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Abstract. When distributed clients query or update shared data, eventual con-
sistency can provide better availability than strong consistency models. However,
programming and implementing such systems can be difficult unless we establish
a reasonable consistency model, i.e. some minimal guarantees that programmers
can understand and systems can provide effectively.

To this end, we propose a novel consistency model based on eventually con-
sistent transactions. Unlike serializable transactions, eventually consistent trans-
actions are ordered by two order relations (visibility and arbitration) rather than
a single order relation. To demonstrate that eventually consistent transactions can
be effectively implemented, we establish a handful of simple operational rules
for managing replicas, versions and updates, based on graphs called revision di-
agrams. We prove that these rules are sufficient to guarantee correct implemen-
tation of eventually consistent transactions. Finally, we present two operational
models (single server and server pool) of systems that provide eventually consis-
tent transactions.

1 Introduction

Eventual Consistency [17] is a well-known workaround to the fundamental problem
of providing CAP [9] (consistency, availability, and partition tolerance) to clients that
perform queries and updates against shared data in a distributed system. It weakens
traditional consistency guarantees (such as linearizability) in order to allow clients to
perform updates against any replica, at any time. Eventually consistent systems guaran-
tee that all updates are eventually delivered to all replicas, and that they are applied in a
consistent order.

Eventual consistency is popular with system builders. One reason is that it allows
temporarily disconnected replicas to remain fully available to clients. This is particu-
larly useful for implementing clients on mobile devices [20]. Another reason is that it
does not require updates to be immediately performed on all server replicas, thus im-
proving scalability. In more theoretical terms, the benefit of eventual consistency can
be understood as its ability to delay consensus [16].

However, eventual consistency is a weak consistency model that breaks with tradi-
tional approaches (e.g. serializable operations) and thus requires developers to be more
careful. The essential problem is that updates are not immediately applied globally, thus
the conditions under which they are applied are subject to change, which can easily
break data invariants. Many eventually consistent systems address this issue by pro-
viding higher-level data types to programmers. Still, the semantic details often remain
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sketchy. Experience has shown that ad-hoc approaches to the semantics and implemen-
tation of such systems can lead to surprising behaviors (e.g. a shopping cart where
deleted items reappear [7]). To take eventual consistency to its full potential, we need
answers to the following questions:

– How can we provide consistency guarantees that are as strong as possible without
forsaking lazy consensus?

– How can we effectively understand and implement systems that provide those guar-
antees?

In this paper, we propose a two-pronged solution that addresses both questions, based on
(1) a notion of transactions for eventual consistency, and (2) a general implementation
technique based on revision diagrams.

Eventually consistent transactions differ significantly from traditional transactions,
as they are not serializable. Nevertheless, they uphold traditional atomicity and isolation
guarantees. Even better, they exhibit some strong properties that simplify the life of
programmers and are not typically offered by traditional transactions: (1) transactions
cannot fail and never roll back, and (2) all code, even long-running tasks, can run inside
transactions without compromising performance.

We first present an abstract, concise specification of eventually consistent transac-
tions. This formalization uses mathematical techniques (sets of events, partial orders,
and equivalence relations) that are commonly used in research on relaxed memory mod-
els and transactional memory. Our definition provides immediate insight on how even-
tual consistency is related to strong consistency: the only difference is that eventual
consistency uses two separate order relations (visibility order and arbitration order)
rather than a single order over transactions.

We then proceed to describe a more concrete and operational implementation tech-
nique based on revision diagrams [6]. Revision diagrams provide implementors with
a simple set of rules for managing updates and replicas. Revision diagrams make the
fork and join of versions explicit, which determines the visibility and arbitration of
transactions. We prove a theorem that guarantees that any system following the revision
diagram rules provides eventually consistent transactions according to the abstract def-
inition. We also illustrate the use of revision diagrams by presenting two simple system
models (one using a single server, and one using a server pool).

Overall, we make the following contributions:

– We introduce a notion of eventually consistent transactions and give a concise and
abstract definition.

– We present a systematic approach for building systems that support such transac-
tions, based on revision diagrams. We present a precise, operational definition of
revision diagrams.

– We prove a theorem stating that the revision diagram rules are sufficient to guar-
antee eventual consistency. The proof is nontrivial as it depends on deep structural
properties of revision diagrams.

– We illustrate the use of revision diagrams by presenting two operational system
models, using a single server and a server pool, respectively.
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2 Formulation

To get started, we need to establish some precise terminology. Perhaps the very first
question is: what is a database? At a high abstraction level, databases are no different
than abstract data types, which are semantically defined by the operations they support
to update them and retrieve data. Taking cues from common definitions of abstract data
types, we define:

Definition 1. A query-update interface is a tuple (Q, V, U) where Q is an abstract set
of query operations, V is an abstract set of values returned by queries, and U is an
abstract set of update operations.

Note that the sets of queries, query results, and updates are not required to be finite (and
usually are not). Query-update interfaces can apply in various scenarios, where they
may describe abstract data types, relational databases, or simple random-access mem-
ory, for example. For databases, queries are typically defined recursively by a query
language.

Example 1. Consider random-access memory that supports loads and stores of bytes
in a 64-bit address space A = {a ∈ N | 0 < a ≤ 264}. For that example we define
Q = {load(a) | a ∈ A}, V = {v ∈ N | 0 < v ≤ 28} and U = {store(a, v) | a ∈
A and v ∈ V }.

This example is excellent for illustration purposes (we will revisit it throughout), and
it provides an explicit connection between our results and previous work on relaxed
memory models and transactional memory. Of course, most databases also fit in this
abstract interface where the queries are SQL queries and the update operations are SQL
updates like insertion and deletion.

So far, our interfaces have no inherent meaning. The most direct way to define the
semantics of queries and updates is to relate them to some notion of state:

Definition 2. A query-update automaton (QUA) for the interface (Q, V, U) is a tuple
(S, s0) where S is a set of states with (1) an initial state s0 ∈ S, (2) an interpretation
q# of each query q ∈ Q as a function S → V , and (3) an interpretation u# of each
update operation u ∈ U as a a function S → S.

Example 2. The random-access memory interface described in Example 1 above can be
represented by a QUA (S, s0) whereS is the set of total functionsA → V , and where s0
is the constant function that maps all locations to zero, and where load(a)#(s) = s(a)
and store(a, v)#(s) = s[a �→ v].

QUAs can naturally support abstract data types (e.g. collections, or even entire docu-
ments) that offer higher-level operations (queries and updates) beyond just loads and
stores. Such data types are often important when programming against a weak consis-
tency model [18], since they can ensure that the data representation remains intact when
handling concurrent and potentially conflicting updates.

The following two characteristics of QUAs are important to understand how they
relate to other definitions of abstract data types:
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– There is a strict separation between query and update operations: it is not possible
for an operation to both update the data and return information to the caller.

– All updates are total functions. It is thus not possible for an update to ’fail’; how-
ever, it is of course possible to define updates to have no effect in the case some
precondition is not satisfied.

For instance, in our formalization, we would not allow a classic stack abstract data type
with a pop operation for two reasons, (1) pop both removes the top element of the stack
and returns it, so it is neither an update nor a query, and (2) pop is not total, i.e. it can
not be applied to the empty stack.

This restriction is crucial to enable eventual consistency, where the sequencing and
application of updates may be delayed, and updates may thus be applied to a different
state than the one in which they were originally issued by the program.

2.1 Clients and Transactions

Things become more interesting and challenging once we consider a distributed system.
We call the participants of our system clients. Clients typically reside on physically
distinct devices, but are not required to do so. When clients in a distributed system
issue queries and updates against some shared QUA, we need to define what consistency
programmers can expect. This consistency model should also address the semantics of
transactions, which provide clients with the ability to perform several updates as an
atomic “bundle”.

We formally represent this scenario by defining a set C of clients. Each client, at its
own speed, issues a sequence of transactions. Supposedly, each client runs some form
of program (the details of which we leave unspecified for simplicity and generality).
This program determines when to begin and end a transaction, and what operations to
perform in each transaction, which may depend on various factors, such as the results
returned by queries, or external factors such as user inputs.

For uniformness, we require that all operations are part of a transaction. This as-
sumption comes at no loss of generality: a device that does not care about transactions
can simply issue each operation in its own transaction.

Since all operations are inside transactions, we need not distinguish between the end
of a transaction and the beginning of a transaction. Formally, we can thus represent
the activities on a device as a stream of operations (queries or updates) interrupted by
special yield operations that mark the transaction boundary.1

We can thus fully describe the interaction between programs executing on the clients
and the database by the following three types of operations:

1. Updates u ∈ U issued by the program,
2. Pairs (q, v) representing a query q ∈ Q issued by the program, together with a

response v ∈ V by the database system,
3. The yield operations issued by the program.

1 We call this operation yield() since it is semantically similar to a yield we may encounter on a
uniprocessor performing cooperative multittasking: such a yield marks locations where other
threads may read and modify the current state of the data, while at all other locations, only the
current thread may read or modify the state.
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Definition 3. A history H for a set C of clients and a query-update interface (Q, V, U)
is a map H which maps each client c ∈ C to a finite or infinite sequence H(c) of
operations from the alphabet Σ = U ∪ (Q × V ) ∪ {yield}.

Note that our history does not a priori include a global ordering of events, since such an
order is not always meaningful when working with relaxed consistency models. Rather,
the existence of certain orderings, subject to certain conditions, is what determines
whether a history satisfies a consistency model or not.

Notation and Terminology. To reason about a history H , it is helpful to introduce the
following auxiliary terminology. We let EH be the set of all events in H , by which we
mean all occurrences of operations in Σ \ {yield} in the sequences H(c) (we consider
yield to be just a marker within the operation sequence, but not an event).

For a client c, we call a maximal nonempty contiguous subsequence of events in
H(c) that does not contain yield a transaction of c. We call a transaction committed if
it is succeeded by a yield operation, and uncommitted otherwise. We let TH be the set
of all transactions of all clients, and committed(TH) ⊆ TH the subset of all committed
transactions. For an event e, we let trans(e) ∈ TH be the transaction that contains e.
Moreover, we let committed(EH) ⊆ EH be the subset of events that are contained in
committed transactions. We conclude by giving definitions related to ordering events
and transactions:

– Program order. For a given history H , we define a partial order <p over events in
H such that e <p e′ iff e appears before e′ in some sequence H(c).

– Apply in order. For a history H , for a state s ∈ S, for a subset of events E′ ⊂ EH ,
and for a total order < over the events in E′, we let apply(E′, <, s) be the state
obtained by applying all updates appearing in E′ to the state s, in the order specified
by <.

– Factoring. We define an equivalence relation ∼t (same-transaction) over events
such that e ∼t e

′ iff trans(e) = trans(e′). For any partial order ≺ over events, we
say that ≺ factors over ∼t iff for any events x and y from different transactions,
x ≺ y implies x′ ≺ y′ for any x, y such that x ∼t x′ and y ∼t y′. This is
an important property to have for any ordering ≺, since if ≺ factors over ∼t, it
induces a corresponding partial order on the transactions.

2.2 Sequential Consistency

Sequential consistency posits that the observed behavior must be consistent with an
interleaving of the transactions by the various devices. We formalize this interleaving
as a partial order over events (rather than a total order as more commonly used) since
some events are not instantly ordered by the system; for example, the relative order of
operations in uncommitted transactions may not be fully determined yet.

Definition 4. A history H is sequentially consistent if there exists a partial order< over
the events in EH that satisfies the following conditions for all events e1, e2, e ∈ EH :
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– (compatible with program order) if e1 <p e2 then e1 < e2
– (total order on past events) if e1 < e and e2 < e then either e1 < e2 or e2 < e1.
– (consistent query results) for all (q, v) ∈ EH , v = q#(apply ({e ∈ (H) | e <

q}, <, s0)). This simply says that a query returns the state as it results from apply-
ing all past updates to the initial state.

– (atomicity) < factors over ∼t.
– (isolation) if e1 /∈ committed(EH) and e1 < e2, then e1 <p e2. That is, events in

uncommitted transactions precede only events on the same client.
– (eventual delivery) for all committed transactions t ∈ committed(TH), there exist

only finitely many transactions t′ ∈ TH such that t �< t′.

Sequential consistency fundamentally limits availability in the presence of network par-
titions. The reason is that any query issued by some transaction t must see the effect of
all updates that occur in transactions that are globally ordered before t, even if on a
remote device. Thus we cannot conclusively commit transactions in the presence of
network partitions.

2.3 Eventual Consistency

Eventual consistency relaxes sequential consistency by allowing queries in a transaction
t to see only a subset of all transactions that are globally ordered before t. It does so by
distinguishing between a visibility order (a partial order that defines what updates are
visible to a query), and an arbitration order (a partial order that determines the relative
order of updates).

Definition 5. A history H is eventually consistent if there exist two partial orders <v

(the visibility order) and <a (the arbitration order) over events in H , such that the
following conditions are satisfied for all events e1, e2, e ∈ EH :

– (arbitration extends visibility) if e1 <v e2 then e1 <a e2.
– (total order on past events) if e1 <v e and e2 <v e, then either e1 <a e2 or

e2 <a e1.
– (compatible with program order) if e1 <p e2 then e1 <v e2.
– (consistent query results) for all (q, v) ∈ EH , v = q#(apply({e ∈ H) | e <v

q}, <a, s0)). This says that a query returns the state as it results from applying all
preceding visible updates (as determined by the visibility order) to the initial state,
in the order given by the arbitration order.

– (atomicity) Both <v and <a factor over ∼t.
– (isolation) if e1 /∈ committed(EH) and e1 <v e2, then e1 <p e2. That is, events in

uncommitted transactions are visible only to later events by the same client.
– (eventual delivery) for all committed transactions t ∈ committed(TH), there exist

only finitely many transactions t′ ∈ TH such that t �<v t′.

The reason why eventual consistency can tolerate temporary network partitions is that
the arbitration order can be constructed incrementally, i.e. may remain only partially
determined for some time after a transaction commits. This allows conflicting updates
to be committed even in the presence of network partitions.

Note that eventual consistency is a weaker consistency model than sequential con-
sistency. We can prove this statement as follows.
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Lemma 1. A sequentially consistent history is eventually consistent.

Proof. Given a history H that is sequentially consistent, we know there exists a par-
tial order < satisfying all conditions. Now define <v=<a=<; then all conditions for
eventual consistency follow easily.

2.4 Eventual Consistency in Related Work

Eventual consistency across the literature uses a variety of techniques to propagate up-
dates (e.g. general causally-ordered broadcast [18,19], or pairwise anti-entropy [15]).
All of these techniques are particular implementations that specialize our general defi-
nition of visibility as a partial order. As for the arbitration order, we found that two main
approaches prevail. The most common one is to use (logical or actual) timestamps:
Timestamps provide a simple way to arbitrate events. Another approach (sometimes
combined with timestamps) is to make updates commutative, which makes arbitration
unnecessary (i.e. we can pick an arbitrary serialization of the visibility order to satisfy
the conditions in Def. 5).

We show in the next section (Section 3) how to arbitrate updates without using times-
tamps or requiring commutativity, a feature that sets our work apart. We prefer to not
use timestamps because they exhibit the write stabilization problem [20], i.e. the inabil-
ity to finalize the effect of updates while older updates may still linger in disconnected
network partitions. Consider, for example, a mobile user called Robinson performing
an important update, but getting stranded on a disconnected island before transmitting
it. When Robinson reconnects after years of exile, Robinson’s update is older than (and
may thus alter the effect of) all the updates committed by other users in the meantime.
So either (1) none of these updates can stabilize until Robinson returns, or (2) after
some timeout we give up on Robinson and discard his update. Clearly, neither of these
solutions is satisfactory. A better solution is to abandon time stamps and instead use
an arbitration order that simply orders Robinson’s update after all the other updates.
In fact, this is the outcome we achieve when using revision diagrams, as explained in
Section 3.

3 Revision Consistency

Our definition of eventual consistency (Def. 5) is concise and general. By itself, it is
however not very constructive, insofar that it does not give practical guidelines as to
how a system can efficiently and correctly construct the necessary ordering (visibility
and arbitration). We now proceed to describe a more specific implementation technique
for eventually consistent systems, based on the notion of revision diagrams introduced
in [6].

Revision diagrams show an extended history not only of the queries, updates, and
transactions by each client, but also of the forking and joining of revisions, which are
logical replicas of the state (Fig. 1). A client works with one revision at a time, and
can perform operations (queries and updates) on it. Since different clients work with
different revisions, clients can perform both queries and updates concurrently and in
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isolation (i.e. without creating race conditions). Reconciliation happens during join op-
erations. When a revision joins another revision, it replays all the updates performed in
the joined revision at the join point.2 After a revision is joined, no more operations can
be performed on it (i.e. clients may need to fork new revisions to keep enough revisions
available).

3.1 Revision Diagrams

Revision diagrams are directed graphs constructed from three types of edges (successor,
fork, and join edges, or s-, f - and j-edges for short), and five types of vertices (start,
fork, join, update, and query vertices). A start vertex represents the beginning of a revi-
sion, s-edges represent successors within a revision, and fork/join edges represent the
forking and joining of revisions.
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Fig. 1. Examples of Valid Revision Diagrams

We pictorially represent revision diagrams using the following conventions

– Use · for start, query, and update vertices
– Use • and ◦ for fork and join vertices, respectively
– Use vertical down-arrows for s-edges
– Use horizontal-to-vertical curved arrows for f -edges
– Use vertical-to-horizontal curved arrows for j-edges

A vertex x has a s-path (i.e. a path contanining only s-edges) to vertex y if and only
if they are part of the same revision. Since all s-edges are vertical in our pictures,

2 This replay operation is conceptual. Rather than replaying a potentially unbounded log, ac-
tual implementations can often use much more space- and time-efficient merge functions, as
explained in Section 4.
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vertices belonging to the same revision are always aligned vertically. For any vertex
x we let S(x) be the start vertex of the revision that x belongs to. For any vertex x
whose start vertex S(x) is not the root, we define F (x) to be the fork vertex such that

F (x)
f−→ S(x) (i.e. the fork vertex that started the revision x belongs to). We call a

vertex with no outgoing s- or j-edges a terminal; terminals are the last operation in a
revision that can still perform operations (has not been joined yet), and thus represent
potential extension points of the graph.

We now give a formal, constructive definition for revision diagrams.

Definition 6. A revision diagram is a directed graph constructed by applying a (pos-
sibly empty or infinite) sequence of the following construction steps (see Fig 2(a)) to a
single initial start vertex (called the root):

Query. Choose some terminal t, create a new query vertex x, and add an edge t
s−→ x.

Update. Choose some terminal t, create a new update vertex x, and add an edge t
s−→ x.

Fork. Choose some terminal t, create a new fork vertex x and a new start vertex y, and

add edges t
s−→ x and x

f−→ y.
Join. Choose two terminals t, t′ satisfying the join condition F (t′) →∗ t, then create

a new join vertex x and add edges t
s−→ x and t′

j−→ x.

The join condition expresses that the terminal t (the “joiner”) must be reachable from
the fork vertex that started the revision that contains t′ (the “joinee”). This condition
makes revision diagrams more restricted than general task graphs. See Fig 2(b) for some
examples of invalid diagrams where the join condition does not hold at construction of
the join nodes.

(a) (b)
(shortcut) (parent join)
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Fig. 2. (a) (left) Visualization of the construction rules for revision diagrams in Def. 6. (b) (right)
Examples of invalid revision diagrams. Both diagrams are not possible since they violate the join
property at the creation of the join node x. Note that in the right diagram, F (t′) is undefined on
the main revision and therefore F (t′) →∗ t does not hold.

The join condition has some important, not immediately obvious consequences. For
example, it implies that revision diagrams are always semilattices (for a proof of this
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nontrivial fact see [6]). Also, it ensures some diagram properties (Lemmas 2 and 3)
that we need to prove our main result (Thm. 1). Futhermore, it still allows more general
graphs than strict series-parallel graphs [21], which allow only the recursive serial and
parallel composition of tasks (and are also called fork-join concurrency in some con-
texts, which is potentially misleading). For instance, the right-most revision diagram
in Fig. 1 is not a series-parallel graph but it is a valid revision diagram. While series-
parallel graphs are easier to work with than revision diagrams, they are not flexible
enough for our purpose, since they would enforce too much synchronization between
participants.

Also, note that fork and the join are fundamentally asymmetric: the revision that
initiates the fork (the “forker”) continues to exist after the fork, but also starts a new re-
vision (the “forkee”), and similarly, the revision that initiates the join (the “joiner”) can
continue to perform operations after the join, but ends the joined revision (the “joinee”).

3.2 Graph Properties

We now examine some properties of the revision diagrams, for better visualization, and
because we need some technical properties in our later proofs. Most statements are
easily proved by induction over the construction rules in Def. 6; if not, we mention how
to prove them.

Revision diagrams are connected, and all vertices are reachable from the root vertex.
There can be multiple paths from the root to a given vertex, but exactly one of those is
free of j-edges.

Definition 7. For any vertex v in a revision diagram, let the root-path of v be the unique
path from the root to v that does not contain j-edges.

The join condition does not make revision diagrams necessarily planar, i.e. when
drawing revision diagrams, it is not always possible to avoid crossing lines (see the third
diagram in Fig. 1 for an example). However, it is always possible to choose horizontal
coordinates for the vertices such that (1) vertices in the same revisions are vertically
aligned, and (2) revisions are horizontally arranged such that forkers are left of forkees,
and (3) joiners are left of joinees. The existence of such an order is not immediately
obvious; for example, such a layout is not possible for the incorrect revision diagram at
the right in Fig. 2(b). The following lemma formalizes the claims (1,2,3) above (where
the preorder ≤l corresponds to a relation on vertices that compares their horizontal
coordinates):

Lemma 2. [Layout Preorder] In any revision diagram, there exists a preorder ≤l on
vertices3 such that

S(x) = S(y) ⇔ (x ≤l y) ∧ (y ≤l x) (1)

x
f−→ y ⇒ x ≤l y (2)

x
j−→ y ⇒ y ≤l x (3)

3 A preorder is a reflexive transitive binary relation. Unlike partial orders, preorders are not
necessarily antisymmetric, i.e. they may contain cycles.
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We include the proof in the full version [4]. For proving our main result later on, we
need to establish another basic fact about revision diagrams. We call a path direct if
all of its f-edges (if any) appear after all of its j-edges (if any). The following lemma
(which appears as a theorem in [6], and for which we include a proof in [4] as well)
shows that we can always choose direct paths:

Lemma 3 (Direct Paths.). Let x, y be vertices in a revision diagram. If x →∗ y, there
exists a direct path from x to y.

3.3 Query and Update Semantics

We now proceed to explain how to determine the results of a query in a revision di-
agram. The basic idea is to (1) return a result that is consistent with applying all the
updates along the root path, and (2) if there are join vertices along that path, they sum-
marize the effect of all updates by the joined revision.

·
��•
�� 



store(a, 1) ·

��

· store(a, 2)

��
· store(b, 2)

��store(a, 2); store(b, 2) ◦
��

load(a) ·

Fig. 3. A labeled revision diagram. The path-result of the bottom vertex is now the query applied
to its root-path: load(a)#(store(b, 2)#(store(a, 2)#(store(a, 1)#(s0)))) = 2.

For example, consider the diagram in Fig. 3. This is an example of a revision di-
agram labeled with the operations of the random access memory example described
in Example 2. The join vertex is labeled with the composition of all update opera-
tions of the joinee. The path-result of the final query node load(a) can now be eval-
uated by applying to the composition of all update operations along the root-path:
load(a)#(store(b, 2)#(store(a, 2)#(store(a, 1)#(s0)))) = 2.

We can define this more formally. To reduce the verbosity of our definitions, we
assume a fixed query-update interface (Q, V, U) and QUA (S, s0) for the rest of this
section.

Definition 8. For any vertex x, we let the effect of x be a function x◦ : S → S defined
inductively as follows:

– If x is a start, fork, or query vertex, the effect is a no-op, i.e. x◦(s) = s.
– If x is an update vertex for the update operation u, then the effect is that update,

i.e. x◦(s) = u#(s).
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– If x is a join vertex, then the effect is the composition of all effects in the joined
revision, i.e. if y1, . . . , yn is the sequence of vertices in the joined revision (i.e. y1
is a start vertex, yi

s−→ yi+1 for all 1 ≤ i < n, and yn
j−→ x), then x◦(s) =

y◦n(y
◦
n−1(. . . y

◦
1(s))).

We can then define the expected query result as follows.

Definition 9. Let x be a query vertex with query q, and let (y1, . . . , yn, x) be the root
path of x. Then define the path-result of x as q#(y◦n(y

◦
n−1(. . . y

◦
1(s0))).

3.4 Revision Diagrams and Histories

We can naturally relate histories to revision diagrams by associating each query event
(q, v) ∈ EH with a query vertex, and each update event u ∈ EH with a update vertex.
The intention is to validate the query results in the history using the path results, and
to keep transactions atomic and isolated by ensuring that their events form contiguous
sequences within a revision.

Definition 10. We call a revision diagram a witness for the history H if it satisfies the
following conditions:

1. For all query events (q, v) in EH , the value v matches the path-result of the query
vertex.

2. If x, y are two successive non-yield operations in H(c) for some c, then they must
be connected by a s-edge.

3. If x is the last event of H(c) for some c and not a yield, then it must be a terminal.
4. If x, y are two operations preceding and succeeding some yield in H(c) for some

c, then there must exist a path from x to y. In other words, the beginning of a
transaction must be reachable from the end of the previous transaction.

We call a history H revision-consistent if there exists a witness revision diagram.

To ensure eventual delivery of updates, we need to somehow make sure there are enough
forks and joins. To formulate a liveness condition on infinite histories, we define “ne-
glected vertices” as follows:

Definition 11. We call a vertex x in a revision diagram neglected if there exists an
infinite number of vertices y such that there is no path from x to y.

We are now ready to state and prove our main result.

Theorem 1. Let H be a history. If there exists a witness diagram for H such that no
committed events are neglected, then H is eventually consistent.

Note that this theorem gives us a solid basis for implementing eventually consistent
transactions: an implementation can be based on dynamically constructing a witness re-
vision diagram and as a consequence guarantee eventual consistent transactions. More-
over, as we will see in Section 4, implementations do not need to actually construct
such witness diagrams at runtime but can rely on efficient state-based implementations.
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The proof of our Theorem (in Section 3.5 below) constructs partial orders <v, <a

from the revision diagram by (1) specifying x <v y iff there is a path from x to y in the
revision diagram, and (1) specifying <a to order all events in a joined revision to occur
in between the joiner terminal and the join vertex. Note that the converse of Thm. 1 is
not true, not even if restricted to finite histories (we include a finite counterexample in
the full version [4]). Also Note that the most difficult part of the proof is the safety, not
the liveness, since the proof that <a is a partial order extending <v depends on the join
condition in a nontrivial way.

3.5 Proof of Thm 1

We devote the rest of this section to this proof, which requires some deeper insight into
structural properties of revision diagrams. First, however, we need some definitions,
notations, and lemmas.

A revision diagrams is a connected graph. However, if we remove all f -edges from
the picture, it may decompose into several components. We define a join-component to
be a maximal component connected by s and j edges only. We say x ∼j y if they are in
the same join component, and let J(x) = {y | x ∼j y}. It is easy to see that each join-
component contains exactly one terminal. For a vertex x, we let T (x) be the terminal
of J(x) (note that T (x) is the unique terminal reachable from x by a path containing j
and s edges only).

Definition 12. Define the binary relation →a on vertices by adding the following edges
during the construction of a revision diagram as in Def. 6:

– (Query, Update, Fork) for all y ∈ J(t), add y →a x
– (Join) for all y ∈ J(t) and y′ ∈ J(t′), add edges y →a x, y′ →a x, and y →a y′.

Lemma 4. For any revision diagram, →a as defined above is a partial order over all
vertices in the diagram satisfying (1) when restricted to any one join-component,→a is
a total order (2) →a does not cross join-components.

Lemma 5. For vertices x, y in a revision diagram and a preorder ≤l as guaranteed by
Lemma 2, x →∗ y implies T (x) ≤l T (y).

We include proofs for both lemmas in [4]. The first one is a simple induction, the second
one is a bit more intricate and uses the path properties guaranteed by Lemma 3 and the
layout preorder guaranteed by Lemma 2.

We are now ready to prove Theorem 1. Given a history H and a witness revision
diagram, define two binary relations

<v = →∗ and <a = (<v ∪ →a)
∗.

By Lemma 6 below, <a and <v are partial orders. We can then prove the remaining
claims as follows:

– (arbitration extends visibility) By Lemma 6 below.
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– (total order on past events) if e1 <v e and e2 <v e, then by Lemma 3 there exist
direct paths for e1 →∗ e and for e2 →∗ e. If either path is a prefix of the other,
e1 and e2 are ordered by <v and thus by <a. If not, they must combine in a join
vertex, implying that e1 ∼j e2, which implies (by Lemma 4) that they are ordered
by <a.

– (compatible with program order) By conditions 2 and 4 of Def. 10.
– (consistent query results) We can show inductively (over Def. 6) that for any vertex
x, the combined effect of the vertices on the root path (as in Def. 8) to x is equal
to the combined effect of all updates {x′ | x′ <v x} ordered by <a. This is trivial
for all but the join case. In the join case, Def. 12 orders all all updates in the joinee
after updates in the joiner which is consistent with interpreting them as an effect of
the join vertex.

– (atomicity) By condition 2 we know there can be no intervening forks or joins. This
implies that both → and <a factor over ∼t.

– (isolation) By condition 3.
– (eventual delivery) Assume the condition is violated. Then there exists a committed

transaction t ∈ committed(TH) and an infinite number of transactions t1, t2, . . .
such that for all i, t �<v ti. Since transactions can not be empty, we can pick vertices
x ∈ t and xi ∈ ti, with x �<v xi for all i. But that implies that x is neglected,
contradicting the condition in the theorem.

The only thing left to prove is the lemma below, which arguably contains the most inter-
esting part of the proof. In particular, it shows how consequences of the join condition
(specifically, Lemmas 2 and 5) are used in the construction of an arbitration order <a

that satisfies <v⊆<a as required for eventual consistency.

Lemma 6. Given some revision diagram, define binary relations <v=→∗ and <a=
(<v ∪ →a)

∗. Then both <v and <a are partial orders, and <v⊆<a.

Proof. Clearly, <v is a partial order (since revision diagrams are acyclic) and <v⊆<a.
The interesting part is to show that <a is antisymmetric (i.e. x <a y and y <a x implies
x = y). We prove this by showing that (→a ∪ →) is acyclic. Consider some minimal
cycle. Since →a is transitive, and both →a and → are acyclic on their own, it must be
of the following form (where n ≥ 1):

x1 →∗ y1 →a x2 →∗ y2 →a . . . →a xn →∗ yn →a x1

By Lemma 4 this implies

x1 →∗ y1 ∼j x2 →∗ y2 ∼j . . . →a xn →∗ yn ∼j x1

using the preorder guaranteed by Lemma 2 and Lemma 5, we get

T (x1) ≤l T (y1) = T (x2) ≤l T (y2) . . . T (xn) ≤l T (yn) = T (x1)

But by Lemma 2 such an ≤l-cycle implies that all vertices are in the same revision
which is a contradiction.
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4 System Implementation

Revision diagrams can help to develop efficient implementations since they provide
a solid abstraction that decouples the consistency model from actual implementation
choices. In this section, we describe some implementation techniques that are likely
to be useful for that purpose. We present three sketches of client-server systems that
implement eventual consistency.

It is usually not necessary for implementations to store the actual revision diagram.
Rather, we found it highly convenient to work with state representations that can di-
rectly provide fork and join operations.

Definition 13. A fork-join QUA (FJ-QUA) for a query-update interface (Q, V, U) is a
tuple (Σ, σ0, f , j ) where (1) (Σ, σ0) is a QUA over (Q, V, U), (2) f : Σ → Σ × Σ,
and (3) j : Σ ×Σ → Σ.

If we have a fork-join QUA, we can simply associate a Σ-state with each revision, and
then perform all queries and updates locally on that state, without communicating with
other revisions. The join function of the FJ-QUA, if implemented correctly, guarantees
that all updates are applied at the join time. We can state this more formally as follows.

Definition 14. For a FJ-QUA (Σ, σ0, f , j ) and a revision diagram over the same inter-
face (Q, V, U), define the state σ(x) of each vertex x inductively by setting σ(r) = σ0

for the initial vertex r, and (for the construction rules as they appear in Def. 6)

– (Query) Let σ(x) = σ(t)
– (Update) Let σ(x) = u#(σ(t))
– (Fork) Let (σ(x), σ(y)) = f (σ(t))
– (Join) Let σ(x) = j (σ(t), σ(t′))

Definition 15. A FJ-QUA (Σ, σ0, f , j ) implements the QUA (S, s0) over the same in-
terface if and only if for all revision diagrams, for all vertices x, the locally computed
state σ(x) (as in Def. 14) matches the path result (as in Def. 9).

Example 3. Consider the QUA representing random access memory as defined in Ex-
ample 2. We can implement this QUA using an FJ-QUA that maintains a “write-set” as
follows:

Σ = S × P(A)
σ0 = (s0, ∅)

load(a)#(s,W ) = s(a)
store(a, v)#(s,W ) = (s[a �→ v],W ∪ {a})

f (s,W ) = ((s,W ), (s, ∅))
j ((s1,W1), (s2,W2)) = (s′,W1 ∪W2) where s′(a) =

{
s1(a) if a /∈ W2

s2(a) if a ∈ W2

The write set (together with the current state) provides sufficient information to con-
ceptually replay all updates during join (since only the last written value matters). Note
that the write set gets cleared on forks.
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Since we can store a log of updates inside Σ, it is always possible to provide an
FJ-QUA for any QUA (we show this construction in detail in the full version [4]).
However, more space-effective implementations are often possible for QUAs since logs
are typically compressible. We include several finite-state examples of FJ-QUAs in [4]
as well.

4.1 System Models

If we have a FJ-QUA, we can implement eventually consistent systems quite easily. We
now present two models that demonstrate this principle.

4.2 Single Synchronous Server Model

We first present a model using a single server. We define the set of devices I = C ∪{s}
where C is the set of clients and s is the single server. We store on each device i a state
from the FJ-QUA, that is, we define R : I ⇀ Σ. To keep the transition rules simple,
we use the notation R[i �→ σ] to denote the map R modified by mapping i to σ, and we
let R(c �→ σ) be a pattern that matches R, c, and σ such that R(c) = σ. Each client can
perform updates and queries while reading and writing only the local state:

UPDATE(c, u):
σ′ = u#(σ)

R(c �→ σ) → R[c �→ σ′]
QUERY(c, q, v):

q#(σ) = v

R(c �→ σ) → R

As for synchronization, all we need is two rules, one to create a new client (forking the
server state), and one to perform the yield on the client (joining the client state into the
server, then forking a fresh client state from the server):

SPAWN(c):

c /∈ domR f (σ) = (σ1, σ2)

R(s �→ σ) → R[s �→ σ1][c �→ σ2]

YIELD(c):

j (σ1, σ2) = σ3 f (σ3) = (σ4, σ5)

R(s �→ σ1)(c �→ σ2) → R[s �→ σ4][c �→ σ5]

Thanks to Theorem 1, we can precisely argue why this system is eventually consistent.
By induction over the transitions, we can show that each state σ appearing in R corre-
sponds to a terminal in the revision diagram, and each transition rule manipulates those
terminals (applying fork, join, update or query) in accordance with the revision diagram
construction rules. In particular, the join condition is always satisfied since all forks and
joins are performed by the same server revision. Transactions are not interrupted by
forks or joins, and no vertices are neglected: each yield creates a path from the freshly
committed vertices into the server revision, from where it must be visible to any new
clients, and to any client that performs an infinite number of yields.

An interesting observation is that, if the fork does not modify the left component
(i.e. for all σ ∈ Σ, f(σ) = (σ, σ′) for some σ′), the server is effectively stateless, in the
sense that it does not store any information about the client. This is a highly desirable
characteristics for scalability, and in our experience it is well worth to go through some
extra length in defining FJ-QUAs that have this property.
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4.3 Server Pool Model

The single server model still suffers some drawbacks. For one, clients performing a yield
access both server and client state. This means clients block if they have no connection.
Also, a single server may not scale to large numbers of clients.

We can fix both of these issues by using a server pool rather than a single server,
i.e. we let the set of devices be I = C ∪ S where S is a set of server identifiers. Using
multiple servers not only improves scalability, but it helps with disconnected operation
as well: if we keep one server next to each client (e.g. on the same mobile device), we
can guarantee that the client does not block on yield. Servers themselves can perform a
sync operation (at any convenient time) to exchange state with other servers.

However, we need to keep additional information in each device to ensure that the
join condition is maintained. We do so by (1) storing on each client c a pair (σ, n) where
σ is the revision state as before, and n is a counter indicating the current transaction, and
(2) storing on each server s a triple (σ, J, L) where σ is the revision state as before, J
is the set of servers that s may join, and L is a vectorclock (a partial function (I → N))
indicating for each client the latest transaction of c that s may join.

The transitions that involve the client are then as follows:

UPDATE(c,u):

σ′ = u#(σ)

R(c �→ (σ, n)) → R[c �→ (σ′, n)]

QUERY(c, q, v):

q#(σ) = v

R(c �→ (σ, L)) → R

SPAWN(c):

c /∈ domR f (σ) = (σ1, σ2) L′ = L[c �→ 0]

R(s �→ (σ, J, L)) → R[s �→ (σ1, J, L
′)][c �→ (σ2, 0)]

YIELD(s, c):

L(c) = n L′ = L[c �→ n+ 1] j (σ1, σ2) = σ3 f (σ3) = (σ4, σ5)

R(s �→ (σ1, J, L))(c �→ (σ2, n)) → R[s �→ (σ4, J, L
′)][c �→ (σ5, n+ 1)]

The servers can perform forks and joins without involving clients. On joins, servers join
the state, take the union of the sets J of joinable servers, and merge the vector clocks
(defined as taking the pointwise maximum).

FORK(s1, s2):

s2 /∈ domR f (σ) = (σ1, σ2) J ′ = J ∪ {s2}
R(s1 �→ (σ, J, L)) → R[s1 �→ (σ1, J

′, L)][s2 �→ (σ2, J, L)]

JOIN(s1, s2):

s2 ∈ J1 σ′ = j (σ1, σ2) J ′ = J1 ∪ J2 L′ = merge(L1, L2)

R(s1 �→ (σ1, J1, L1))(s2 �→ (σ2, J2, L2)) → R[s1 �→ (σ′, J ′, L′)][s2 �→ ⊥]



84 S. Burckhardt et al.

Again, we can use Theorem 1 to reason that finite executions of this system are
eventually consistent (for infinite executions we need additional fairness guarantees as
discussed below). Again, all states σ stored in R correspond to terminals in a revision
diagram and are manipulated according to the rules. This time, the join condition is
satisfied because of the following invariants: (1) if the set J of server s1 contains s2,
then s1’s terminal is reachable from the fork vertex that forked s2’s revision, and (2)
if L(c) = n for server s, and client c’s transaction counter is n, then s’ terminal is
reachable from the fork vertex that forked c’s revision.

Since the transition rules do not contain any guarantees that force servers to synchro-
nize with each other, it is possible to construct infinite executions that violate eventual
consistency. Actual implementations would thus likely add a mechanism to guarantee
that updates eventually reach the main revision, and that clients that perform an infinite
sequence of transactions receive versions from the main revision infinitely often.

5 Related Work

For a high-level comparison of our work with various notions of eventual consistency
appearing in the literature, see Section 2.4. Briefly stated, our work is set apart by its
unique use of revision diagrams to determine both arbitration and visibility, rather than
separately using a causally consistent partial order for visibility, and timestamps for
arbitration.

There is of course a large body of work on transactions. Most academic work consid-
ers strong consistency (serializable transactions) only, and is thus not directly applicable
to eventual consistency. Nevertheless there are some similarities, to pick a few:

– [10] provides insight on the limitations of serializable transactions, and proposes
similar workarounds as used by eventual consistency (timestamps and commutative
updates). However, transactions remain tentative during disconnection.

– Snapshot isolation [8] relaxes the consistency model, but transactions can still fail,
and can not commit in the presence of network partitions.

– Coarse-grained transactions [11,14] share with our work the use of abstract data
types to facilitate concurrent transactions.

– Automatic Mutual Exclusion [1], like our work, uses yield statements to separate
transactions.

Previous work on revisions [2,6,3,5] introduces revision diagrams and conflict resolu-
tion. In this paper we feature a simpler, more direct definition using graph construc-
tion rules. Also, we pursue a different goal (eventually consistent transactions in a dis-
tributed system, rather than deterministic parallel programming). In particular, eventu-
ally consistent transactions exhibit pervasive nondeterminism caused by factors that are
by definition outside the control of the system, such as network partitions. Also, this
paper is the first to give a single, simple formalization of merge functions (FJ-QUAS
are optimized implementations of QUAs).

Research on persistent data types [13] is related to our definition of FJ-QUAs insofar
it concerns itself with efficient implementations of data types that permit retrieval and
mutations of past versions. However, it does not concern itself with apects related to
transactions or distribution.
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Prior work on operational transformations [19] can be understood as a specialized
form of eventual consistency where updates are applied to different replicas in different
orders, but are themselves modified in such a way as to guarantee convergence. This
specialized formulation can provide highly efficient broadcast-based real-time collabo-
ration, but poses significant implementation challenges [12].

If we consider transactions with single elements only, it is sensible to compare our
work with related work on conflict-free replicated data types (CRDTs) [18] and Bayou’s
weakly consistent replication [20].

– Our definition is strictly more general than CRDTs [18] in the following sense:
From any state-based CRDT we can obtain a FJ-QUA by using the same state
and initial state, the same query and update functions, a fork function that creates
a new replica and then merges the forker state, and a join function that uses the
merge. Note that the definition of strong eventual consistency in [18], just like ours,
requires that updates can be applied to any state.

– In Bayou [20], and in the Concurrent Revisions work[6], users can specify how to
resolve conflicting updates by writing custom merge functions. At first sight, this
may appear more general that QUAs. However, by performing a simple automatic
transformation of the QUA and the client program, we can support merge functions
for conflict resolution purposes. The reason is that QUAs already allow updates
to perform any desired total function. We describe this transformation in the full
version [4].

6 Conclusion and Future Work

We have proposed eventually consistent transactions as a consistency model that (1)
generalizes earlier definitions of eventual consistency and (2) shows how to make some
strong guarantees (transactions never fail, all code runs in transactions) to compensate
for weak consistency. We have shown that revision diagrams provide a convenient way
to build correct implementations of eventual consistency, by relying on just a handful
of simple rules that are easily visualized using diagrams.

In future work, we would like to extend the study of the programming model, inves-
tigate a selection of basic FJ-QUAs, and ways to combine them. Furthermore, we would
like to understand whether stronger consistency guarantees are possible for subclasses
of eventually consistent transactions, and whether such classes can be automatically
recognized or synthesized.
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