
A Tutorial

on High Performance Computing
Applied to Cryptanalysis

(Invited Talk Abstract)

Antoine Joux

DGA and
Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire PRISM,

45 avenue des États-Unis, F-78035 Versailles Cedex, France
antoine.joux@m4x.org

Abstract. Cryptology and computers have a long common history; in
fact, some of the early computers were created as cryptanalytic tools.
The development of faster and widely deployed computers also had a
great impact on cryptology, allowing modern cryptography to become a
practical tool. Today, both computers and cryptology are not only prac-
tical, but they have became ubiquitous tools. In truth, computing devices
incorporating cryptography features range from very small low-end de-
vices to supercomputer, going through all possible intermediate sizes;
these devices include both general purpose computing devices and spe-
cific, often embedded, processors which enable computing and security
features in hundreds of technological objects.

In this invited talk, we mostly consider the cryptanalytic side of
things, where it is fair to use very large amounts of computing power to
break cryptographic primitives or protocols. As a consequence, demon-
strating the feasibility of new cryptanalytic methods often requires large
scale computations. Most articles describing such cryptanalyses usually
focus on the mathematical or algorithmic advances and gloss over the
implementation details, giving only sufficient data to show that the com-
putations are feasible. The goal of the present abstract is to give an idea
of the difficulty facing implementers of large scale cryptanalytic attacks.

Computers and cryptanalysis have a long common history. This is well-emphasized
by the location of this Eurocrypt conference located near Bletchley Park, the home
of the UK code-breaking during World War II. In particular, the park features
a working replica of the first digital computer, the Colossus and of the Turing-
Welchman Bombe, which was initially developed for cryptanalytic purposes. The
organization of the park itself reflects the duality of computers and cryptanalysis.
Indeed, the park hosts two museums, the “National Codes and Ciphers Centre”
and the “National Museum of Computing”.

Even if computers and other computing devices have become general purpose
tools in the present days, they still have a lot in common with cryptography.
Today, almost all computing devices, from credit cards to high-end computers

D. Pointcheval and T. Johansson (Eds.): EUROCRYPT 2012, LNCS 7237, pp. 1–7, 2012.
c© International Association for Cryptologic Research 2012



2 A. Joux

implement some cryptographic functionality and cryptography is an essential
tool for securing the digital world. Moreover, most of the recent cryptographic
advances rely on the enhanced performances of modern computing devices.

On the cryptanalytic side, we encounter a similar situation. Having faster and
bigger computers allows cryptanalysts to run huge computations which would
not have been possible in their wildest dreams a few decades ago.

This article discuss this cryptanalytic application of supercomputers. In
Section 1, we classify the typical cryptanalytic applications. In Section 2, we
describe the hardware context of the last decade and discuss some possible evo-
lutions. Section 3 explains the practical issues that can be encountered while
managing the necessary computations to set new cryptanalysis records. Finally,
Section 4 describes some algorithm challenges that need to be solved to efficiently
use the potential power of forthcoming computers.

1 Typical Cryptanalytic Applications

The applications of high-performance computing to cryptanalysis are numerous
and varied. They range from attacks which are “embarrassingly-parallel” and
can trivially use a large distributed computing power to algorithms which are
essentially sequential by nature and are very difficult to adapt to take advantage
of the power of supercomputers.

The easiest case of embarrassingly parallel computations contains brute-force
attacks and their variants. In this case, each task can run completely independently
of the others, it only needs to receive a small amount of input data (such as a plain-
text/ciphertext pair) and a description of the part of the key space it should work
on. Note that this description is not enough necessary and, especially when the
control loop is loose, simply letting each task try a random subset of the key might
even be preferable. Some other attacks, such as differential collision searches on
hash functions are also of an embarrassingly parallel nature [4].

A slightly harder class of computations which can be parallelized in a reason-
able straightforward way, but require communications to send back some partial
results in a centralized place. This centralized place then redistributes the values
in order to conclude the computation. This is typically the case of parallelized
collision-finding algorithms [14, 21].

The next important class of problem contains the sieving-based index calculus
algorithm for factoring [1, 5, 15] and discrete logarithms [11–13]. In this class, the
largest phase of the computation (the sieving phase) is embarrassingly parallel,
however, it produces a large amount of data which needs to be collected in
a centralized place. Note that this amount of data is small compared to the
magnitude of the computation but it is still a difficult task to centralize this
data without introducing errors. The next phase consists in transforming this
data into a linear system of equations and then in solving this system. This offers
much more difficulty than the initial computation. Currently, this task is achieve
by first reducing the size of the system using ad’hoc heuristics called, structured
Gaussian Elimination. This is usually done on a small number of processor, but



High Performance Computing Applied to Cryptanalysis 3

the computational cost required here is low enough and this is not a problem. The
reduced system is then solved using an iterative linear solver such as the Lanczos
or Wiedemann algorithms. The main problem is that these algorithms can be
distributed but require a large amount of communications between the individual
tasks. As a consequence, even when using the block Wiedemann variant [6, 20]
which lowers the amount of communications, this is usually the computational
bottleneck.

Finally, some cryptanalyses rely on algorithmic tasks for which no satisfactory
parallel descriptions are known. This is the case for many advanced algorithms
used in cryptanalysis (see Section 4). Note that even in the best cases, writ-
ing record-breaking codes is a very specific programming activity, which rarely
follows the tenants of modern software engineering. The reason for this discrep-
ancy is that the use of modern programming features has a cost in terms of
performance, which is rarely acceptable in this specific context.

2 Hardware Context

During the last decades of the twentiest century, the speed of processor increased
at the steady rhythm. More precisely, clock rates were at the MHz level in the
80s and raised to the GHz level in the 2000s. This increased the performance of
individual processors and permitted to do bigger computations while using at
most a small amount of parallelism. However, the clock rates of processors are no
longer increasing and the additional computing power of recent processors come
from their ability to perform more computations in parallel. This capability
is obtained either by allowing the machines to work on larger data types, by
giving CPUs the ability to parallelize micro-instructions or by building multi-
core processors. As a consequence, despite the stopped growth of clock rate, the
raw computing power of processors is still increasing steadily. However, taking
advantage of this power for cryptanalytic tasks requires much more effort on the
programmer’s part.

At the same time, the amount of memory available in modern machines has
increased considerably. In the 80s, 64 Kbytes of memory for a personal com-
puter was above standard, in the present days, the equivalent would be around
8 Gbytes. However, on modern processors, accessing memory is proportionally
more expensive. To palliate this problem, designers have added several levels of
memory-cache that greatly increase the memory accesses as long as they remain
reasonably localized. This is also an important constraint since in this model
some algorithmic techniques such as sieving are considerably slowed down.

Where personal computers are concerned, the main processor(s) is no longer
the only available computing ressource. Indeed, with the development of 3D-
games, graphics cards have progressively been transformed into massively paral-
lel computing ressources, capable of performing quite general computations. As a
consequence, it has become worthwhile to consider their potential as computing
devices in massive computations.

Above the personal computer scale, the development of cloud computing is
offering a new opportunity to run medium-scale computation at a moderate cost.



4 A. Joux

At the present time, these infrastructures seem are more suited to embarrassingly
parallel tasks than to communication bounded computations. One advantage of
using cloud-computing, emphasized in [16], it that it gives a simple metric to
compare computations: their monetary cost.

Finally, turning to supercomputers, it is interesting to see that, even at this
large scale, many computers among the most powerful are built by assem-
bling many high-end “personal computers” tied together by a high-performance
network. As a consequence, running embarrassingly-parallel task on such com-
puters does not require much programming beyond the initial work of writing
the program for a general purpose computer. It also means that the previous
considerations about parallelism and memory accesses remain true. Of course,
thanks to the high-performance network, it is possible to perform tasks that
require a fairly high amount of communications. However, despite this improve
performance, communications often remain the bottleneck point for algorithms
which are not straightforward to parallelize.

Another possibility to perform very large computations is to consider the use
of specific hardware. However, the cost of building such hardware is high. As
a consequence, many papers [10, 18, 19] dealing with specific hardware remain
theoretical and aim at finding the limit of feasible computations. A notable
exception is the development of the DES-Cracker [9].

3 Running Record Computations

Once a new cryptanalytic algorithm has been discovered or improved and im-
plemented, running the algorithm to set some record computation is a nice way
to demonstrate the potential of the algorithm. This being said, one could easily
imagine that this final step of performing the computation is just a routine task.
Unfortunately, this is not the case and running record computations is a difficult
and tedious task.

The first step is to obtain the necessary computing resources. This can be easy
if the computation only requires dozens of desktop computers for a few weeks or
become a real nightmare for people trying to run a large scale computation by
recruiting tens of thousands of computers on the Internet. The easiest approach
for computations that requires significantly more power than a dozen of desk-
top computers is to apply for computing time one or several supercomputers.
Throughout the world, there exists several supercomputing organizations that
let researchers apply for computing power.

The next step, once computing power has been granted, is to port the com-
puting code to the computers that have been made available. Even when great
care has been taken to write portable code in the first place, there are always
specific “features” that call for modifications. This is especially true for complex
computations that have successive computing phases. Indeed, in that case, one
often discovers that one of the “negligible” phases of the computation does not
scale well and needs a complete rewriting to run correctly for the record being
considered.



High Performance Computing Applied to Cryptanalysis 5

Once all this preparation has been settled and, contrary to what might be
expected, the really hard part of the computation starts. Indeed, while large
computations may become routine when series of similar computations are per-
formed1, record computations never are. A first problem is that by going to larger
sizes, one often triggers unexpected bugs, with rare probability of occurrences.
This may lead the program to make several passes over the same search space,
which not only wastes computing power but may trigger other bugs when unex-
pected data collisions are encountered later on. Another possible consequence is
that some intermediate computational data may contain corrupted information.
While benign in some application such as brute force, incorrect data may cause
major failures in other cases. For example, if a single incorrect equation is added
to a large linear system, then any hope of recovering the solution is lost. Note
that corrupted data is not always a consequence of coding bugs, supercomput-
ers are often experimental machines which may suffer from occasional hardware
problem and the sheer scale of the computation also makes physical corruption
of data, whether in memory or on disk, possible.

As a consequence, when programming with record computations in mind,
it is essential to add extra robustness in the processing. A good practice is
to check intermediate computational results whenever this can be done at a
reasonable cost. Such checking should use independently written code and should
do the verification at the highest achievable level of mathematical abstraction.
For example, before performing the iterative linear algebra step of a sieving
algorithm it is very good practice to pull back the equation to the mathematical
group being considered and check them on this group.

Also note that closely monitoring the computation is a must: processes may
get stuck, they may fail to restart after maintenance. To make it short, when
running record computations, one should always expect the unexpected.

4 Algorithmic Challenges

As computations grow bigger, the relevant metric to measure the computation
is shifting. We can no longer focus on running time and ignore other parame-
ters. Of course, running time has never been a perfect metric but it still gave a
good approximation of the efficiency of algorithms. With modern supercomput-
ers, the pictures is much more complicated. First, the gap between the cost of
time and memory is growing bigger. Second, another, very important parameter
should be taken into account: the cost of communication between the parts of
the supercomputer.

Combining all the relevant parameters is not easy because there the parame-
ters are not independent. Indeed, programs which require a lot of memory cannot
store their data locally in a single node and are going to use larger amount of
communications.

1 A typical example is the weather forecast computations which despite their large
scale become routine once the production code becomes stable enough.



6 A. Joux

As a consequence, in order to use supercomputers to their full power, new
algorithms are becoming necessary. These new algorithms should be designed
with new metrics in mind. Basically, processes should be as independent of each
others as possible and memory use should be limited to fit within local memory
(or even better within cache memory).

Of course, embarrassingly parallel tasks are not going to be a problem. How-
ever, there are many more algorithms which need to be adapted or improved to
become more efficient on supercomputer. To give some example, let us mention
iterative linear algebra [17, 20], structured Gaussian elimination, computation of
Gröbner bases [8], SAT solvers [7], collision-search techniques [14, 21], large-scale
lattice reduction [2], generalized birthday algorithms [3], . . .

5 Conclusion

Performing cryptanalytic records computation is a very efficient tool to under-
stand the concrete security level of cryptographic primitive and this should re-
main true in the future. In particular, such computations can be used to bench-
mark lower security levels. Indeed, on the one hand, many low-end cryptographic
devices rely on a 80-bit security level. On the other hand, the current fastest
computer can perform more than 273 floating-point instructions per year. As a
consequence, since the figures are getting close, studying the evolution of record
computations is essential in order to decide when to phase out such low-end
systems before they become insufficiently secure.

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A Kilobit Spe-
cial Number Field Sieve Factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 1–12. Springer, Heidelberg (2007)

2. Backes, W., Wetzel, S.: Parallel lattice basis reduction - the road to many-core.
In: Thulasiraman, P., Yang, L.T., Pan, Q., Liu, X., Chen, Y.-C., Huang, Y.-P.,
Chang, L.H., Hung, C.-L., Lee, C.-R., Shi, J.Y., Zhang, Y. (eds.) 13th IEEE
International Conference on High Performance Computing & Communication,
pp. 417–424. IEEE (2011)

3. Bernstein, D.J.: Better price-performance ratios for generalized birthday attacks
(2007), http://cr.yp.to/rumba20/genbday-20070904.pdf

4. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

5. Brent, R.P.: Recent Progress and Prospects for Integer Factorisation Algorithms.
In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON
2000. LNCS, vol. 1858, pp. 3–22. Springer, Heidelberg (2000)

6. Coppersmith, D.: Solving linear equations over GF(2) via block Wiedemann algo-
rithm. Mathematics of Computation 62, 333–350 (1994)

7. Hamadi, Y. (ed.). Special issue on parallel SAT solving. Journal on Satisfiability,
Boolean Modeling and Computation 6, 203–262 (2009)

http://cr.yp.to/rumba20/genbday-20070904.pdf


High Performance Computing Applied to Cryptanalysis 7

8. Faugère, J.-C., Lachartre, S.: Parallel Gaussian elimination for Gröbner bases com-
putations in finite fields. In: Maza, M.M., Roch, J.-L. (eds.) Proceedings of the
4th International Workshop on Parallel Symbolic Computation, pp. 89–97. ACM
(2010)

9. Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,
Wiretap Politics and Chip Design. O’Reilly & Associates, Inc. (1998)

10. Franke, J., Kleinjung, T., Paar, C., Pelzl, J., Priplata, C., Stahlke, C.: SHARK:
A Realizable Special Hardware Sieving Device for Factoring 1024-Bit Integers. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 119–130. Springer,
Heidelberg (2005)

11. Hayashi, T., Shinohara, N., Wang, L., Matsuo, S., Shirase, M., Takagi, T.: Solving
a 676-Bit Discrete Logarithm Problem in GF(36n). In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 351–367. Springer, Heidelberg (2010)

12. Joux, A., Lercier, R.: The Function Field Sieve in the Medium Prime Case. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer,
Heidelberg (2006)

13. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The Number Field Sieve in
the Medium Prime Case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 326–344. Springer, Heidelberg (2006)

14. Joux, A., Lucks, S.: Improved Generic Algorithms for 3-Collisions. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg
(2009)

15. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A.,
Zimmermann, P.: Factorization of a 768-Bit RSA Modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

16. Kleinjung, T., Lenstra, A.K., Page, D., Smart, N.P.: Using the cloud to determine
key strengths. IACR Cryptology ePrint Archive, p. 254 (2011)

17. Kleinjung, T., Nussbaum, L., Thomé, E.: Using a grid platform for solving large
sparse linear systems over gf(2). In: Proceedings of the 2010 11th IEEE/ACM
International Conference on Grid Computing, pp. 161–168. IEEE (2010)

18. Lenstra, A.K., Shamir, A.: Analysis and Optimization of the TWINKLE Factoring
Device. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 35–52.
Springer, Heidelberg (2000)

19. Shamir, A., Tromer, E.: Factoring Large Numbers with the TWIRL Device. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 1–26. Springer, Heidelberg
(2003)

20. Thomé, E.: Subquadratic computation of vector generating polynomials and im-
provement of the block wiedemann algorithm. J. Symb. Comput. 33(5), 757–775
(2002)

21. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic
applications. Journal of Cryptology 12(1), 1–28 (1999)


	A Tutorialon High Performance Computing Applied to Cryptanalysis

	Typical Cryptanalytic Applications
	Hardware Context
	Running Record Computations
	Algorithmic Challenges
	Conclusion
	References





