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Abstract. This paper is about private data analysis, in which a trusted
curator holding a confidential database responds to real vector-valued
queries. A common approach to ensuring privacy for the database ele-
ments is to add appropriately generated random noise to the answers,
releasing only these noisy responses. A line of study initiated in [7] ex-
amines the amount of distortion needed to prevent privacy violations of
various kinds. The results in the literature vary according to several pa-
rameters, including the size of the database, the size of the universe from
which data elements are drawn, the “amount” of privacy desired, and for
the purposes of the current work, the arity of the query. In this paper
we sharpen and unify these bounds. Our foremost result combines the
techniques of Hardt and Talwar [11] and McGregor et al. [13] to obtain
linear lower bounds on distortion when providing differential privacy for
a (contrived) class of low-sensitivity queries. (A query has low sensitivity
if the data of a single individual has small effect on the answer.) Several
structural results follow as immediate corollaries:

– We separate so-called counting queries from arbitrary low-sensitivity
queries, proving the latter requires more noise, or distortion, than
does the former;

– We separate (ε, 0)-differential privacy from its well-studied relax-
ation (ε, δ)-differential privacy, even when δ ∈ 2−o(n) is negligible in
the size n of the database, proving the latter requires less distortion
than the former;

– We demonstrate that (ε, δ)-differential privacy is much weaker than
(ε, 0)-differential privacy in terms of mutual information of the tran-
script of the mechanism with the database, even when δ ∈ 2−o(n) is
negligible in the size n of the database.

We also simplify the lower bounds on noise for counting queries in [11]
and also make them unconditional. Further, we use a characterization
of (ε, δ) differential privacy from [13] to obtain lower bounds on the
distortion needed to ensure (ε, δ)-differential privacy for ε, δ > 0. We
next revisit the LP decoding argument of [10] and combine it with a
recent result of Rudelson [15] to improve on a result of Kasiviswanathan
et al. [12] on noise lower bounds for privately releasing �-way marginals.
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1 Introduction

This is a paper about private data analysis, in which a trusted curator holding
a confidential database responds to real vector-valued queries. Specifically, we
focus on the practice of ensuring privacy for the database elements by adding
appropriately generated random noise to the answers, releasing only these noisy
responses. A line of study initiated by Dinur and Nissim examines the amount
of distortion needed to prevent privacy violations of various kinds [7]. Dinur and
Nissim did not have a definition of privacy; rather, they had a notion that has
come to be called blatant non-privacy; the modest goal, then, was to add enough
distortion to avert blatant non-privacy. Since that time, the community has
raised the bar by definining (and achieving) powerful and comprehensive notions
of privacy [7,9,8], and the goal has been to preserve (ε, 0)-differential privacy and
its relaxation, (ε, δ)-differential privacy. A final goal considered herein, attribute
privacy, has a more complicated description, but may be thought of as preventing
blatant non-privacy for a single data attribute [12] in the presence of a certain
kind of contingency table query.

The results in the literature vary according to several parameters, including
the number n of elements in the database, the size d of the universe from which
data elements are drawn, the “amount” and type of privacy desired, and for
the purposes of the current work, the arity k of the query. In this paper we
strengthen and unify these bounds.

As corollaries of our work, we obtain several “structural” results regarding
different types of privacy guarantees:

– We separate so-called counting queries from arbitrary low-sensitivity queries,
proving the latter requires more noise, or distortion, than does the former;

– We separate (ε, 0)-differential privacy from its well-studied relaxation (ε, δ)-
differential privacy, even when δ ∈ 2−o(n) is negligible in the size n of the
database, proving the latter requires less distortion than the former;

– We demonstrate that (ε, δ)-differential privacy is much weaker than (ε, 0)-
differential privacy in terms of mutual information of the transcript of the
mechanism with the database even when δ ∈ 2−o(n) is negligible in the size
n of the database.

We also simplify the lower bounds on noise for counting queries in [11] and also
make them unconditional removing a technical assumption on the mechanism
present in their paper. Next, we use a characterization of (ε, δ) differential pri-
vacy from [13] to obtain lower bounds on the distortion needed to ensure (ε, δ)-
differential privacy for ε, δ > 0. We remark that [12] also obtain quantitatively
similar lower bounds on the distortion required to maintain (ε, δ) differential
privacy for the class of �-way marginals though their proof technique is very
different and arguably much more complicated.

After this, we use results of Rudelson [15] and combine it with LP decoding
to show that attribute privacy is violated if �-way marginals are released with
at least 1− η fraction of these marginals are released with o(

√
n) noise for some

η > 0. The results and the technique in [12] required η = 0 making our results
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more powerful. Finally, we extend the results of [7] to the case of small universe
size achieving stronger lower bounds to prevent blatant non-privacy.

To describe our results even at a high level we must outline the privacy-
preserving database model, the notion of distortion or noise that may be em-
ployed in order to preserve privacy, and the meaning of the goals of the adversary:
blatant non-privacy, violation of (ε, 0)-differential privacy, violation of (ε, δ)- dif-
ferential privacy, and attribute non-privacy.

Typically, the curator of a database receives questions to which it responds
with potentially noisy answers. There are two possible settings here. One is that
the queries are received by the curator one at a time. The other situation is that
all the queries are received by the curator at once and it then publishes (noisy)
answers to all of them at once. The former is called the interactive setting and
the latter is called the non-interactive setting. All our lower bounds are in the
non-interactive setting making them applicable to the interactive setting as well.

We now formally describe a database and a query : A database X is an
element of (Z+)d . Here d is called the universe size and intuitively refers to the
number of types of elements present in the database. Also, for a database X ,
n =

∑d
i=1 Xi is defined as the size of the database and refers to the number of

elements in the database. Note that we are representing databases as histograms.
A query (of arity k) is a map F : (Z+)d → R

k such that ∀i ∈ [k], ∀x, y ∈ (Z+)d,
|F (x+ y)i−F (x)i| ≤ 1 if ‖y‖1 = 1. In other words, every coordinate of the map
F is 1-Lipschitz. We say F is a counting query if F is a linear map. The meaning
of d, k, n throughout the paper shall be the same as above unless mentioned
otherwise.

We now formally introduce the definition of mechanism and privacy.

Definition 1. Let F be a family of queries such that ∀F ∈ F , F : (Z+)d → R
k.

Then, a mechanism M : (Z+)d × F → μ(Rk) where μ(Rk) is simply the set of
probability distributions over R

k. On being given a query F ∈ F and a database
x ∈ (Z+)d, the curator samples z from the probability distribution M(x, F ) and
returns z.

We next state the definition of ε-differential privacy (introduced by Dwork et al.
in [9]) and (ε, δ)-differential privacy (introduced by Dwork et al. in [8]).

Definition 2. For a family of queries F , a mechanism M : (Z+)d × F →
μ(Rk) is said to be ε-differentially private if for every x, y ∈ (Z+)d such that
‖x − y‖1 ≤ 1, every measurable set S ⊆ R

k and ∀F ∈ F , the following holds :
Let M(x, F ) = Mx,F and M(y, F ) = My,F and for a probability distribution Γ ,
let Γ (S) denote the probability of set S under Γ . Then,

2−ε ≤ Mx,F (S)

My,F (S)
≤ 2ε

The mechanism is said to be (ε, δ)-differentially private if

2−ε ·My,F (S)− δ ≤Mx,F (S) ≤ 2ε ·My,F (S) + δ

Typically, δ is set to be negligible in n, k.
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We remark that we do not define the notion of noise very precisely here as the
notion of noise depends on the context. However, in the context of differential
privacy, we use the following definition of noise.

Definition 3. For a family of queries F , a mechanism M : (Z+)d×F → μ(Rk)
is said to add noise (at most) η if with high probability (say 0.99) over the
randomness of M , ‖M(x, F )− F (x)‖∞ ≤ η.

While differential privacy is a very strong notion of privacy, sometimes one can
show that even very modest definitions of privacy get violated. One such notion
is that of blatant non-privacy. We say that a mechanism M for answering F
over databases of size n and universe size d is blatantly non-private, if there is
an attack A such that w.h.p. over the answer y returned by the mechanism M ,
A(y) differs from the database only at o(1) fraction of the places. Yet another
very weak notion of privacy that is interesting to us is that of attribute non-
privacy. The formal definition follows :

Definition 4. For a query F ∈ F , a mechanism M : ({0, 1}d)n × F → R
k is

said to be attribute non-private if there exists Y ∈ ({0, 1}d−1)n and an algorithm
A such that for every x ∈ {0, 1}n,

Pr
z∈M(Y ◦x,F )

[A(z) = x′ : ‖x− x′‖1 = o(‖x‖1)] ≥ 1/10

where Y ◦x simply denotes the obvious concatenation of Y and x. A need not be
computationally efficient and the constant 1/10 is arbitrary and can be replaced
by any positive constant.

We show the following results :

1. Combining techniques from [11] and [13], we obtain tight lower bounds on
the noise for arbitrary (non-counting) low-sensitivity queries for any (ε, 0)-
differentially private mechanism. Given positive results of Blum, Ligett, and
Roth [3], this separates non-counting queries from counting queries, prov-
ing that the former require more distortion than the latter for maintain-
ing differential privacy. Also, given the positive results of [8] for arbitrary
low-sensitivity queries, this separates (ε, δ)-differential privacy from (ε, 0)-
differential privacy, where δ = δ(n, k) denotes a function negligible in its
argument. We also use this technique to show that the guarantees in terms
of information content is drastically weaker for an (ε, δ) differentially private
protocol as compared to an ε-differentially private protocol. Our technique
also simplifies the volume-based lower bounds on noise for counting queries
in [11]. In addition, we also make the lower bounds unconditional. The lower
bound in [11] required the mechanism to be defined on “fractional” databases
i.e., on (R+)d as opposed to just (Z+)d while we do not have any such re-
strictions.

2. We give tight lower bounds on noise for ensuring (ε, δ)-differential privacy
for δ > 0. This proof relies on a lemma due to [13] showing that (ε, δ)-
differentially private mechanisms yield a certain kind of unpredictable source.
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On the other hand, any mechanism that is blatantly non-private cannot yield
an unpredictable source. Thus, if the noise is insufficient to prevent bla-
tant non-privacy then it cannot provide (ε, δ)-differential privacy. We subse-
quently use the lower bounds of [7,10] for preventing blatant non-privacy to
get lower bounds on the distortion for (ε, δ) differential privacy.

3. We revisit the LP decoding attack of Dwork, McSherry, and Talwar [10],
observing that any linear query matrix yielding a Euclidean section suffices
for the attack. The LP decoding attack succeeds even if a certain constant
fraction of the responses have wild noise. Armed with the connection to
Euclidean sections, and a recent result of Rudelson [15] bounding from below
the least singular value of the Hadamard product of certain i.i.d. matrices,
we qualitatively strengthen a lower bound of Kasiviswanathan, Rudelson,
Smith, and Ullman [12] on the noise needed to avert attribute non-privacy in
�-way marginals release by making the attack resilient to a constant fraction
of wild responses.

There is an extension of results of [7] when the size of the universe is smaller
than the size of the database which can be found in the full version of this
paper [5].

2 Lower Bound by Volume Arguments

We now recall the volume based argument of Hardt and Talwar [11] to show
lower bounds on the noise required for ε differential privacy.

Theorem 1. Assume x1, . . . , x2s ∈ (Z+)
d
such that ∀i, ‖xi‖1 ≤ n and for

i �= j, ‖xi − xj‖1 ≤ Δ. Further, let F : (Z+)
d → R

k such that for any i �= j,
‖F (xi) − F (xj)‖∞ ≥ η. If Δ ≤ (s − 1)/ε, then any mechanism which is ε-
differentially private for the query F on databases of size n must add noise η/2.

While the line of reasoning in the proof is same as that of [11], we do the proof
here as the argument in [11] works only for counting queries i.e., when F is a
linear transformation. On the other hand, the statement and proof of our result
works for any query F .

Proof. Consider the �∞ balls of radius η/2 around each of the F (xi). By the
hypothesis, these balls are disjoint. Now assume, any mechanism M which adds
noise η/2 and consider any xi. Then, because all the balls are disjoint, we have
that there is some j �= i such that if S is the �∞ ball of radius η/2 around F (xj),
then

Pr
z∈M(xi,F )

[z ∈ S] ≤ 2−s

However, we can also say that because the noise added by the mechanism M is
at most η,

Pr
z∈M(xj ,F )

[z ∈ S] ≥ 1/2
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Also, because the mechanism M is ε-differentially private and ‖xi − xj‖1 ≤ Δ,
then

Prz∈M(xi,F )[z ∈ S]

Prz∈M(xj ,F )[z ∈ S]
≥ 2−ε·Δ

This leads to a contradiction if Δ ≤ (s− 1)/ε thus proving the assertion.

2.1 Linear Lower Bound for Arbitrary Queries

In this subsection, we prove the following theorem.

Theorem 2. For any k, d, n ∈ N and 1/40 ≥ ε > 0, where n ≥ min{k/ε, d/ε},
there is a query F : (Z+)d → R

k such that any mechanism M which is ε-
differentially private adds noise Ω(min{d/ε, k/ε}).

If ε > 1, then there is a query F : (Z+)d → R
k such that any mechanism

M which is ε-differentially private adds noise Ω(min{d/(ε ·25ε), k/ε}) as long as
n ≥ min{k/ε, d/(ε · 25ε)}
Before starting the proof, we make a couple of observations. First of all, note that
the statement of the theorem does not give any lower bound for 1 ≥ ε > 1/40.
However, any mechanism which is ε-differentially private for ε in the aforemen-
tioned range is also ε′-differentially private for ε′ = 10/9. Hence, the noise lower
bounds for ε′-differential privacy for ε′ = 10/9 are also applicable for the range
of 1 ≥ ε > 1/40. It is easy to see that up to constant factors, the lower bounds
with ε′ = 10/9 are optimal for ε in the aforementioned range.

Secondly, Laplacian mechanism maintains ε-differential privacy while adding
only O(k/ε) noise. Also, because the databases are of size n, it is enough to add
noise O(n) to maintain ε-differential privacy for any ε ≥ 0. Thus, as long as
k = O(d), our lower bounds are tight up to constant factors. Next, we do the
proof of Theorem 2.

Also, in the subsequent proofs, the databases shall be constructed in clever
ways. The full details of these constructions can be found in [5]. We will be
referring to the appropriate claims whenever necessary.

Proof. Our proof strategy is to construct a set of databases and a query which
meets the conditions stated in the hypothesis of Theorem 1 and then get the
desired lower bound on the noise. We first deal with the case when 0 < ε < 1/40.
Let � = min{d, k}. We can now use Claim A.2 in [5] to construct 2s databases
x1, . . . , x2s (for s = �/400) such that xi ∈ (Z+)d with the property that ∀i �=
j, ‖xi − xj‖1 ≥ n′/10 and ‖xi‖1 ≤ n′ where n′ = �/(1280ε) (Application of
Claim A.2 uses d′ = �/320). Note that our databases are of size bounded by
n′ ≤ n. We now describe a mapping L : (Z+)d → R

2s which is related to a
construction in [13]. The mapping is as follows :

– For every xi, there is a coordinate i in the mapping.
– The ith coordinate of L(z) is max{n′/30− ‖xi − z‖1, 0}.

Claim. The map L is 1-Lipschitz i.e., if ‖z1−z2‖1 = 1, then ‖L(z1)−L(z2)‖1 ≤ 1.
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Proof. We observe that for any z1, z2 such that ‖z1 − z2‖ ≤ 1, if A denotes the
set of coordinates where at least one of L(z1) or L(z2) are non-zero, then A
is either empty or is a singleton set. Given this, the statement in the claim is
obvious, since the mapping corresponding to any particular coordinate is clearly
1-Lipschitz.

We now describe the queries. Corresponding to any r ∈ {−1, 1}2s, we define
fr : (Z

+)d → R, as

fr(x) =

d∑

i=1

L(x)i · ri

Now, we define a random map F : (Z+)d → R
k as follows. Pick r1, . . . , rk ∈

{−1, 1}2s independently and uniformly at random and define F as follows :

F (x) = (fr1(x), . . . , frk(x))

Now consider any xh, xj ∈ S such that h �= j. Because of the way L is defined,
it is clear that for any ri,

Pr
ri
[|fri(xh)− fri(xj)| ≥ n′/15] ≥ 1/2

A basic application of the Chernoff bound implies that

Pr
r1,...,rk

[For at least 1/10 of the ri’s, |fri(xh)− fri(xj)| ≥ n′/15] ≥ 1− 2−k/30

Now, note that the total number of pairs (xi, xj) of databases such that xi, xj ∈ S
is at most 22s ≤ 2�/200 ≤ 2k/200. This implies (via a union bound)

Pr
r1,...,rk

[∀h �= j,≥ 1/10 of the ri’s, |fri(xh)− fri(xj)| ≥ n′/15] ≥ 1− 2−k/40

This implies that we can fix r1, . . . , rk such that the following is true.

∀h �= j, For at least 1/10 of the ri’s, |fri(xh)− fri(xj)| ≥ n′/15

This implies that for any xh �= xj ∈ S, ‖F (xh) − F (xj)‖∞ ≥ n′/15. In fact,

‖F (xh)− F (xj)‖2 ≥ n′√k/150 which is a much stronger assumption than what
we require and is quantitatively similar to the results in [11] where they consider
�2 noise as opposed to �∞ noise.

We can now apply Theorem 1 by putting Δ = 2n′ and s = �/400 > 3εn′ and
η = n′/15 and observe that Δ ≤ (s− 1)/ε thus proving the result.

We next deal with the case when ε > 1. This part of the proof differs from the
case when ε < 1 only in the construction of x1, . . . , x2s . We also emphasize that
had we not insisted on integral databases, our proof would have been identical
to the first part. We construct the databases x1, . . . , x2s using combinatorial
designs. More precisely, for some sufficiently large constant C, let � = min{d/(C ·
25ε), k}. We can now use Claim A.3 from [5] to construct 2s databases x1, . . . , x2s

(for s = �/400) such that xi ∈ (Z+)d with the property that ∀i �= j, ‖xi−xj‖1 ≥
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n′/10 and ‖xi‖1 ≤ n′ where n′ = �/(1280ε) (using d′ = �/320 in Claim A.3).
Again, we note here that the databases constructed are of size n′.

From this point onwards, we define the map L and the query F as we did in
the proof of Theorem 2 and the proof proceeds identically. In particular, we get a
query F : (Z+)d → R

k such that for any i �= j, ‖F (xi)−F (xj)‖2 ≥ n′√k/150. As
before, we can now apply Theorem 1 by putting Δ = 2n′ and s = �/100 > 3εn′

and η = n′/15 and observe that Δ ≤ (s− 1)/ε thus proving the result.

For the subsequent part of this paper, we only consider lower bounds on ε-
differential privacy for 0 < ε < 1 as opposed to ε > 1. This is because the
privacy guarantees one gets becomes unmeaningful when ε is large. However, we
do remark that the results can be carried in a straightforward way to the regime
of ε > 1 using combinatorial designs (like we did for Theorem 2).

Consequences of the Linear Lower Bound. We briefly describe the two
consequences of the linear lower bound on the noise proven in Theorem 2. The
first is separation of counting queries from non-counting queries. While our sepa-
ration gives quantitatively the same results as long as d = kO(1) and n = Θ(k/ε),
for simplicity, we consider the setting when k = d and n = k/ε. In this case,
Theorem 2 shows existence of a (non-counting) query such that maintaining ε-
differential privacy requires noise Ω(n). On the other hand, [3] had proven that
for any counting query with the same setting of parameters, there is a mechanism
which adds noise Õ(n2/3) and maintains ε-differential privacy. This shows that
maintaining ε-differential privacy inherently requires more distortion in case of
non-counting queries than counting queries.

The next consequence is a separation of (ε, δ) differential privacy from (ε, 0)
differential privacy for δ = 2−o(n). We note that Hardt and Talwar [11] had
shown such a separation but that was only when k = O(log n) and δ = n−O(1).
Again, we use the setting of parameters when k = d and n = k/ε. The gaussian
mechanism of [8] shows that to maintain (ε, δ) differential privacy for any k
queries, it sufficies to add noise O(

√
k log(1/δ)/ε) = o(n). However, Theorem 2

shows that there is a query which requires adding noise Ω(n) to maintain (ε, 0)
differential privacy.

The last consequence of our result is more indirect and is explained next.

2.2 Information Loss in Differentially Private Protocols

In [13], a connection was established between differentially private protocols and
the notion of mutual information from information theory. In fact, as [13] was
dealing with 2-party protocols, the connection was actually between differentially
private protocols and that of information content [1,2] which is a symmetric
variant of mutual information useful in 2-party protocols. In that paper, it was
shown that the information content (which simplifies to mutual information
in our setting) between transcript of a ε-differentially private mechanism and
the database vector is bounded by O(εn). Using the construction used in the
previous subsection, we show that in case of (ε, δ) differentially private protocols
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(for any δ = 2−o(n)), there is no non-trivial bound on the mutual information
between the transcript of the mechanism and the database vector. Thus as far
as information theoretic guarantees go, the situation is drastically different for
pure differentially private protocols vis-a-vis approximately differentially private
protocols. The contents of this subsection are a result of personal communication
between the author and Salil Vadhan [6].

We first define the notion of mutual information (can be found in standard
information theory textbooks).

Definition 5. Given two random variables X and Y , their mutual information
I(X ;Y ) is defined as

I(X ;Y ) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X |Y )

where H(X) denotes the Shannon entropy of X.

The next claim establishes an upper bound on the mutual information between
transcript of a differentially private protocol and the database vector.

Claim. Let F : (Z+)d → R
k be a query and M : (Z+)d → μ(Rk) be an ε-

differentially private protocol for answering F for databases of size n. If X is a
distribution over the inputs in (Z+)d, then I(M(X);X) ≤ 3εn.

Proof. We first note that since the databases are of size bounded by n, hence
instead of assuming that μ is a distribution over the inputs X ∈ (Z+)d, we can
assume that μ is a distribution over the inputsX ∈ [n]d where [n] = {0, 1, . . . , n}.
Now, we can apply Proposition 7 from [13]. We note that the aforesaid propo-
sition is in terms of information content for 2-party protocols but we observe
that we can simply make the second party’s input as a constant and get that
I(M(X);X) ≤ 3εn.

Next, we state the following claim which says that for (ε, δ) differentially private
protocols, even for an exponentially small δ, the mutual information between the
transcript and the input can be as large as n(1−η) for any value of 0 < ε, η < 1. In
other words, an (ε, δ) differentially private protocol does not imply any effective
bound on the mutual information between the input and the transcript even as
ε→ 0 and δ is exponentially small.

Lemma 1. For n ∈ N and 0 < ε, η < 1, there is a constant C = C(ε, η) > 0 and
a distribution X over (Z+)n with a support over databases of size n and a query
F : (Z+)n → R

k and an (ε, δ)-differentially private protocol M for answering F
such that I(X ;M(X)) ≥ n(1− 2η) if δ ≥ 2−C(ε,η)n.

Proof. We first construct 2s vectors in {0, 1}n (for s = n(1− η)) with the prop-
erty that for any xi, xj (i �= j), ‖xi − xj‖1 ≥ η2n/8. It is easy to guarantee
the existence of such a set of vectors by a simple application of the probabilis-
tic method. The distribution X is simply the uniform distribution over the set
{x1, . . . , x2s}. By construction, all the databases in X are of size bounded by n.
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Next, we define the query F : (Z+)n → R
k be defined in the same way as

the query F in the proof of Theorem 2. Following, exactly the same calculations,
we can show that if we set k = 80n, we get a query F : (Z+)n → R

k such
that for any i �= j, ‖F (xi)− F (xj)‖2 ≥ η2n

√
k/50. We now recall the Gaussian

mechanism of [8] which maintains (ε, δ) differential privacy.

Lemma 2. [8] Let F : (Z+)d → R
k be a query. Let Y = (Y1, . . . , Yk) be a

distribution over Rk such that each Yi is an i.i.d. N (0, σ) random variable. Here

σ2 = k log(1/δ)
ε2 . Then the mechanism M which for a database x and query F ,

which samples Y0 from Y and responds by F (x) + Y0 is an (ε, δ) differentially
private mechanism.

Note that for the above mechanism M , and database x, if Z is sampled from
M(x), then the distribution of M(x)− F (x) is same as (Y1, . . . , Yk) where each
Yi is an i.i.d. N (0, σ) random variable. Thus,

‖M(x)− F (x)‖22 ∼ Y 2
1 + . . .+ Y 2

k

As the following fact shows, the distribution on the right hand side is concen-
trated around its mean. The fact is possibly well-known but we could not find a
reference and hence we prove it in Appendix C in [5].

Fact 3 . If Y1, . . . , Yk are i.i.d. N (0, σ) random variables, then,

Pr
Y1,...,Yk

[Y 2
1 + . . .+ Y 2

k > 2(1 + ξ) · k · σ2] ≤ 2−
kξ
2

Using the above fact, we get

Pr

[

‖M(x)− F (x)‖22 >
2(1 + ξ)k2 log(1/δ)

ε2

]

≤ 2
−ξk
2

Here the probability is over the randomness of the mechanism. Putting ξ = 1
and δ = 2−C(ε,η)n for an appropriate constant C(ε, η), we get that

Pr

[

‖M(x)− F (x)‖2 >
η2n
√
k

200

]

≤ 2−40n

As we know, for any i �= j, ‖F (xi)− F (xj)‖2 ≥ η2n
√
k/50. Hence, with proba-

bility at least 1− 2−n over the randomness of the mechanism, for any database
xi ∈ supp(X), if y is sampled from M(xi),

∀j �= i ‖F (xj)− y‖2 > ‖F (xi)− y‖2
Thus, for any xi, givenM(xi), we can recover xi with high probability and hence,
we can say

Pr
y∼M(X)

[H(X |M(X) = y) = 0] > 1− 2−n

This means that
H(X |M(X)) ≤ 2−nn < 1

Recall that I(X ;M(X)) = H(X)−H(X |M(X)) ≥ H(X)− 1 = (1− η)n− 1 ≥
(1− 2η)n. This completes the proof of the Lemma 1.
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3 Lower Bound on Noise for Counting Queries

In the last section, we proved that to preserve ε differential privacy for k queries,
one may need to addΩ(k/ε) noise provided d, n
 k. However, these queries were
not counting queries. It is interesting to derive lower bounds on noise required
to preserve privacy for counting queries as these are the queries mostly used
in practice. While one might initially hope to prove a similar lower bound for
counting queries, [3] states that there is a ε-differentially private mechanism
which adds Õ(n2/3/ε) noise per query and can answer O(n) counting queries
(when d = nO(1)).

Still, Hardt and Talwar [11] showed that to answer k counting queries, any
mechanism which is ε-differentially private must add min{k/ε,√k log(d/k)/ε}
noise (in fact, this is true for k random queries). However, [11] make a tech-
nical assumption that the mechanism has a smooth extension which works for
“fractional” databases as well. In other words, they require the domain of the
mechanism to be (R+)d as opposed to (Z+)d. However, it is not clear if this is
always true i.e., if given a mechanism which is defined only over true (integral)
databases, one can get a mechanism which is defined over “fractional” databases
with similar privacy guarantees.

Next, we prove the same result without making any such technical assump-
tions. Again, our constructions are dependent on combinatorial designs [14].
First, we prove the following simple but useful claim.

Claim. Let a ∈ Z and assume x1, x2, . . . , x2s ∈ (Z+)d such that ∀i, every entry
of xi is either 0 or a. Also, for every i �= �, ‖xi − x�‖1 ≥ Δ. Then, for k ≥ 20s,
there is a linear query F : (Z+)d → R

k such that for every i, � ∈ [2s] and i �= �,
the following holds :

Pr
j∈[k]

[|F (xi)j − F (x�)j | ≥ Δ′/10] ≥ 1/40

where Δ′ =
√
Δ · a.

Proof. Consider any xi, x� such that i �= �. Note that, z defined as z = xi − x�

is such that all its entries are 0,±a and also that z has at least Δ/a or more
non-zero entries. If we choose r ∈ {−1, 1}d u.a.r., then note that

Y =

d∑

i=1

zi · ri =
∑

zi=±a

zi · ri

Note that the total number of summands is �′ ≥ Δ/a and hence the distribution
of the random variable Y is same as choosing r′ ∈ {−1, 1}d and considering the
random variable

Y ′ = a ·
⎛

⎝
�′∑

i=1

r′i

⎞

⎠

However using Corollary B.2 from [5], we get



332 A. De

Pr

[

|Y ′| ≥
√
Δ · a
10

]

= Pr

⎡

⎣|
�′∑

i=1

r′i| ≥
√
Δ/a

10

⎤

⎦ ≥ 9

10
(1)

Now, let us choose r′1, . . . , r
′
k uniformly and independently at random from

{−1, 1}d and consider the linear query F : (Z+)d → R
k defined as

F (x) =

⎛

⎝
d∑

j=1

xj · r′1j , . . . ,
d∑

j=1

xj · r′kj

⎞

⎠

Set Δ′ =
√
Δ · a. Now, (1) and an application of Chernoff bound implies that

for any xi, x� (i �= �)

Pr
r′1,...,r

′
k

[

Pr
j∈[k]

[|F (xi)j − F (x�)j | ≥ Δ′/10] ≥ 1/40

]

> 1− 2−k/10

We now observe that the total number of pairs (xi, x�) (i �= �) is at most 22s ≤
2k/10. Applying a union bound, we get that there is some choice of r′1, . . . , r

′
k

(and hence a fixed F ) such that

Pr
j∈[k]

[|F (xi)j − F (x�)j | ≥ Δ′/10] ≥ 1/40

We now prove a lower bound on the noise required to maintain privacy for
random counting queries. As we have said before, Hardt and Talwar [11] proved
the same result under an additional assumption that the mechanism defined over
integral databases can be smoothly extended to fractional databases as well.

Theorem 4. For every k, d ∈ N and 1 > ε > 0, there is a counting query
F : (Z+)d → R

k such that any mechanism which maintains ε-differential pri-
vacy adds noise Ω(min{k/ε,√k log(d/k)/ε}). The size of the database i.e., n =
O(k/ε).

Proof. The proof strategy is to come up with databases meeting the hypothesis
of Claim 3 and use Claim 3 to get a counting query F . We then use Theorem 1
to get a lower bound on the distortion required by any private mechanism to
answer F . We consider two cases : k ≤ log d and k > log d.

The first case is trivial : Namely, consider databases x1, . . . , x2k/20 such that
each xi = �(k/80ε)� · ei where ei is the standard unit vector in the ith direction.
This is possible as there are d ≥ 2k different unit vectors. Note that for any
i �= �, ‖xi − x�‖1 = 2 · �k/(80ε)�. We can now apply Claim 3 and get that there
is a linear query F : (Z+)d → R

k (using Δ = 2 · �k/(80ε)� and a = �k/(80ε)�)
such that

Pr
j∈[k]

[

|F (xi)j − F (x�)j | ≥
√
2

10
�k/(80ε)� ≥ k

800ε

]

≥ 1/40
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We see that there are 2k/20 = 2s databases which differ by exactly 2 ·�k/(80ε)� =
Δ. Note that Δ ≤ (s − 1)/ε. Hence we can apply Theorem 1 to note that to
maintain ε-differential privacy, any mechanism needs to add k/(800ε) noise. In
fact, we note that the �2 error of the answer returned by the mechanism needs
to be Ω(k3/2/ε) which is quantitatively the same as the result in [11].

The second case is slightly more complicated. We use Claim A.1 from [5] to
construct x1, . . . , x2k/20 ∈ (Z+)d with the following properties :

– Every entry of any of the xi’s is either 0 or a ∈ Z such that a ≥ log(d/k)/160ε.
– ∀i, ‖xi‖1 ≤ k/80ε and ∀i �= j, ‖xi − xj‖1 ≥ k/160ε

Again, we can apply Claim 3 and get that there is a linear query F : (Z+)d → R
k

(using Δ ≥ k/(160ε) and a ≥ (log(d/k)/160ε)) such that ∀i �= �

Pr
j∈[k]

[

|F (xi)j − F (x�)j | ≥ 1

10
·
√
k log(d/k)

160ε

]

≥ 1/40

Again, we have 2k/20 databases which differ by at most k/(40ε) and hence we can
apply Theorem 1 to get that to maintain ε-differential privacy, any mechanism

needs to add Ω

(√
k log(d/k)

ε

)

noise.

4 Lower Bounds for Approximate Differential Privacy

In this section, we prove lower bounds on the noise required to maintain (ε, δ)
differential privacy for ε, δ > 0. Our lower bounds are valid for any positive δ > 0
and are in fact tight for a constant ε and δ. We note that a quantitatively similar
lower bound was proven for the class of �-way marginals by [12] though our proof
(for random queries) is arguably much simpler.

In this section, we consider databases which are elements of {0, 1}n or in other
words we consider the case when the universe size d = n and the databases
are allowed to have exactly one element of each type. We note that restrict-
ing databases to bit vectors is a well-considered model in literature including
[7,10,13] among others.

We prove the following theorem.

Theorem 5. For any n ∈ N, ε > 0 and 1/20 > δ > 0, there exist positive
constants α, γ and η such that there is a counting query F : {0, 1}n → R

k with
k = αn such that any mechanism M that satisfies

Pr
M
[ Pr
i∈[k]

[|M(x, F )i − F (x)i| ≤ η
√
n] ≥ 1/2 + γ] ≥ 3

√
δ

is not (ε, δ) differentially private. In other words, any mechanism M which with
significant probability i.e., 3

√
δ answers at least 1/2+γ fraction of the k queries

with at most η
√
n noise, is not (ε, δ) differentially private.
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An immediate corollary is that there exists a positive constant α and a counting
query F : {0, 1}n → R

k where k = αn such that any mechanism which adds
o(
√
n) noise is not (ε, δ) differentially private for ε > 0 and δ < 1/20.
To do the proof of Theorem 5, we first need to introduce some definitions

previously discussed in [13]. We do note that the paper [13] deals with the two-
party setting but the relevant definitions and the lemma we use here easily extend
to the standard (curator-client) setting of privacy.

Definition 6. A random variable Y = (y1, . . . , yi−1, yi, yi+1, . . . , yn) ∈ {0, 1}n
is said to be δ-approximate strongly α-unpredictable bit source (for α ≥ 1) if with
probability 1− δ over i ∈ [n]

1

α
≤ Pr[Yi = 1|Y1 = y1, . . . , Yi−1 = yi−1, Yi+1 = yi+1, . . . , Yn = yn]

Pr[Yi = 0|Y1 = y1, . . . , Yi−1 = yi−1, Yi+1 = yi+1, . . . , Yn = yn]
≤ α

The next lemma (proven in [13] for the two-party setting) roughly says that for
any (ε, δ) private mechanism, conditioned on the transcript of the mechanism, the
distribution of the database is a δ-approximate strong 2ε-unpredictable source.
More precisely, we have the following lemma.

Lemma 3. Let F : {0, 1}n → R
k be a query and M be a (ε, δ)-differentially

private mechanism for answering F . Let X be the uniform distribution over
{0, 1}n and Γ be the probability distribution over the transcripts of M(x) when
x is drawn from X. Then for any μ > 0 and t← Γ , the distribution X |Γ=t is δt
approximate strongly 2ε+μ-unpredictable sources such that

E
t∈Γ

[δt] ≤ 2δ · 1 + e−ε−μ

1− e−μ
.

The above lemma trivially follows from Lemma 20 of [13] (full version) and
hence we do not prove it here. Before, proving Theorem 5, we need to recall the
following theorem from [10] (Theorem 24 in the paper).

Theorem 6. For any γ > 0 and any ν = ν(n), there is a constant α = α(γ) > 0
such that for k = αn, there is a counting query F : {0, 1}n → R

k and an
algorithm A such that given ỹ which satisfies

Pr
i∈[k]

[|ỹi − F (x)i| ≤ ν] ≥ 1

2
+ γ

the output of A on ỹ i.e., A(ỹ) = x′ such that x′ ∈ {0, 1}n and ‖x− x′‖1 ≤ 4ν2

γ2

The following corollary follows immediately from Theorem 6.

Corollary 1. For any δ′ > 0, there are positive constants γ = γ(δ′), η =
η(δ′), α = α(δ′) such that for k = αn, there is a counting query F : {0, 1}n → R

k

and an algorithm A such that given ỹ which satisfies

Pr
i∈[k]

[|ỹi − F (x)i| ≤ η
√
n] ≥ 1

2
+ γ

the output of A on ỹ i.e., A(ỹ) = x′ such that x′ ∈ {0, 1}n and ‖x− x′‖1 ≤ δ′n.
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We now prove Theorem 5.

Proof (of Theorem 5).
Let X denote the uniform distribution over {0, 1}n. First, using Lemma 3,

we get that over the randomness of the mechanism M and the choice of x ∈ X , if
we sample a transcript t from M(x, F ), then for any positive μ, the distribution
X |M(x,F )=t is a δt-approximate strongly 2ε+μ-unpredictable sources where δt
satisfies

E
t∈M(x,F )

[δt] ≤ 2δ · 1 + e−ε−μ

1− e−μ
.

Clearly, we can put μ = 10 and get that the distribution X |M(x,F )=t is a δt-
approximate strongly 2ε+10-unpredictable sources where Et∈M(x,F ) [δt] ≤ 3δ.

By an application of Markov’s inequality, we get that with probability 1 − 2
√
δ

over the choice of x and the randomness of the mechanism M , the distribution
X |M(x,F )=t is 2

√
δ-approximate strongly 2ε+10-unpredictable source.

We now apply corollary 1. In particular, we put δ′ =
√
δ and get that for

some positive γ, η, α (which are functions of δ′ and hence δ), there is a counting
query F : {0, 1}n → R

αn and an algorithm A such that given ỹ which satisfies

Pr
i∈[k]

[|ỹi − F (x)i| ≤ η
√
n] ≥ 1

2
+ γ

the output of A on ỹ i.e., A(ỹ) = x′ such that x′ ∈ {0, 1}n and ‖x−x′‖1 ≤
√
δ ·n.

Now, consider a mechanism M which satisfies

Pr
M
[ Pr
i∈[k]

[|M(x, F )i − F (x)i| ≤ η
√
n] ≥ 1/2 + γ] ≥ β

for β = 3
√
δ. Clearly such a mechanism M is not (ε, δ) differentially private

because with probability at least β = 3
√
δ, the algorithm A will be able to

predict at least 1 − √δ fraction of the positions which contradicts that with
probability 1−2

√
δ, the distribution X |M(x,F )=t is a 2

√
δ -approximate strongly

2ε+10-unpredictable source.

5 LP Decoding, Euclidean Sections and Hardness of
Releasing �-way Marginals

In this section, we consider attacks on privacy using linear programming. In par-
ticular, we use the technique of LP decoding (previously used in [10] in context
of privacy) to give attacks which violate even minimal notions of privacy when
1 − ε0 (for some ε0 > 0) fraction of the queries are released with insufficient
noise. We do this by establishing a connection between Euclidean sections and
use of LP decoding in context of privacy which does not seem to have explicitly
appeared in the literature before. We remark that the relation between LP de-
coding and Euclidean spaces is very well known in context of compressed sensing
[4]. However, in case of privacy, the adversary is allowed to add small error to
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say 99% of the entries and arbitrary error to the remaining 1% of the entries. In
context of compressed sensing however, the adversary is allowed to add error to
only 1% of the entries.

We first describe how to use linear programming in context of privacy. As-

sume x ∈ Z
+d

is a database and A : Rd → R
k is a linear map which represents

a counting query with arity k made on the database x. Further, the right set of
answers is given by y = A ·x. (To make sure that the queries are 1-Lipschitz, all
the entries of A come from [−1, 1].) Suppose, ỹ ∈ R

k is the answer returned by
the mechanism. Then, consider the following optimization problem (which can
be written as a linear program) :

Minimize ‖y − ỹ‖1 subject to y = A · x̃ (2)

The following theorem states the necessary conditions such that the solution to
the above linear program, call it x̃, is such that ‖x − x̃‖1 is small. To state the
theorem, we will need the definition of a Euclidean section.

Definition 7. V ⊆ R
k is said to be a (δ, d, k) euclidean section if V is a linear

subspace of dimension d and for every x ∈ V , the following holds:

√
k‖x‖2 ≥ ‖x‖1 ≥ δ

√
k‖x‖2

Theorem 7. Let A : Rd → R
k be a full rank linear map (k > d) and all the

singular values of A are at least σ. Further, the range of A (denoted by L(A))
is a (δ, d, k) Euclidean section. Let F : (Z+)d → R

k the query corresponding to
A. Then, there exists γ = γ(δ) such that if

Pr
i∈[k]

[|F (x)i − ỹi| ≤ α] ≥ 1− γ

then, any solution x̃ to the linear program (2) satisfies ‖x̃− x‖1 ≤ O(α
√
kd/σ)

where the constant inside the O(·) notation depends on δ.

The proof of this theorem can be found in [5]. The specific problem we are in-
terested in is the application of LP decoding to violate attribute privacy when
�-way marginals of a contingency table are released. Informally, attribute privacy
refers to the situation in a contingency table when all but one of the attributes
are public and attacks on privacy amount to revealing the last attribute given
the responses to the queries and knowledge of all the other attributes. Releasing
the �-way marginals is simply the following : For every subset of size � of the
attributes and every configuration of these �-attributes, a count of how many
entries in the database have that specific configuration on those �-attributes is
released. Due to the lack of space, we refer the reader to [12,5] for the precise
definitions of attribute privacy and �-way marginals. We will also need the defi-
nition of row products of matrices which can be found in [5]. The next theorem
(proven in [5]) shows how if the range of row product of matrices is Euclidean
and all the singular values of the row product are large, one can violate attribute
privacy when noisy �-way marginals are released.
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Lemma 4. Let A1, . . . , A�−1 ∈ {0, 1}d′×n. Let A = A1 ◦ A2 . . . ◦ A�−1 (with
d′�−1 > n) be their row product. Also, all the singular values of A are at least
σ and the range of A i.e., L(A) is a (δ, n, d′�−1) Euclidean section. Then, there
exists a constant γ = γ(δ) > 0 such that any mechanism which answers at
least 1 − γ fraction of the �-way marginals with noise bounded by α is attribute

non-private provided α
√

d�′−1·n
σ = o(n) or in other words, α = o(

√
nσ/
√
d�′−1)

The main technical tool for us is the following theorem of Rudelson [15].

Theorem 8. [15] Let q, � ∈ N be constants. Also, let D ∼ R
d′×n be a dis-

tribution over matrices such that every entry of the matrix is an independent
and unbiased {0, 1} random variable. Let A1, . . . , A�−1 be i.i.d. copies of ran-
dom matrices drawn from the distribution D and A be the Hadamard product of
A1, . . . , A�−1. Then, provided that d′�−1 
 n log(q) n, with probability 1 − o(1),

the smallest singular value of A denoted by σn(A) satisfies σn(A) = Ω(
√
d′�−1)

Also, the range of A is a (n, d′�−1, γ(q, �)) Euclidean section for some γ(q, �) > 0.

The above theorem uses the notion of iterated logarithm which is defined as :For
r ∈ N, we define log(r) n as follows : log(1) n = max{log2 n, 1} and for r > 1,
log(r) n = log(1) (log(r−1) n). Combining Theorem 8 and Lemma 4, we have the
main theorem of this section.

Theorem 9. Let q, � ∈ N be constant integers. Then, there exists a constant
γ = γ(q, �) > 0 such that any mechanism which releases the �-way marginals of
a table of size n over d′ attributes and n ≤ d′�−1 log(q) n by adding at most η
noise to 1− γ fraction of the queries where

η = o(
√
n)

is attribute non-private. Further, the algorithm which violates attribute privacy
is efficient and uses LP decoding.

This improves upon the following result of Kasiviswanathan et al. [12] who could
violate attribute privacy only when all the queries were allowed o(

√
n) noise.

Theorem 10. [12] Let � ∈ N be a constant and n, d ∈ N such that d′�−1 

n · log2�−4 n. Then, for every mechanism M which releases �-way marginals of
a database of size n (and universe {0, 1}d′

) such that the noise for every single

query is bounded by η where η �
√
n

log�2−�+1 n
is attribute non-private. The attack

is an efficient algorithm based on �2 norm minimization.

The details of the results in this section can be found in [5].
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