
Staged Computation with Staged Lexical Scope

Morten Rhiger

Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
mir@ruc.dk

Abstract. We present a simple core type system, λ[]— pronounced
“lambda open box” — for a statically typed, hygienic, and multi-stage
lambda-calculus supporting evaluation under future-stage binders, open-
code manipulation, a first-class eval function, and mutable state. The
type system provides one type of lexically scoped code that precisely
accounts for the contexts in which code values can be inserted. In par-
ticular, this type can distinguish between open and closed code. We
show how to extend λ[] with subtype polymorphism over program con-
texts. The soundness and simplicity of λ[] demonstrate that the no-
tion of staging is orthogonal to features that have been presented as
instrumental in existing type systems for staged computation, such as
polymorphism, nameless term representations, explicit substitutions, and
delimited continuations.

1 Introduction

Staged computation enables programs to generate, combine, and execute code
values at runtime. Its ability to delay the execution of code values induces a
distinction between present-stage (or static) program parts (that are evaluated
normally) and future-stage (or dynamic) program parts (that yield code values).
Its ability to evaluate under future-stage binders makes staged computation
ideal for partial evaluation and program specialization, compilation, runtime
code generation, and macro expansion.

Code manipulation as a programming discipline dates back to the develop-
ment of the first Fortran compiler in the late 1950s [1]. In the early 1960s, Mc-
Carthy proposed S-expressions as a uniform representation of code (and other
data) in Lisp [15]. The work by the artificial-intelligence community in the 1970s
then established quasi quotations as the preferred syntactic constructs for build-
ing such S-expressions [3]. The development of offline partial evaluation in the
1980s demonstrated that quasi quotations (or similar binding-time annotations)
elegantly captures the notion of staged computation [5, 12]. In a couple of influ-
ential papers published in the mid 1990s, Davies [9] and Davies and Pfenning [10]
established the type-theoretical foundation for staged computation via connec-
tions to temporal and modal logics. In the decade that has followed Davies and
Pfenning’s work, much research have been aimed at designing static type sys-
tems that combine general-purpose features with support for staged computation
using quasi quotations as code-generation constructs [6, 14, 16, 22, 24, 26].

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 559–578, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

560 M. Rhiger

1.1 The Challenge

Statically typed languages that support staged computation must guarantee that
well-typed programs only generate, combine, and execute code values that are
themselves well typed. Languages that evaluate under future-stage binders de-
mand a careful treatment in the type system of potentially open code (that is,
code that contains free variables). This is particularly challenging in the pres-
ence of an eval function and of assignments to mutable state since (1) an eval
function must be passed closed code values only and (2) assignments enable
code values to escape the scope in which they are generated, which in turn en-
ables future-stage variables to escape their binder. Hence type systems for staged
computation must distinguish between open and closed code values and must
prevent future-stage variables from being captured by any binder but their own.

1.2 Our Contributions

We present λ[], a sound monomorphic type system for hygienic staged evaluation
that supports multiple stages, evaluation under future-stage binders, and open-
code manipulation. The type systems provides one type of code, which precisely
distinguishes open from closed code. The type system supports a first-class eval
function and first-class mutable cells. Mutable cells can contain (open as well
as closed) code and assignments can pass (open as well as closed) code across
binders. Yet, the type systems prevent future-stage variables from escaping their
scope by the means of assignments. We then extend λ[] with subtype polymor-
phism and show that the result, λ

[]
<, is at least as expressive as the foundational

multi-stage calculi λ© [9] and λ� [10].
The type system of λ[] demonstrate that the notion of staging is orthogonal to

features that are instrumental in existing type systems for staged computation,
such as separate types for closed values [4, 16], polymorphism [25], nameless term
representations [8], explicit substitutions [19], and delimited continuations [13].
λ[] is the first type system for multi-stage programming that makes an explicit
eval function and mutable state coexist with hygienic evaluation under future
binders.

2 The Staged Type System λ[]

λ[] is a type system for monomorphic staged λ-calculi. It extends the simply-
typed λ-calculus with staging primitives ↑e and ↓e (similar to next and prev of
λ© [9] and to brackets 〈·〉 and escape ~ of the MetaML family of type systems,
and reminiscent of quasiquote and unquote of Lisp and Scheme [3]) and with
a single type of code [γ]t parametrized over a type environment γ and a type t.

In λ[], values of type [γ]t are code values: Intuitively, if an expression has
type [γ]t (and terminates), then it evaluates to (a representation of) a code
fragment that has type t under type environment γ. Thus, the code type [γ]t
precisely characterizes the contexts that code values can be inserted into. Indeed,

Staged Computation with Staged Lexical Scope 561

by varying γ, this code type is able to characterize both closed and (potentially)
open code values. The code types of λ[] are contextual modal types but the
typing rules are different from those of recently developed contextual modal
type systems [19]. In terms of temporal logics, λ[] models linear (rather than
branching) time.

To support hygienic evaluation under future-stage binders, the typing judg-
ment of λ[] represents the context of a term by a linearly ordered sequence of
type environments,

γ0 · γ1 · . . . · γn−1 · γn ; γn+1 · . . . · γm−1 · γm,

of which the type environment to the left of the (unique) “;” is designated as
the current. The stage (or time, in the vocabulary of temporal logic) of a bound
variable equals the index of the environment that binds it. The stage of an
expression is the index of the current type environment. (Lower stages are “more
static” or “past”; higher stages are “more dynamic” or “future”.) An expression
can only access variables of the same stage. Hence variables at different stages
live in different namespaces. We let Γ range over sequences of type environment
not containing “;”. We use a single “ · ” to separate elements in a sequence.

When introducing a code value by ↑e at stage n, e is typed at stage n+1: If ↑e
is typed in context Γ ; γ ·Γ ′, then e is typed in context Γ · γ ; Γ ′. By the intuition
above, if the type of e is t, then ↑e has type [γ]t. Dually, when eliminating a
code value by ↓e at stage n + 1, e is typed at stage n: If ↓e is typed in context
Γ · γ ; Γ ′, then e is typed in context Γ ; γ ·Γ ′. Following intuition again, if the
type of e is [γ]t, then ↓e has type t. The typing rules for code introduction and
elimination concisely sum up this explanation as follows.

Γ · γ ; Γ ′ � e : t

Γ ; γ ·Γ ′ � ↑e : [γ]t
([]-I)

Γ ; γ ·Γ ′ � e : [γ]t
Γ · γ ; Γ ′ � ↓e : t

([]-E)

The complete type system of λ[] is displayed in Fig. 1. The typing rules for vari-
ables, abstractions, and application closely mimic the simply-typed λ calculus.
They access only the current type environment and pass the remaining sequence
of past- and future-stage type environments unmodified to their subterms. The
type rules for the staging primitives insist that each ↓ appears under at least
one ↑. Without this requirement we would be forced to let a static occurrence
of ↓ act as an eval function, but we prefer to study staging using ↑ and ↓ on one
hand and an eval function on the other in isolation. We write ε for the empty
sequence of type environments and we let b and c range over an unspecified set
of base types and over type-indexed constants, respectively.

The typing rules of λ[] define a notion of staged lexical scope: A variable
is bound by the nearest enclosing definition at the same stage of that variable.
This notion extends to term variable that appears in type environments in types.

562 M. Rhiger

Syntax:
(Types) t ::= b | t → t | [γ]t

(Terms) e ::= c{t} | x | λx : t. e | e e | ↑e | ↓e
(Environments) γ ::= ∅ | γ, γ | x : t

(Sequences) Γ ::= γ · . . . · γ

Typing rules: Γ ; Γ ′ � e : t

Γ · γ ; Γ ′ � t :: ∗
Γ · γ ; Γ ′ � c{t} : t

(Const)
Γ · (x : t, γ) ; Γ ′ � x : t

(Var)

Γ · γ′ · γ ; Γ ′ � e : t

Γ · γ′ ; γ ·Γ ′ � ↑e : [γ]t
([]I)

Γ · (x : t, γ) ; Γ ′ � e : t′ Γ · γ ; Γ ′ � t :: ∗
Γ · γ ; Γ ′ � λx : t. e : t → t′

(→I)

Γ · γ′ ; γ ·Γ ′ � e : [γ]t

Γ · γ′ · γ ; Γ ′ � ↓e : t
([]E)

Γ · γ ; Γ ′ � e1 : t2 → t Γ · γ ; Γ ′ � e2 : t2

Γ · γ ; Γ ′ � e1 e2 : t
(→E)

Kinding rules: Γ ; Γ ′ � t :: κ Γ ; Γ ′ � γ

Γ ; Γ ′ � b :: ∗ (Kb)
Γ · γ ; Γ ′ � γ′ Γ · γ ; Γ ′ � t :: ∗

Γ ; γ ·Γ ′ � [γ′]t :: ∗ (K[])

(x : t) ∈ γ, and
Γ · γ ; Γ ′ � t :: ∗

}
for (x : t) ∈ γ′

Γ · γ ; Γ ′ � γ′ (Kγ)
Γ ; Γ ′ � t0 :: ∗ Γ ; Γ ′ � t1 :: ∗

Γ ; Γ ′ � t0 → t1 :: ∗ (K→)

Fig. 1. The Type System of λ[]

Consequently, types that refer to unbound variables or that assert incorrect types
for its variables are invalid. The type system of λ[] characterizes valid types using
the kinding rules of Fig. 1. Most importantly, [γ]t is valid at stage n when both
γ and t are kind checked at stage n + 1 since both the type t and any variable
bound by γ are future stage entities. For example, λx : t. λc : [x : t]t. c is not well
typed, since the x inside the asserted type of c is unbound. This x occurs at a
stage different from the x bound at the surrounding λ.

2.1 Staged Lexical Scope

Before we present the semantics of λ[], we need to extend the definitions of free
variables and substitution to a staged setting. This is particularly pertinent in
the approach to staged computation we propose, where variables at different
stages live in different namespaces.

Definition 1 (Free variables). The set of free stage-n variables in stage-m
terms, types, or environments are defined as follows.

Staged Computation with Staged Lexical Scope 563

FVm
n (c{t}) = FVm

n (t)
FVm

m(x) = {x}
FVm

n (x) = { }, if m �= n

FVm
m(λx : t. e) = FVm

m(t) ∪ (
FVm

m(e) − {x})
FVm

n (λx : t. e) = FVm
n (t) ∪ FVm

n (e), if m �= n

FVm
n (e1 e2) = FVm

n (e1) ∪ FVm
n (e2)

FVm
n (↑e) = FVm+1

n (e)

FVm+1
n (↓e) = FVm

n (e)

FVm
n (b) = { }

FVm
n (t1 → t2) = FVm

n (t1) ∪ FVm
n (t2)

FVm
n ([γ]t) = FVm+1

n (γ) ∪ FVm+1
n (t)

FVm
n (∅) = { }

FVm
n (γ1, γ2) = FVm

n (γ1) ∪ FVm
n (γ2)

FVm
m(x : t) = {x}

FVm
n (x : t) = { }, if m �= n

The definition of free variables induces a notion of α-equivalence. λ[] then adheres
to the following conventions. We occasionally state Convention 2 as an explicit
side condition.

Convention 1 α-equivalent terms (or types) are interchangeable in all contexts.

Convention 2 (Barendregt [2]) Bound and free variables are assumed to be
different. (If necessary, Convention 1 can be used to rename the bound ones.)

Definition 2 (Substitution). The result of the capture-avoiding substitution
of the stage-0 term e′ for the stage-0 variable x in the stage-m term e is defined by

(c{t})m{e′/x} = c{t}
(x)0{e′/x} = e′

(x)m{e′/x} = x, if m �= 0
(λy : t. e)m{e′/x} = λy : t. (e)m{e′/x}

(e1 e2)m{e′/x} = (e1)m{e′/x} (e2)m{e′/x}
(↑e)m{e′/x} = ↑(e)m+1{e′/x}

(↓e)m+1{e′/x} = ↓(e)m{e′/x}

Notice that by Convention 2, x and y are different in the rule for substitution
under lambdas.

The operational semantics of λ[] is presented in Sect. 3.4.

564 M. Rhiger

2.2 Properties of λ[]

The type system of λ[] in Fig. 1 is sound with respect to a standard hygienic
semantics of staging primitives. (The proof of soundness is outlined in Sect. 4.)

λ[] supports both a function run for immediate evaluation of code values and
mutable state. We defer the detailed treatment of these to Sect. 3 and give just
an outline here. We assume the existence of type-indexed families of constant
symbols run{[]t→t}, ref{t→t ref}, get{t ref→t}, and set{t ref→t→t}. Given their usual
semantics, these operations are type safe.

2.3 Examples

An implementation in λ[] of the classic staged power function is shown below.
(In this implementation, we have taken the liberty to use standard integer arith-
metic, monomorphic recursive let-expressions, and conditionals. They can all be
added straightforwardly to λ[].)

powgen : int → [](int → int) =
λn : int.

↑(λx : int.

↓(let rec powbt : int → [x:int]int → [x:int]int =
λn : int. λc : [x:int]int.

if n = 0 then ↑1 else ↑(↓c × ↓(powbt (n − 1) c))
in powbt n ↑x))

This example demonstrates the typical use of staged computation to imple-
mented partial evaluation: The staging primitives are used to define a binding-
time separated function powbt of type int → [x : int]int → [x : int]int and a gener-
ating extension powgen of type int → [](int → int). Evaluating powgen n yields the
textual representation of a function of type int → int that computes xn. For ex-
ample, powgen 3 yields ↑(λx : int. x×x×x×1) and run{[](int→int)→int→int} (powgen 3)
yields a function of type int → int that computes x3.

The following shows an example where a code value (↑x) with a free variable
(x) is passed across the future-stage λ of another variable (y) by the means of
an assignment. This example is well typed in λ[] since the free variable x does
not escape its scope. (To ease readability, the types of the constants have been
left out from this example.)

↑(λx : int.
↓(let c : [x : int]int = ref{··· } (↑1) in ↑(λy : t. ↓(set{··· } c (↑x) ; · · ·))))

On the other hand, the following classic attempt to pass a future-stage variable
beyond its own scope is correctly rejected by the type system.

let c : t = ref{··· } (↑1) in ↑(λx : int. ↓(set{··· } c (↑x); · · ·))

In this example, the type of ↑x is [x : int]int. Hence the type t of c must be
([x : int]int) ref. But at the let-binding of c, this type is not well kinded since it
refers to a unbound (future-stage) variable x.

Staged Computation with Staged Lexical Scope 565

3 The Staged Type System λ
[]
<

As a type system for staged computation, λ[] is strikingly concise (as witnessed
by its definition in Fig. 1). But λ[] lacks the expressive power required by general-
purpose staged programming languages.

In this section, we first identify two examples representing lack of expres-
siveness in λ[]. We argue that subtype polymorphism provide the expressiveness
necessary to handle these examples. We therefore extend λ[] with a subtyping
fragment, in Sect. 3.1. We then define the evaluation fragment and the imperative
fragment of λ

[]
<, in Secs. 3.2 and 3.3. All fragments provide orthogonal features

that can be added to λ[] independently of each other. Finally, in Sect. 3.4, we
define the operational semantics of λ

[]
<.

Shortcoming 1. Consider the following term, which generates a closed code
value and then splices that value into a context containing a variable x.

let c = ↑1 in ↑(λx : t. ↓c)
This term in not typable in λ[]: The typing rule for ↓ insists that the current
type environment (in this example the one that declares x) must be identical to
the type environment of the code spliced in (in this example an empty one). In
λ[], a code value of type [γ]t can only be spliced into a context that provides
exactly the binding in γ. But recall the intuition that, if c has type [γ]t then it
denotes a representation of a term that has type t in type environment γ. Then
it seems clear that c also has type [γ′]t for an extended environment γ′ of γ.
Similar reasoning is found within type systems for object calculi, record types,
and other type systems with a built-in notion of subsumption.

To address this shortcoming, λ
[]
< therefore extends λ[] with a rule of subsump-

tion that allows us to weaken a code type (such as the type of ↓c in the example
above) by adding unused bindings to its environment. This idea is formalized in
Sect. 3.1 below.

Shortcoming 2. Consider the following term that invokes run on a closed code
value under a context containing a variable x: (The term is incomplete; we
assume that the run is at stage 0.)

↑(λx : t. ↓(· · · run{··· } (↑1) · · ·))
This term in not typable λ[]: The ↑1 has type [x : t]int but run expects a closed
code value of type []int. The typing rule for ↑ insists that the type environment
of the code generated is identical to the type environment used to type the
future-stage term under the ↑ (in this example the one that declares x). But
intuition tells us that if x is not used in the body of e, then the type of ↑e need
not mention x.

To address this shortcoming, λ
[]
< also extends λ[] with a rule of subsumption

that allows us to strengthen a typing context (such as the one used when typing

566 M. Rhiger

Additional Typing rules: Γ ; Γ ′ � e : t

Γ1 ; Γ ′
1 � Γ2 ; Γ ′

2 Γ1 ; Γ ′
1 � t1 : ∗ Γ2 ; Γ ′

2 � e : t2 Γ1 ; Γ ′
1 ≤ Γ2 ; Γ ′

2 t2 ≤ t1

Γ1 ; Γ ′
1 � e : t1

(≤)

Subtyping rules: t ≤ t′

t ≤ t
(S-Refl)

t1 ≤ t2 t2 ≤ t3
t1 ≤ t3

(S-Trans)

t1 ≤ t2
∀T :: κ. t1 ≤ ∀T :: κ. t2

(S-All)
t2 ≤ t1 t′1 ≤ t′2

t1 → t′1 ≤ t2 → t′2
(S-Arrow)

t1 ≤ t2
↑t1 ≤ ↑t2 (S-Up)

γ2 ≤ γ1 t1 ≤ t2
[γ1]t1 ≤ [γ2]t2

(S-Box)

t1 ≤ t2
↓t1 ≤ ↓t2 (S-Down)

t1 ≤ t2
x : t1 ≤ x : t2

(S-Bind)

γ ≤ ∅ (S-Width)
γ1 ≤ γ′

1 γ2 ≤ γ′
2

γ1, γ2 ≤ γ′
1, γ

′
2

(S-JoinCongr)

γ1, (γ2, γ3) ≤ (γ1, γ2), γ3
(S-JoinAssoc)

γ1, γ2 ≤ γ2, γ1
(S-JoinComm)

Fig. 2. The Subtype Fragment of λ
[]
<

↑1 in the example above) by removing unused bindings from its environments.
This idea is also formalized in Sect. 3.1 below.

In the rest of this article, we let V and L denote disjoint sets of term variables
and store locations, respectively. We let x and y range over V and � over L (with
primes and subscripts applied when necessary). We let ξ range over V ∪ L.

3.1 Subtype Polymorphism

Figure 2 contains the subtype fragment of λ
[]
<. The subtype rules follows stan-

dard subtype rules for records and objects [20]. Notice that the code type is
contravariant in the type environment and covariant in the type. The subsump-
tion rule states that if we can type e with type environment γ, then we can also
type it with type environment that provides more variable bindings than γ. This
rule uses a pointwise extension of ≤ to sequences of type environments and the
following iterative well kindedness rule for sequences of environments.

; Γ ′
1 � Γ2

Γ1 ; γ1 ·Γ ′
1 � γ2 Γ1 ; γ1 ·Γ ′

1 � Γ2

Γ1 · γ1 ; Γ ′
1 � Γ2 · γ2

Lemma 1. If Γ ; Γ ′ � t :: ∗ and t ≤ t′ then also Γ ; Γ ′ � t′ :: ∗

Staged Computation with Staged Lexical Scope 567

Additional syntax:

(Terms) e ::= · · · | ρθ. e

(Types) t ::= · · · | t ref

(Stores) θ = {〈�i, v
0
i 〉 | 1 ≤ i ≤ k}

Additional typing rules: Γ ; Γ ′ � e : t

(γ, γ′) ; Γ ·Γ ′ � v0
i : ti 1 ≤ i ≤ k

(γ, γ′) ·Γ ; Γ ′ � e : t

γ, Γ ; Γ ′ � ρ{〈�1, v0
1〉, . . . , 〈�k, v0

k〉}. e : t
(ρ)

where γ′ = (�1 : t1 ref, . . . , �k : tk ref)

Fig. 3. The imperative fragment of λ
[]
<

3.2 Evaluation and Lifting

The evaluation and lifting fragment of λ
[]
< introduces two (type-indexed families

of) constants, run{[]t→t} and lift{t→[]t}, that serve dual purposes: run maps a
future-stage value “back” to the present stage (called demotion) while lift maps
a present-stage term “forward” to a future stage (called promotion).

The type of run guarantees that the argument is a closed future-stage term.
It prevents, for example, the reduction run(↑x) −→ x in which a future-stage x
percolates into the present stage. (See the reduction rule for run in Fig. 5 below.)

3.3 Mutable State

Figure 3 presents the type system for the imperative fragment of λ
[]
<. Mutable

state is modeled syntactically using the approach pioneered by Felleisen and
Hieb [11] and further developed by Wright and Felleisen [28]. Stores θ are finite
sets of pairs containing cells and stage-0 values. As in Wright and Felleisen’s
work, we introduce a separate class of evaluation context, R, that order the im-
perative operations according to left-to-right, call-by-value evaluation. Figure 4
below defines all evaluation contexts.

The syntactic approach to mutable state lets us express garbage collection
on a store. Wright and Felleisen do not need to consider garbage collection, but
the rule that we present is standard [17]. It is necessary in the proof of Progress
(Lemma 11) for future-stage lambdas that contain ρ-terms. Here, garbage col-
lection allows the reduction λx : t. ρθ. vn+1 −→ λx : t. vn+1, since the stage-n+ 1
value vn+1 cannot (by definition) contain cells �.

The typing rule of ρ-terms is similar to that of Wright and Felleisen. Cells
are treated as stage-0 variables and hence must be added to the left-most type
environment in the type judgment. We use the usual invariant subtype rule for
the type of references [20]:

568 M. Rhiger

t1 ≤ t2 t2 ≤ t1
t1 ref ≤ t2 ref

(S-Ref)

We use the following extensions of the definition of free variables and substitution
for ρ-terms.

FVm
m(ρθ. e) = FVm

m(codom θ) ∪ (
FVm

m(e) − dom θ
)

FVn
m(ρθ. e) = FVn

m(codom θ) ∪ FVn
m(e), if m �= n

(ρθ. e)m{e′/x} = ρθ. (e)m{e′/x}
Notice that since the store contains stage-0 values only, it cannot contain free
variables.

Figure 3 explicitly restricts reduction to situations that do not result in future-
stage variables leaving their scope. For this purpose, we let BVm

n (Rm
n′) denote

the set of bound stage-n variables in the stage-m context Rm
n′ .

Definition 3 (Bound variables). BVm
n (Rm

n′) denotes the stage-n variables in
Rm

n′ bound by λs that “surround” the hole �, defined as follows.

BVm
n (�) = { }

BVm
n (Rm

n′ e) = BVm
n (Rm

n′)
BVm

n (vm Rm
n′) = BVm

n (Rm
n′)

BVm
n (↑Rm+1

n′) = BVm+1
n (Rm+1

n′)

BVm+1
n (↓Rm

n′) = BVm
n (Rm

n′)

BVm+1
m+1(λx : t.Rm+1

n′) = {x} ∪ BVm+1
m+1(Rm+1

n′)

BVm+1
n (λx : t.Rm+1

n′) = BVm+1
n (Rm+1

n′), if m + 1 �= n

In the definition of bound variables, m denotes the stage of the context while n
denotes the stage of the hole in that context.

3.4 Semantics of λ
[]
<

The reduction semantics of λ
[]
< is defined by Figs. 4 and 5. Notice that the defi-

nition of values and contexts actually defines stage-indexed families of inductive
terms. As remarked by Taha [23], the style of inductive definition is slightly
unusual because it actually involves an infinite number of meta-variables. How-
ever, the values and contexts defined by these rules are still finite and admits
inductive reasoning.

In the reduction rules in Fig. 5, ⊕ denotes a disjoint union.

4 Formal Properties

In this section we outline a formal proof of the soundness of the type system λ
[]
<

with respect to its reduction semantics. The proof follows the standard approach

Staged Computation with Staged Lexical Scope 569

(Values) v0 ::= λx : t. e | c{t} | �

vm ::= ↑vm+1

vm+1 ::= x | λx : t. vm+1 | vm+1 vm+1

vm+2 ::= ↓vm+1

(E-contexts) Em
m ::= �

Em
n ::= Em

n e | vm Em
n | ↑Em+1

n | ρθ.Em
n

Em+1
n ::= ↓Em

n | λx : t. Em+1
n

(S-contexts) Sm
m ::= �

Sm
n ::= λx : t.Sm

n | Sm
n e | vm+1 Sm

n | ↑Sm+1
n

Sm+1
n ::= ↓Sm

n

(R-contexts) Rm
n ::= � | Rm

n e | vm Rm
n | ↑Rm+1

n

Rm+1
n ::= ↓Rm

n | λx : t.Rm+1
n

Fig. 4. Values and evaluation contexts of λ
[]
<

to soundness using a reduction semantics [28], but we need additional core results
do deal with open terms. In particular, we need to deal with bound variables
in addition to free variables, strengthening in addition to weakening, and with
demotion and promotion.

4.1 Standard Results

Lemma 2 (Decomposition). Let domn(γ0 · · · · · γm) = dom(γn).

(a) If D0 is a derivation of γ ·Γ ; Γ ′ � E |Γ |
0 [e1] : t then there exists an environ-

ment γ1 with dom(γ1) ⊆ L, a stack Γ ′
1, a type t1, and a derivation D1 of

(γ, γ1) ; Γ ′
1 � e1 : t1 such that D1 appears in D0 at the location corresponding

to the hole � in E |Γ |
0 .

(b) If D0 is a derivation of γ · γ′ ·Γ ; Γ ′ � S|Γ |
0 [e1] : t then there exists an

environment γ′
1, a stack Γ ′

1, a type t1, and a derivation D1 of γ · γ′
1 ; Γ ′

1 �
e1 : t1 such that D1 appears in D0 at the location corresponding to the hole
� in S0

0 .
(c) If D0 is a derivation of γ ·Γ ; Γ ′ � R|Γ |

0 [e1] : t then there exists a stack
Γ ′

1 ⊇ Γ ′, a type t1, and a derivation D1 of γ ; Γ ′
1 � e1 : t1 such that D1

appears in D0 at the location corresponding to the hole � in R|Γ |
0 and for

all n, domn(Γ ′
1) − domn(Γ ′) ⊆ BV0

n(R0
0).

The final part of case (c) states that the extra bindings in Γ ′
1 required to type

e1 can be traced back to bindings in the context. This is used in the proof of
Subject Reduction for case (Set), where it guarantees that the value to store
can be typed using the outer type environment of the surrounding ρ-expression,
which potentially provides fewer bindings.

The dual notion of decomposition is replacement:

570 M. Rhiger

Reduction rules: e −→ e′

e −→ e′

E0
0 [e] −→ E0

0 [e′]
(Ctx)

(λx : t. e) v0 −→ (e)0{v0/x} (β)

↑S0
0 [↓↑v1] −→ ↑S0

0 [v1] (↓↑)
run{t} (↑v1) −→ v1 (Run)

lift{t} v0 −→ ↑v0 (Lift)

ref{t} v0 −→ ρ{〈�, v0〉}. � (Ref)

ρ{〈�, v0〉} ⊕ θ.R0
0[get{t} �] −→ ρ{〈�, v0〉} ⊕ θ.R0

0[v
0] (Get)

if BV0
n(R0

0) ∩ FV0
n(v0) = { }

ρ{〈�, v0
1〉} ⊕ θ.R0

0[set{t} � v0
2] −→ ρ{〈�, v0

2〉} ⊕ θ.R0
0[v

0
2] (Set)

if BV0
n(R0

0) ∩ FV0
n(v0

2) = { }
ρθ1. ρθ2. e −→ ρθ1 ⊕ θ2. e (Merge)

R0
0[ρθ. e] −→ ρθ.R0

0[e] (ρ-Lift)

if BV0
n(R0

0) ∩ FVn(θ) = { } and R0
0 �= �

ρθ1 ⊕ θ2. e −→ ρθ1. e (GC)

if θ2 �= { } and dom(θ2) ∩ FV0(θ1) = { }
and dom(θ2) ∩ FV0

0(e) = { }
Evaluation:

eval(e) = v0, if e −→∗ v0

Convention 2 applies to case (Ref), where it forces � not to occur in v0.

The side conditions of rules (Get) and (Set) prevent free variables in the contractum
from being captured by the context. The side condition of (ρ-Lift) prevents variables
bound in the context from escaping their scope. These side conditions are explicit
instances of Convention 2.

The rule (GC) allows part of the store to be garbage collected, if its cells are not referred
to.

Fig. 5. Reduction semantics of λ
[]
<

Lemma 3 (Replacement).

(a) If D0 is a derivation of γ ·Γ ; Γ ′ � E |Γ |
0 [e1] : t, D1 is a derivation of γ1 ; Γ ′

1 �
e1 : t1, D1 appears in D0 at the location corresponding to the hole, and
γ1 ; Γ ′

1 � e′1 : t1, then γ ·Γ ; Γ ′ � E |Γ |
0 [e′1] : t.

(b) If D0 is a derivation of γ · γ′ ·Γ ; Γ ′ � S|Γ |
0 [e1] : t, D1 is a derivation of

γ1 ;Γ ′
1 � e1 : t1, D1 appears in D0 at the location corresponding to the hole,

and γ1 ; Γ ′
1 � e′1 : t1, then γ · γ′ ·Γ ; Γ ′ � S|Γ |

0 [e′1] : t.

Staged Computation with Staged Lexical Scope 571

(c) If D0 is a derivation of γ ·Γ ; Γ ′ � R|Γ |
0 [e1] : t, D1 is a derivation of

γ1 ; Γ ′
1 � e1 : t1, D1 appears in D0 at the location corresponding to the

hole, and γ1 ; Γ ′
1 � e′1 : t1, then γ ·Γ ; Γ ′ � R|Γ |

0 [e′1] : t.

Notice that we only ever substitute away stage-0 term variables (for a stage-0
values) in the evaluation rules.

Lemma 4 (Weakening). If γ0 · · · · · γm ; γm+1 · · · · · γk � e : t and for each
0 ≤ i ≤ k, γi ⊆ γ′

i and for each ξ ∈ dom(γ′
i) − dom(γi), ξ �∈ FVm

i (e) then
γ′
0 · · · · · γ′

m ; γ′
m+1 · · · · · γ′

k � e : t.

Lemma 5 (Strengthening). If γ′
0 · · · · · γ′

m ; γ′
m+1 · · · · · γ′

k � e : t and for
each 0 ≤ i ≤ k, γi ⊆ γ′

i and for each ξ ∈ dom(γ′
i) − dom(γi), ξ �∈ FVm

i (e) then
γ0 · · · · · γm ; γm+1 · · · · · γk � e : t.

Strengthening is used in the proof of Subject Reduction, in the case (Set).

Lemma 6 (Substitution). If (x : t′, γ) ·Γ ; Γ ′ � e : t and γ ; Γ ·Γ ′ � e′ : t′

then γ ·Γ ; Γ ′ � (e)|Γ |{e′/x} : t.

4.2 Results for Staging

The following two lemmas show that demotion and promotion yield well-typed
results: A well-typed value (but not necessarily an expression) at stage m + 1 is
also well-typed at stage m. And conversely, a well-typed value at stage m is also
a well-typed value at stage m + 1. These results are used in the proof of Subject
Reduction (Lemma 9).

Lemma 7 (Demotion). If Γ · γ · ∅ ;Γ ′ � v|Γ |+1 : t then Γ · γ ; ∅ ·Γ ′ � v|Γ |+1 : t.

Lemma 8 (Promotion). If Γ · γ ; ∅ ·Γ ′ � v|Γ | : t then Γ · γ · ∅ ; Γ ′ � v|Γ | : t.

4.3 Subject Reduction

In the following statement of Subject Reduction, we need a general outer type
environment γ (rather than an empty one) to account for cells in the store and
we need the future-stage Γ ′ to account for future-stage variables.

Lemma 9 (Subject reduction). If γ ; Γ ′ � e : t and e −→ e′ then γ ; Γ ′ �
e′ : t.

Proof. by induction on e −→ e′, with an induction case corresponding to re-
duction rule (Ctx), and with base cases for the remaining reduction rules. We
make extensive use Decomposition (Lemma 2) and Replacement (Lemma 3). In
each case, we apply a Typing Inversion lemma to deduce the types of subterms
from the type of a term. This lemma is similar to that of Pierce [20, Sect. 15.3],
but needs to account for stages. Substitution (Lemma 6) is used in case (β) and
Demotion (Lemma 7) and Promotion (Lemma 8) are used in cases (Run) and
(Lift).

572 M. Rhiger

4.4 Progress

We need the following definition of well-formed sequences of type environments.

Definition 4. A sequence of type environments, Γ ;Γ ′, is well-formed if it sat-
isfies the following rules.

� ε ; Γ ′ Γ · γ ; Γ ′ � γ � Γ ; γ ·Γ ′

� Γ · γ ; Γ ′

Lemma 10. If � Γ · γ ·Γ ′ ; ε and Γ · γ ; Γ ′ � t :: ∗ then � Γ · (x : t, γ) ·Γ ′ ; ε.

Lemma 11 (Progress). If ∅ ; ∅ � e : t then either e = v0, e = ρθ. v0, or
e = E0

0 [e′] where e′ −→ e′′. (Here ∅ denotes a sufficiently long sequence of ∅s.)

Proof. This follows as a corollary of a more general lemma that states that if
γ = (�1 : t1 ref, . . . , �k : tk ref) with γ ; Γ ·Γ ′ � ti :: ∗ for any 1 ≤ i ≤ l and
� γ ·Γ ·Γ ′ ; ε and γ · ; Γ ′ � e : t then either

(a) e = v|Γ | for some stage-|Γ | value v|Γ |,
(b) e = ρθ. v|Γ | for some θ and stage-|Γ | value v|Γ | ,
(c) e = E |Γ |

0 [e′] where e′ −→ e′′ for some context E |Γ |
0 and terms e′ and e′′,

(d) e = R|Γ |
0 [get{t′} �],

(e) e = ρθ.R|Γ |
0 [get{t′} �] where � �∈ dom θ,

(f) e = R|Γ |
0 [set{t′} � v0], or

(g) e = ρθ.R|Γ |
0 [set{t′} � v0] where � �∈ dom θ.

Together, Subject Reduction and Progress establish type soundness of λ
[]
<.

5 Relation with Existing Type Systems

We show that λ[] types at least the terms typable in Davies’s λ© and that λ
[]
<

types at least the terms typable in Davies and Pfennings’s λS4. (In the following
subsections, we abuse notation by using the same meta variable for syntactic
categories in different calculi.)

The next and prev of λ© directly match ↑ and ↓ of λ
[]
<. Conversely, the unboxn

of λS4 serves two purposes, namely as an iterated ↓ and as run. Hence the
translation of λS4 into λ

[]
< is slightly more involved than translation of λ©

into λ
[]
<.

5.1 Relation to λ©

λ© extends the simply-typed λ-calculus as follows.

Staged Computation with Staged Lexical Scope 573

Definition 5 (λ©).

(Types) t ::= b | t1 → t2 | ©t

(Terms) e ::= x | λx : t. e | e1 e2 | next e | prev e

(Environments) Γ ::= ∅ | x : tn, Γ

The typing judgment of λ©, Γ �n e : t, is defined by the following typing
rules.

x : tn ∈ Γ

Γ �n x : t

Γ �n+1 e : t

Γ �n next e : ©t

Γ �n e : ©t

Γ �n+1 prev e : t

x : tn, Γ �n e : t′

Γ �n λx : t. e : t → t′
Γ �n e1 : t2 → t Γ �n e2 : t2

Γ �n e1 e2 : t

The typing judgments of λ© carry one type environment Γ that tracks the stage
of variables by means of an integer staging annotation, x : tn. In λ[], this staging
information is implicitly given by the index into the stack where a variable is
found. Hence, we parametrize the translation from λ© into λ[] by a λ© type
environment and an integer that denotes the current stage.

Definition 6 (Translating λ© into λ[]). Given a λ© typing context Γ and
a non-negative integer n, we generate a λ[] type environment containing the
stage-n variables in Γ by

[[©]]Γm =
(
x : [[t]]Γm | x : tm ∈ Γ

)

and we then translate λ© types and terms into λ[] types by

[[b]]Γm = b [[x]]Γm = x
[[t1 → t2]]Γm = [[t1]]Γm → [[t2]]Γm [[λx : t. e]]Γm = λx : [[t]]Γm. [[e]]x:tm,Γ

m

[[©t]]Γm = [[[©]]Γm+1][[t]]Γm+1 [[e1 e2]]Γm = [[e1]]Γm [[e2]]Γm
[[next e]]Γm = ↑[[e]]Γm+1

[[prev e]]Γm+1 = ↓[[e]]Γm

Given a λ© typing context Γ and a pair of non-negative integers m, n, we gen-
erate a stack of λ[] type environment as follows.

[[Γ]]m,n =

{
ε, if m > n

[[©]]Γm · [[Γ]]m+1,n, otherwise

Finally, λ© type judgments are translated into λ[] as follows.

[[Γ �m e : t]] = [[Γ]]0,m ; [[Γ]]m+1,k � [[e]]Γm : [[t]]Γm
where k = max{m |x : tm ∈ Γ}

574 M. Rhiger

This translation makes it evident that ©t is a type of open code. The follow-
ing lemma shows that the translation preserves typing. The proof follows by
a straightforward induction on the derivation of the λ© judgment using, in
the case for abstractions, the observation that [[t]]x:tm,Γ

m = [[t]]Γm and hence also
[[e]]x:tm,Γ

m = [[e]]Γm.

Lemma 12. If Γ �m e : t is derivable in λ© then [[Γ �m e : t]] is derivable
in λ[].

5.2 Relation to λS4

λS4 is a variant of the modal type system λ� that replaces a combination of
unbox with a number of pop operations by a single unboxn operation [10].

Definition 7 (λS4).

(Types) t ::= b | t1 → t2 | �t

(Terms) e ::= x | λx : t. e | e1 e2 | box e | unboxn e

(Environments) Γ ::= ∅ | x : t, Γ

(Stacks) Ψ ::= ε | Ψ ; Γ

The typing judgment of λS4, Ψ ; Γ � e : t, is defined by the following typing
rules.

x : t ∈ Γ

Ψ ; Γ � x : t

Ψ ; Γ ; ∅ � e : t

Ψ ; Γ � box e : �t

Ψ ; Γ � e : �t

Ψ ; Γ ; Γ1; · · · ; Γn � unboxn e : t

Ψ ; (x : t, Γ) � e : t′

Ψ ; Γ � λx : t. e : t → t′
Ψ ; Γ � e1 : t2 → t Ψ ; Γ � e2 : t2

Ψ ; Γ � e1 e2 : t

We simplify the translation into λ
[]
< by using constants run and lift that are not

explicitly type annotated. (This can be avoided by defining the translation on
typing judgments.) We also simplify lifting by assuming an implicit surrounding
↓. We thus write %e for ↓(lift e). More concretely, we use the following variants
of the typing rules of run and lifting, both of which are admissible in λ

[]
<. The

rule for lifting follows by a use of subsumption to strengthen the γ′ to ∅.

Γ · γ ; Γ ′ � e : []t
Γ · γ ; Γ ′ � run e : t

Γ · γ ; ∅ ·Γ ′ � e : t

Γ · γ · γ′ ; Γ ′ � % e : t

Staged Computation with Staged Lexical Scope 575

Definition 8 (Translating λS4 into λ
[]
<). We translate λS4 types, terms, and

judgments into λ
[]
< by

[[b]] = b [[x]] = x
[[t1 → t2]] = [[t1]] → [[t2]] [[λx : t. e]] = λx : [[t]]. [[e]]

[[�t]] = [][[t]] [[e1 e2]] = [[e1]] [[e2]]
[[box e]] = ↑[[e]]

[[unbox0 e]] = run [[e]]
[[unboxn+1 e]] = %n ↓[[e]]

[[Ψ ; Γ � e : t]] = [[Ψ]] · [[Γ]] ; ∅ � [[e]] : [[t]]

This translation makes it evident that �t is a type of closed code. The translation
is similar to the translation of λS4 into λi

let [6]. The following lemma shows that
the λ

[]
< variant of an unboxn can remove the n topmost type environments. It

follows by induction on n using the subsumption rule to discard the top-most
assumptions.

Lemma 13. If Γ · γ ; ∅ � e : []t then Γ · γ · γ1 · · · · · γn+1 ; ∅ � %n+1 ↓e : t.

We can then show that the translation of λS4 into λ[] preserves typing. The
proof follows by induction on the derivation of the typing judgment in λS4.

Lemma 14. If Ψ ; Γ � e : t is derivable in λS4 then [[Ψ ; Γ � e : t]] is derivable in
λ

[]
< with the above typing rules for the run and %.

6 Related Work

Traditionally, type systems for staged programming are classified according to
their ability to distinguish between open and closed code values. Davies’s λ© [9]
and Davies and Pfenning’s λ� [10] were the first type systems to introduce types
of code values and the notion of multiple stages. The type system of λ© cannot
distinguish between open and closed code. Hence λ© does not support an eval
function.

The type system of MetaML is based on λ© [26]. It provides a type of open
code and hence cannot guarantee that only closed code is executed. Moggi et al.
establish that guarantee by extending MetaML with an additional type of closed
code [16]. Benaissa et al. generalize this type system by introducing a type that
characterize closed values, not just closed code values, and then unifying the two
code types into one of open code [4]. Neither of these type systems deal with
mutable state. Calcagno et al. show that it is safe to store closed code values in
reference cells [6].

The type system of λ� only allows closed code values [10]. An eval function
can be encoded in λ�. However, λ� does not support evaluation under future-
stage λs. Hence, unlike approaches based on λ©, multi-stage programming in
λ� leaves residual administrative redexes in code values.

576 M. Rhiger

Inspired by nominal logics, Nanevski proposes a variant of λ�, called ν�,
that allows code to contain free variables and that exposes these variables in the
type of code [18]. This calculus introduces explicit substitutions to eliminate free
variables. Nanevski et al. propose Contextual Modal Types in another variant
of λ� with explicit substitutions [19]. Both of these calculi enable multi-stage
programming that eliminates administrative redexes in code values.

Kim et al.’s λsim
open and λpoly

open also extend λ� by parameterizing code types
over type environments [14]. (Kim et al.’s type system generalizes a monomor-
phic type system previously presented by the present author [21].) But unlike
the Contextual Modal Type system of Nanevski et al., λsim

open and λpoly
open treats

variables symbolically. This opens up for both a hygienic future-stage λ∗ (via a
capture-avoiding substitution) and a non-hygienic future-stage λ (via a captur-
ing substitution). Unlike λ[], however, despite being hygienic λsim

open and λpoly
open

are not lexically scoped. For example, in these type systems a term such as
↑(λ∗x : bool. ↓(let = ↑(x + 1) in · · ·)) is well typed despite the mismatching
types of x.

Taha and Nielsen’s λα combine open-code manipulation with an eval function
by introducing explicit classifiers that name type environments [25]. The code
type of λα is annotated by the classifier for the environment in which code can
be inserted. A type-level quantifier over classifiers is used to make (code) types
parametric in classifiers. In subsequent work, Calcagno et al. define the variant
λi
let which simplify this idea by eliminating explicit classifiers in terms [7]. Neither

of these calculi supports mutable state. We have addressed the warnings of Taha
and Nielsen [25, Sect. 1.4] by demonstrating that α-equivalence is compatible
with types that carry environments and that no negative side conditions on
environments are required.

Chen and Xi’s λcode introduce a code type parameterized over a type envi-
ronment and a type [8]. λcode is nameless: variables are represented by their
de Bruijn indices, both in terms and in types. Although the precise connection
between λ[] and λcode remains to be established, it seems that λcode is similar
to a nameless variant of λ[]. Chen and Xi do not discuss mutable state.

Kameyama et al.’s λ�
1 extends a simple variant of λα with control effects [13].

λ�
1 supports mutable state and an eval function. To prevent scope extrusion,

λ�
1 prohibits the evaluation of future-state λs to have observable side effects.

In recent work, Westbrook et al. relax this requirement by characterizing terms
as weakly separable when they do not have observable side effects that involve
code values [27]. By requiring that escaped terms (i.e., the ↓e of λ[]) are weakly
separable, Westbrook et al. can guarantee that no code value (and hence no
future-stage variable) can leave the scope in which it is generated. In contrast
(as witnessed by the example at the end of Sect. 2.3), λ[] allows both escaped
terms and future-stage λs to have observable effects involving open code.

7 Conclusions

We have defined λ[], a core type system for staged computation that is sound and
hygienic and that supports open-code manipulation, a first-class eval function,

Staged Computation with Staged Lexical Scope 577

and mutable state. We have also extended λ[] with subtype polymorphism. The
result is λ

[]
<, a type system for staged computation that is at least as expressive

as existing type systems for staged computation, but strikingly simpler.

References

[1] Backus, J.W., Beeber, R.J., Best, S., Goldberg, R., Haibt, L.M., Herrick, H.L.,
Nelson, R.A., Sayre, D., Sheridan, P.B., Stern, H., Ziller, I., Hughes, R.A., Nutt,
R.: The Fortran automatic coding system. In: Techniques for Reliability, Proceed-
ings of the Western Joint Computer Conference, pp. 188–198 (1957)

[2] Barendregt, H.: The Lambda Calculus — Its Syntax and Semantics. North-
Holland (1984)

[3] Bawden, A.: Quasiquotation in Lisp. In: Proceedings of the ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipulation, San An-
tonio, Texas (1999)

[4] Benaissa, Z.-E.-A., Moggi, E., Taha, W., Sheard, T.: Logical modalities and multi-
stage programming. In: Proceedings of the Workshop on Intuitionistic Modal Log-
ics and Applications, Trento, Italy (July 1999)

[5] Bondorf, A., Jones, N.D., Mogensen, T., Sestoft, P.: Binding time analysis and the
taming of self-application. DIKU rapport, University of Copenhagen, Copenhagen,
Denmark (1988)

[6] Calcagno, C., Moggi, E., Taha, W.: Closed Types as a Simple Approach to Safe
Imperative Multi-stage Programming. In: Welzl, E., Montanari, U., Rolim, J.D.P.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 25–36. Springer, Heidelberg (2000)

[7] Calcagno, C., Moggi, E., Taha, W.: ML-Like Inference for Classifiers. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 79–93. Springer, Heidelberg (2004)

[8] Chen, C., Xi, H.: Meta-programming through typeful code representation. Journal
of Functional Programming 15(6), 797–835 (2005)

[9] Davies, R.: A temporal-logic approach to binding-time analysis. In: Proceedings
of the Eleventh Annual IEEE Symposium on Logic in Computer Science, pp.
184–195. IEEE Computer Society Press, New Brunswick (1996)

[10] Davies, R., Pfenning, F.: A modal analysis of staged computation. Journal of the
ACM 48(3), 555–604 (2001)

[11] Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequen-
tial control and state. Technical Report Rice COMP TR89–100, Department of
Computer Science, Rice University, Houston, Texas (June 1989)

[12] Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Pro-
gram Generation. International Series in Computer Science. Prentice-Hall (1993)

[13] Kameyama, Y., Kiselyov, O., Shan, C.C.: Shifting the stage: staging with delimited
control. In: Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, pp. 111–120. ACM, Savannah (2009)

[14] Kim, I.-S., Yi, K., Calcagno, C.: A polymorphic modal type system for lisp-
like multi-staged languages. In: Proceedings of the Thirty-Third Annual ACM
Symposium on Principles of Programming Languages, pp. 257–268. ACM Press,
Charleston (2006)

[15] McCarthy, J.: LISP 1.5 Programmer’s Manual. The MIT Press, Cambridge (1962)
[16] Moggi, E., Taha, W., Benaissa, Z.-E.-A., Sheard, T.: An Idealized MetaML: Sim-

pler, and More Expressive. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576,
pp. 193–207. Springer, Heidelberg (1999)

578 M. Rhiger

[17] Morrisett, G., Felleisen, M., Harper, R.: Abstract models of memory management.
In: Proceedings of the Seventh ACM Conference on Functional Programming and
Computer Architecture, pp. 66–77. ACM Press, La Jolla (1995)

[18] Nanevski, A.: Meta-programming with names and necessity. In: Proceedings of
the 2002 ACM SIGPLAN International Conference on Functional Programming,
pp. 206–217. ACM Press, Pittsburgh (2002)

[19] Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. ACM
Transactions on Computational Logic 9(3), 1–49 (2008)

[20] Pierce, B.C.: Types and Programming Languages. The MIT Press, Cambridge
(2002)

[21] Rhiger, M.: First-class open and closed code fragments. Trends in Functional Pro-
gramming 6, 127–144 (2007), Intellect

[22] Taha, W.: Multi-Stage programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology (1999)

[23] Taha, W.: A sound reduction semantics for untyped CBN multi-stage compu-
tations. or, the theory of MetaML is non-trivial. In: Proceedings of the ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation. ACM Press, Boston (2000)

[24] Taha, W., Benaissa, Z.-E.-A., Sheard, T.: Multi-Stage Programming: Axiomati-
zation and Type Safety. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP
1998. LNCS, vol. 1443, pp. 918–929. Springer, Heidelberg (1998)

[25] Taha, W., Nielsen, M.F.: Environment classifiers. In: Proceedings of the Thirtieth
Annual ACM Symposium on Principles of Programming Languages, pp. 26–37.
ACM Press, New Orleans (2003)

[26] Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In: Pro-
ceedings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pp. 203–217. ACM Press, Amsterdam (1997)

[27] Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint:
Java multi-stage programming using weak separability. In: Proceedings of the
ACM SIGPLAN 2010 Conference on Programming Languages Design and Imple-
mentation, pp. 400–411. ACM Press, Toronto (2010)

[28] Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115, 38–94 (1994)

	Staged Computation with Staged Lexical Scope
	Introduction
	The Challenge
	Our Contributions

	The Staged Type System $λ[]$
	The Staged Type System $λ[]<$
	Formal Properties
	Standard Results
	Results for Staging
	Subject Reduction
	Progress

	Relation with Existing Type Systems
	Relation to
	Relation to S4

	Related Work
	Conclusions
	References

