the assemblyPartitions
method.

public static void main(String args[]) throws Exception {

sequences[] = split(inputFile, nFrags);

for (fragment: sequences)

{

output = "resFile" + index + ".txt";

BlastImpl.alignment(db, fragment, output, ..., cmdArgs);

seqOutputs.add(output);

index++;

}

assemblyPartitions(seqOutputs, resultFile, tempDir, nFrags);

}

The alignment method is implemented in BlastImpl class and simply invokes
the blastx binary, a BLAST suite algorithm that allows six-frame conceptual
translation products of a nucleotide query sequence against a protein sequence
database.

public void alignment(String db, String fragment,

String resFile, ..., String cmdArgs){

String cmd = blastBinary+ " " +"-p blastx -d " + db +

" -i " +fragment+ " -o "+resFile+" "+cmdArgs;

Process simProc = Runtime.getRuntime().exec(cmd);

...

}

4 Performance Analysis

In order to evaluate the described approach, a set of experiments has been con-
ducted comparing the COMPSs BLAST implementation to another Cloud solu-
tion using the Azure Platform and to a parallel version of BLAST, mpiBLAST
[12], on a parallel cluster. This tests aimed at measuring the scalability and the
overall performance of the COMPSs BLAST porting using different numbers
of processors and sequence fragments of the input sequence and at evaluating
the Cloud overhead which involves the creation and the destruction of virtual
resources on demand.



Enabling e-Science Applications on the Cloud with COMPSs 31

All the BLAST tests have been performed using the same use case of alignment
of DNA sequences from the Sargasso Sea species against the non-redundant
(NR) GenBank database with only prokaryote organisms. The input query file
contains 398 sequences and the database contains 7 million of sequences with a
total volume of 1 MB and 840 MB respectively.

The COMPSs porting of BLAST has been executed using the EMOTIVE
Cloud middleware to manage a testbed that included two Intel Xeon Quad Core
nodes at 3 GHz and 2.66 GHz respectively with 6 GB of memory, 250 GB of
storage and an internal Gigabit Ethernet network. On each node a quad core
VM instance has been deployed thus allowing COMPSs to execute up to 4 tasks
in parallel in a single node. The input and output files are stored on a separate
storage host and a network shared disk is mounted by the virtual machines. The
enactment services takes care of copying data from the storage to the Cloud and
moving back the result data at the end of execution.

The implementation of BLAST to the Windows Azure platform is also de-
veloped in the context of the VENUS-C project; the test used 1.6 GHz single
core small Azure virtual machines instances, with 1.75 GB of memory, 225 GB
of disk space and a 100 Mbps network.

The mpiBLAST version has been executed on the Tirant Supercomputer avail-
able at UPV. Tirant comprises 256 JS20 blades with IBM Power4 dual core pro-
cessors at 2.0 GHz, 4 GB of memory and 36 GB of local storage. All the nodes
are interconnected through Myrinet and Gigabit Network.

Fig. 3. Performance results



32 D. Lezzi et al.

Another test has been conducted executing the COMPSs BLAST workflow on
the MareNostrum Supercomputer available at BSC where the COMPSs runtime
is used in production. MareNostrum comprises 2560 JS21 blades with two IBM
PowerPC 970MP dual core processors at 2.3 GHz, 8 GB of memory and 36 GB
of local storage. All the nodes are interconnected through Myrinet and Gigabit
Network.

The results are summarized in Fig. 3. The COMPSs BLAST executed on
the VENUS-C testbed using virtual resources shows better overall performance
than the mpiBLAST implementation and than COMPSs BLAST executed in
MareNostrum. It also performs better than the Azure execution up to 8 proces-
sors. This is due to the fact that only 2 physical nodes have been used in the
tests allowing COMPSs to schedule only 8 tasks in parallel on the 8 available
cores. Tests with 10 and 12 processors on the same testbed were performed de-
ploying more virtual machines on the same host. In this case the Cloud overhead
is bigger than the performance achieved through the parallel tasks scheduling.
The Azure test was instead executed with an unlimited number of available re-
sources. Nevertheless, it is worth noting that even in the worst case of limited
resources, the COMPSs performance doesn’t deteriorate and remains constant.

The total overhead of the COMPSs enactment service sums up to about 600
seconds on each execution; this value includes the virtual machines creation
(about 200 seconds) and all the file transfers. These values can be improved
using a more I/O efficient testbed than the one used for the experiments. The
deployment overhead in Azure on the other side is of about 900 seconds but
even removing the virtualization overhead the COMPSs BLAST implementation
performs better.

5 Conclusions

This paper presented an approach for the porting and execution of scientific
applications to Cloud environments through the COMPSs enactment service
of the VENUS-C platform. A bioinformatics workflow based on the BLAST
alignment tool has been ported to COMPSs and executed on a Cloud testbed
with virtual resources managed by the EMOTIVE Cloud middleware.

The implementation of the COMPSs workflow required minimum intervention
by the user who only had to provide the sequential application and an annotated
interface for selecting the tasks. He interacts with the enactment service through
a client that provides job and data management functionalities. It is worth noting
that this implementation is not specific to the VENUS-C platform but can be
used for other execution environments like clusters and grids. The same workflow
for example has been also deployed on the MareNostrum supercomputer where
the COMPSs framework is already offered to users to execute several scientific
workflows.

The COMPSs BLAST on the VENUS-C testbed exhibited better performance
than the mpiBLAST and Azure implementations considered. Even if the tests
were conducted on a limited number of resources, the results are promising and



Enabling e-Science Applications on the Cloud with COMPSs 33

show that despite few limitations introduced by the specific Cloud infrastructure,
COMPSs keeps the scalability of the application and the overall performance of
its runtime while offering the researcher useful Cloud features like optimized
usage of resources and an easy programming and execution framework.

A similar approach, CloudBLAST[13], implements the workflow using the
MapReduce[14] paradigm to parallelize the Blast execution and a networking
middleware to interconnect VMs deployed in different sites. This approach re-
quires the user to explicitly write the map and reduce functions whereas with
COMPSs there is no need to change the existing user code. Also, COMPSs run-
time is able to use machines from different cloud providers without the need of
deploying virtual networks thanks to the interoperability with different cloud
middlewares.

Future work includes the complete interoperability of COMPSs with all the
infrastructures provided in the VENUS-C. A specific adaptor for the Generic
Worker Role will be developed in order to provide COMPSs with the capability
of executing the tasks on the Azure Platform. Also better scheduling policies will
be introduced in the COMPSs runtime in order to optimize the selection of the
resources. In the same way, scaling and elasticity mechanisms will be adopted
to enhance the programming model with capabilities for scaling up or down the
number of resources based on user-defined or policy driven criteria.

Acknowledgements. This work has been supported by the Spanish Min-
istry of Science and Innovation (contracts TIN2007-60625, CSD2007-00050 and
CAC2007-00052), by Generalitat de Catalunya (contract 2009-SGR-980) and the
European Commission (VENUS-C project, Grant Agreement Number: 261565).

References

1. Tejedor, E., Badia, R.M.: COMP Superscalar: Bringing GRID superscalar and
GCM Together. In: 8th IEEE International Symposium on Cluster Computing
and the Grid (May 2008)

2. Lezzi, D., Rafanell, R., Badia, R.M., Lordan, F., Tejedor, E.: COMPSs in the
VENUS-C Platform: enabling e-Science applications on the Cloud. In: Proc. of the
IBERGRID 2011 Conf., Santander (June 2011)

3. Foster, I., et al.: OGSA Basic Execution Service Version 1.0. Grid Forum Document
GFD-RP. 108 (August 8, 2007)

4. Savva, A. (ed.): Job Submission Description Language (JSDL) Specification,
Version 1.0. Grid Forum Document GFD-R.056 (November 7, 2005)

5. Simmhan, Y., van Ingen, C.: Bridging the Gap between Desktop and the Cloud
for eScience Applications, Microsoft Research, U.S. (2010),
http://research.microsoft.com/pubs/118329/

Simmhan2010CloudSciencePlatform.pdf

6. Open Nebula, http://opennebula.org
7. Goiri, I., Guitart, J., Torres, J.: Elastic Management of Tasks in Virtualized Envi-

ronments. In: XX Jornadas de Paralelismo, JP 2009, A Corua, Spain, September
16-18, pp. 671–676 (2009)

http://research.microsoft.com/pubs/118329/Simmhan2010CloudSciencePlatform.pdf
http://research.microsoft.com/pubs/118329/Simmhan2010CloudSciencePlatform.pdf
http://opennebula.org


34 D. Lezzi et al.

8. Open Cloud Computing Interface Working Group, http://www.occi-wg.org
9. Distributed Management Task Force Inc., Open Virtualization Format Specifica-

tion v1.1, DMTF Standard DSP0243 (2010)
10. SNIA CDMI,

http://www.snia.org/tech_activities/standards/curr_standards/cdmi/

11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local
Alignment Search Tool. Journal of Molecular Biology 215(3), 403–410 (1990),
doi:10.1006/jmbi.1990.9999

12. Darling, A., Carey, L., Feng, W.: The Design, Implementation, and Evaluation of
mpiBLAST. In: Proc. of the 4th Intl. Conf. on Linux Clusters (2003)

13. Matsunaga, A., Tsugawa, M., Fortes, J.: CloudBLAST: Combining MapReduce
and Virtualization on Distributed Resources for Bioinformatics Applications. In:
IEEE Fourth International Conference on eScience (2008)

14. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proc. of the 6th Symp. on Operating Systems Design & Implementation,
pp.137–150 (2004)

http://www.occi-wg.org
http://www.snia.org/tech_activities/standards/curr_standards/cdmi/

	Enabling e-Science Applications 
on the Cloud with COMPSs
	Introduction
	COMPSs and the VENUS-C Platform
	Evaluation of an e-Science Application
	Porting of the Application
	The COMPSs Application Interface

	Performance Analysis
	Conclusions
	References




