
Non-monotonic Self-Adjusting Computation

Ruy Ley-Wild1, Umut A. Acar2, and Guy Blelloch3

1 IMDEA Software Institute
2 Max-Planck Institute for Software Systems

3 Carnegie Mellon University

Abstract. Self-adjusting computation is a language-based approach to
writing programs that respond dynamically to input changes by main-
taining a trace of the computation consistent with the input, thus also
updating the output. For monotonic programs, i.e. where localized input
changes cause localized changes in the computation, the trace can be
repaired efficiently by insertions and deletions. However, non-local input
changes can cause major reordering of the trace. In such cases, updating
the trace can be asymptotically equal to running from scratch.

In this paper, we eliminate the monotonicity restriction by generalizing
the updatemechanism to use trace slices, which are partial fragments of the
computation that can be reordered with some bookkeeping. We provide a
high-level source language for pure programs, equipped with a notion of
trace distance for comparing two runs of a programmodulo reordering. The
source language is translated into a low-level target language with intrinsic
support for non-monotonic update (i.e., with reordering). We show that
the translation asymptotically preserves the semantics and trace distance,
that the cost of update coincides with trace distance, and that updating
produces the same answer as a from-scratch run. We describe a concrete
algorithm for implementing change-propagation with asymptotic bounds
on running time. The concrete algorithm achieves running time bounds
which are withinO(log n) of the trace distance, where n is the trace length.

1 Introduction

In many applications, small changes to the input data cause proportionally small
changes to the computation and output data. The broad goal of incremental com-
putation is to exploit this correlation by efficiently updating the output when the
input changes. Dynamic algorithms and data structures can be designed to take
advantage of the particular problem structure [7,9].The manual approach often
yields updates that are asymptotically faster than recomputing from scratch, but
carries inherent complexity and non-compositionality that makes the algorithms
difficult to design, analyze, and use.

Programming languages for incremental computation provide compile- and
run-time support to (semi-)automatically derive incremental programs from
static programs [8,16,17]. In particular, self-adjusting computation (SAC) is a
language-based approach that provides a general-purpose change-propagation

H. Seidl (Ed.): ESOP 2012, LNCS 7211, pp. 476–496, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Non-monotonic Self-Adjusting Computation 477

mechanism to update the output [1]. Previous work shows that SAC can be effec-
tive in a reasonably broad range of domains, such as computational geometry [3],
invariant checking [18], and machine learning [5]. In many cases, self-adjusting
programs closely match or improve the asymptotic complexity achieved by al-
gorithmic techniques, and have even helped solve challenging open problems by
providing high-level reasoning for complex computations [4].

Self-adjusting programs construct and maintain a trace that records data and
control dependencies of the computation. The trace is initially built during a
run from scratch, recording the operations (e.g., that depend on the input or
identify possibility of reuse) in execution order. Change-propagation edits the
trace of the first run into the trace of the second run: input changes identify
parts of the computation affected that must be rebuilt, while unaffected parts
can be reused. This update takes time proportional to performing the new work
for the updated run and discarding stale work from the previous run; there is
no cost for work that is reused between runs.

Previous semantics and implementation techniques for SAC critically relied on
reusing subcomputations monotonically, i.e., in the same order that they appear
in a trace. For input changes that reorder subcomputations, however, existing
change-propagation mechanisms can be grossly inefficient. As an abstract ex-
ample, consider a computation that initially performs f(x); g(y). After a small
input change, the execution order might swap, yielding g(y); f(x) instead. Under
monotonic change-propagation, we could only reuse one of these functions: we
can reuse g(y) but would have to re-run f(x), or vice versa. If both calls are
expensive, neither choice will have an efficient update. In Section 2, we discuss a
concrete example where non-local input changes cause computation reordering,
and compare monotonic and non-monotonic change-propagation.

All previous work on SAC critically relies on monotonicity of change-
propagation to ensure correctness and efficiency. Relaxing this constraint would
make the technique effective for a broader class of computations, but requires
overcoming three key challenges: (1) Can change-propagation be generalized
to correctly support reordering? (2) How can we reason about the complexity
of non-monotonic change-propagation at the program level? (3) How can non-
monotonic change-propagation be realized efficiently? In this paper, we general-
ize SAC to support non-monotonic reuse where subcomputations may be reused
out of order and provide complete solutions to the three challenges.

We give a high-level, direct-style source language for pure programs (Src)
(Section 3) with tree-shaped traces of their execution. A formal notion of trace
distance quantifies dissimilarity between two runs modulo reordering and ab-
stractly measures change-propagation time. Under monotonic reuse, local trace
distance compares two runs head-to-head in execution order to account for their
differences; intuitively this is edit distance under insertions and deletions. Under
non-monotonic reuse, trace distance is supplemented by a global trace distance
that decomposes each run into a set of trace slices (traces with holes), pairs
subcomputations from each run, and adds their local trace distance; intuitively
this is local trace distance modulo reordering, akin to set difference.

478 R. Ley-Wild, U.A. Acar, and G. Blelloch

We translate the source languages into a low-level, continuation-passing target
language (Tgt in Section 4) with intrinsic support for non-monotonic change-
propagation. Since continuations capture the rest of the computation, a list-
shaped trace overapproximates the scope of operations that must be re-run due
to inconsistencies with input changes. Since a hole in a trace slice indicates com-
putation that has been reused out of order and the hole is labeled with its con-
tinuation, the computation can resume by running the continuation. Therefore
trace slices are essential for change-propagation to support non-monotonic (i.e.,
out-of-order) reuse while maintaining correctness. We prove the key consistency
theorem that non-monotonic change-propagation always yields results that are
consistent with a from scratch run. Moreover, we show that target-level global
trace distance coincides with the cost of non-monotonic change-propagation.
Finally, we also prove that greedy non-monotonic reuse yields asymptotically-
optimal change-propagation for a particular class of programs.

We relate the source and target languages by translation and prove that the
translation preserves the semantics and trace distance (Section 5).

Finally, we describe how to efficiently support non-monotonic SAC (Section 6).
Specifically, we give algorithms and data structures to implement trace slices and
non-monotonic change-propagation, such that the source-level trace distance can
be realized with a logarithmic factor overhead in the size of the trace. We defer
experimental evaluation to future work. Further discussion and technical details
are in the first author’s dissertation [11].

2 Overview

We illustrate how non-local input changes can cause computation reordering
with a pure, self-adjusting map program on lists:

�������� ’a cell = nil | :: �� ’a * ’a list
	
������ ’a list = ’a cell ref

��
 map (f : ’a -> ’b) (l : ’a list) : ’b list =
���� ��� l �� nil => ��� nil

| h::t => ��� ((f h) :: (map f t))

We use write-once modifiable references (with put and get operations) for the
tail to identify where input changes require new computation, and memoizing
functions (declared by fun) to identify possible reuse across runs (Section 3).
Here we explain its change-propagation and trace distance under monotonic and
non-monotonic reuse. We revisit its formal trace distance in Section 3 and its
performance under the change-propagation algorithm in Section 6.

f(x) nosyA trace is a syntactic representation of a computation,
which we depict with hierarchical box diagrams of the form:
where the oval names the computation (e.g., f(x)), the inner rectangle is a hole
to be filled with subtraces (e.g., recursive calls) capturing the call order, and the
outer rectangle represents the local computation (i.e., between subcalls).

Monotonic SAC. Suppose we first map a function f on the list [1, . . . , n, k]. Next,
a meta-level mutator can change the input to [k, 1, . . . , n] by moving k to the
front, and change-propagate the first run to be consistent with the new input.

Non-monotonic Self-Adjusting Computation 479

1 . . . n k nil

1s
t
ru
n

k 1 . . . n nil

2n
d
ru
nm
ov
e
k

The obvious way to change the input is
to splice k out of the list, reinsert it at the
front, and change-propagate. The first run
(top) is a from-scratch execution that con-
structs the trace: each rectangle represents
the local work (dereference the location, ap-
ply the function to the element, place the re-
sult in a new reference) with its nested recursive call. After changing the input
list, change-propagation (Subsection 4.1) uses the input change(s) to edit the
trace of the first run into the trace of the second run (bottom). Since the list’s
head element is k instead of 1, change-propagation greedily steals the corre-
sponding subtrace from the first run; this is a form of partial reuse (indicated
by dashed/orange) between runs because it’s the same local work but has dif-
ferent subcomputation. Assuming a monotonic reuse, change-propagation must
discard the prefix trace (1 · · ·n) from the first run in order to reuse the k sub-
trace, thus the work for (1 · · ·n) must be done afresh for the second run; this
work is .obstructed from (i.e., not available for) reuse (indicated bydotted/red)
between successive runs. Finally, the work for nil can be fully reused (indicated
by solid/green) between runs. Thus change-propagation takes O(n) time to up-
date the computation, which is no more efficient than running from scratch.

Moving the last element to the front is a non-local change that swaps the
relative order of execution between the computations for k and (1 · · ·n). This is
incompatible with monotonicity because work may only be reused if it occurs in
the same order in both runs. Geometrically, the reuse arrows between the two
traces cannot intersect.

Due to the complex semantics of change-propagation for the low-level Tgt
language, we prefer to reason with an abstract trace distance [12] for the Src lan-
guage, which quantifies the dissimilarities between runs. In Sections 4.3 and 5,
we show that trace distance asymptotically coincides with the time for change-
propagation. For monotonic reuse, local trace distance corresponds to an edit
distance between traces. Intuitively, the distance between two traces is propor-
tional to the partially reusable anddiscarded/fresh computation.

1 . . . n k nil

1s
t
ru
n

1 . . . n nil

2n
d
ru
n

k 1 . . . n nil

3r
d
ru
n

d
el
et
e
k

in
se
rt

k

To improve change-propagation, we could
employ a different reuse policy that instead
performs the work for k afresh and reuses the
work for (1 · · ·n). Alternatively, we can factor
the move into: (1) delete k from the list and
change-propagate, then (2) reinsert it at the
front and change-propagate again. Thus the
bulk of the computation can be reused and
change-propagation only requires O(1) time
to splice k out for the second run and perform
the work afresh for the third run. Note that
the work for (1 · · ·n) and nil are reused monotonically. However, these solutions
aren’t robust enough to handle other changes such as swapping the first and
second halves of the list.

480 R. Ley-Wild, U.A. Acar, and G. Blelloch

1 . . . n k nil

1s
t
ru
n

k 1 . . . n nil

2n
d
ru
nm
ov
e
k

Non-Monotonic SAC. In the non-monotonic
setting, reusing a subtrace doesn’t discard
its prefix and thus change-propagation can
reuse work out of order. Geometrically,
non-monotonicity allows the reuse arrows to
intersect, soobstructed reuse lines from the
monotonic illustration become full or partial
reuse arrows.

Change-propagation can greedily steal the work for k without sacrificing the
prefix trace (1 · · ·n), again this is partial reuse because the element has a differ-
ent tail computation ((1 · · ·n) instead of nil). Next, the subtrace for (1 · · ·n)
from the first run can be (almost) fully reused, except for its differing tail list
(nil instead of k). Finally, the trace for nil can also be fully reused. In this ex-
ample reuse is maximized, thus change-propagation takes O(1) time to update
the computation, an asymptotic speedup over running from scratch. Unlike the
alternatives suggested above, non-monotonicity make change-propagation robust
enough to handle swapping larger list segments.

For non-monotonic reuse, trace distance is a hybrid of set difference and edit
distance. In particular, global trace distance (Subsection 3.2) allows decompos-
ing the trace of each run into trace slices (traces with holes) which are then
compared pairwise with local trace distance. In Section 3, we revisit this ex-
ample’s formal trace distance derivation. Briefly, each trace can be decomposed
into separate slices for (1 · · ·n), k, and nil. The similar slices of each run have
O(1) local distance because the (1 · · ·n) and k slices have to account for their
differing tails between runs but are otherwise identical. Thus the global distance
between runs is also O(1). Finally, the algorithmic overhead of non-monotonic
change-propagation (Section 6) is logarithmic in the size of the trace, so an
implementation would require O(log n) time to update.

3 The Src Language

The Src language serves to write pure direct-style programs that depend on input
data that differs across runs, and can be compiled into equivalent self-adjusting
Tgt programs (see Sections 4 and 5). The dynamic and cost semantics of Src
produces an execution trace that can be used to determine a trace distance that
quantifies differences between runs modulo reordering, which is asymptotically
matched by the change-propagation mechanism of Tgt.

The Src language is a pure call-by-value λ-calculus with ML-style references
(without update) to represent data that may change across runs.1 The follow-
ing grammar gives the syntax of types τ , expressions e, and values v, using
metavariables f and x for identifiers and � for locations.

τ ::= nat | τx → τ | τ ref e ::= v | caseN vn ez x .es | ef $ ex | put v | get vl
v ::= x | zero | succ v | fun f .x .e | �

1 Src (and Tgt of Section 4) includes natural numbers for didactic purposes and can
easily be extended with products, sums, recursive types, etc..

Non-monotonic Self-Adjusting Computation 481

Function application has the usual β-reduction semantics and is additionally
recorded in the execution trace to help identify similarities between runs. The
τ ref type classifies references: put v creates a reference; get vl dereferences and
identifies the need for re-computation by recording data dependencies.

3.1 Static, Dynamic, and Cost Semantics

The typing judgement Σ;Γ � e : τ ascribes the type τ to the expression e in the
store and variable typing contexts Σ and Γ . For brevity, we only give the types of
the reference and suspension primitives: put : τ → τ ref and get : τ ref → τ .

The dynamic and cost semantics of Src are defined by the large-step evaluation
relation σ; e ⇓ T ′;σ′; v′; c′ to reduce expression e in store σ to value v′ in updated
store σ′ and yields an execution trace T ′ and a cost c′. A store σ is a finite
map from locations to values. The trace internalizes the shape of an evaluation
derivation and will be used to identify the similarity of computations. The cost
internalizes the size of a trace and will be used to relate the constant slowdown
due to implementing suspensions with references and compiling Src programs to
Tgt programs.

A trace T is a ε-terminated interleaving of actions A:
T ::= ε | A·T A ::= L | M(T) L ::= putv↑� | get�→v M ::= appvf$vx⇓v

Local actions L identify where input changes cause two runs to differ because
the operation yields a different result, while memoizing actions M delimit the
trace T of an operation and identify where two runs perform similar computa-
tions. Therefore traces are necessary and sufficient to isolate the similarities and
differences between program runs, without having to capture pure computation
(e.g., case-analysis) because it is determined by the rest of the trace. Reference
actions include allocation (put) and dereference (get) labeled with the location �
and value v involved in the operation. The function application action (app) is
labeled with a function vf , argument vx, and result v.

For brevity, we only show the dynamic semantics of functions and references.

σ; ef ⇓ Tf ;σf ; fun f .x .e; cf σf ; ex ⇓ Tx; σx; vx; cx σx; [fun f .x .e/f][vx/x]e ⇓ T ′;σ′; v′; c′

σ; ef $ ex ⇓ Tf ·Tx·(app(fun f .x .e)$vx⇓v′
(T ′)·ε);σ′; v′; cf + cx + 1 + c′

� /∈ domσ σ′ = σ[� �→ v]

σ;put v ⇓ put
v↑�·ε;σ′; �; 1

� ∈ domσ σ(�) = v

σ;get � ⇓ get
�→v·ε;σ; v; 1

Evaluation extends the trace and increments the cost counter according to the
kind of reduction. A value reduces to itself, produces an empty trace, and has no
cost. A case-analysis reduces according to the branch prescribed by the scrutinee;
the trace and cost are unchanged since it is pure computation.

Function application reduces the function ef and argument ex to values and
then evaluates the redex. An application concatenates the function, argument,
and redex traces to represent the sequencing of work; the redex trace is delimited
by the memoizing function action to identify the scope of the function call; the
cost of the traces are added and incremented by 1 for the β-reduction.

482 R. Ley-Wild, U.A. Acar, and G. Blelloch

Allocation extends the store with a fresh location that is initialized with the
specified value and returns the location. Dereference returns the location’s value.
In each case, the trace is the singleton action of the primitive, and the work is 1.

3.2 Trace Distance

To reason about the effectiveness of monotonic self-adjusting computation, pre-
vious work developed a notion of trace distance to quantify the difference between
two runs [12]. Since traces approximate the shape of an evaluation derivation,
trace distance approximates a (higher-order) distance judgement on evaluation
derivations that quantifies the dis/similarities between two runs (modulo the
stores). Under monotonic reuse, the traces produced by the dynamic semantics
are compared in execution order and thus trace distance intuitively captures
their edit distance.

Under non-monotonic reuse, trace distance must be generalized to account
for reordering and thus trace distance is a hybrid of set difference and edit
distance. Intuitively, the difference between two runs can be obtained by glob-
ally decomposing each run into a set of subcomputations and locally comparing
subcomputations pairwise under some matching. More specifically, the global
decomposition of a computation slices a trace into a set of traces with holes,
and the local comparison of two traces alternates between searching for a point
where traces align (i.e., at memoizing actions) and synchronizing the two similar
traces until they again differ (i.e., at local actions).

Action slices B and trace slices S represent (possibly) partial computations,
analogous to how actions and traces represent full computations. Thus, mem-
oizing action slices delimit an optional trace slice Ṡ, which can be a present
subcomputation or an absent subcomputation that was reordered.

B ::= L | M(Ṡ) S ::= ε | B·S Ṡ ::= � | S
Note that a trace is also a trace slice with no holes. The notation S denotes a list
of slices and the metavariable U denotes a non-empty list of traces. A memoizing
action M(T) can be decomposed into a (skeleton) action slice with a hole M(�)

and an extracted trace T . The slicing judgement S � S′, S
′
(alternatively, S �

U ′) extends this operation to structurally traverse the slice S and decompose it

into a (skeleton) slice S′ with (nondeterministically) extracted slices S
′
:

L � L, •
S � S′, S

′

M(S) � M(S′), S
′

S � S′, S
′

M(S) � M(�), (M(S′)·ε, S′
)

M(�) � M(�), • ε � ε, •
B � B′, S

′
1 S � S′, S

′
2

B·S � B′·S′, (S
′
1, S

′
2)

Intuitively, if S � S′, S
′
, then S′ contains holes of the formMi(�) and S

′
consists

of trace slices Mi(Si)·ε representing the subcomputations of Mi extracted from
S. Thus, replacing the corresponding holes in S′ with Si would reconsistute S.

Non-monotonic Self-Adjusting Computation 483

Consider a trace slice S[M(T)] that contains a deeply-nested trace M(T) that
could be stolen by non-monotonic memoization for out-of-order reuse. Intuitively,
S[M(T)] can be sliced into the trace M(T) and a residual slice S[M(�)], where
the M(�) indicates what computation was stolen. Formally, this is captured by
the judgement S[M(T)] � S[M(�)],M(T)·ε, which can be derived by using the
first two rules to structurally traverse S[M(T)] until reaching the trace M(T),
then using the third rule to extract the trace M(T). Moreover, the premise of
the third rule allows further decomposing the trace T into sub-slices S.

The global distance S1 �� S2 = d between two slices S1 and S2 is obtained
by decomposing each slice into the same number of sub-slices (e.g., the Mi(Ssi)
above), matching sub-slices from each set (the notation i ∼ j is a bijective pairing
of indices), and adding up the local distance between each pair of sub-slices:

S1 � S′
1i S2 � S′

2j i ∼ j S′
1i � S′

2j = dij d =
∑

i∼j

dij

S1 �� S2 = d

Local distance is formally captured by the search distance S1 � S2 = d and
synchronization distance S1 � S2 = d judgements:

ε� ε = 〈0, 0〉

search/l/L
S1 � S2 = d

L·S1 � S2 = 〈1, 0〉 + d ε� ε = 〈0, 0〉

synch/l
S1 � S2 = d

L·S1 � L·S2 = d

search/m/L
S1·S′

1 � S2 = d

M(S1)·S′
1 � S2 = 〈1, 0〉+ d

search/none/L
S′
1 � S2 = d

M(�)·S′
1 � S2 = 〈1, 0〉+ d

synch/m
S1 � S2 = d S′

1 � S′
2 = d′

M(S1)·S′
1 �M(S2)·S′

2 = d+ d′

search/synch
M1 ≈ M2 S1 � S2 = d S′

1 � S′
2 = d′

M1(S1)·S′
1 �M2(S2)·S′

2 = 〈1, 1〉+ d+ d′

synch/search
S1 � S2 = d

S1 � S2 = d

The search mode can switch to synchronization if it encounters similar program
fragments (as identified by memoizing application actions), and the synchroniza-
tion mode must switch to search mode if the trace actions differ at some point.
Intuitively, the trace distance measures the symmetric difference between two
traces (i.e., the size of trace segments that don’t occur in both traces). Con-
cretely, we quantify distance d = 〈c1, c2〉 between traces S1 and S2 as a pair
of costs, where c1 is the amount of work in S1 that isn’t shared with S2 and
c2 is the amount of work in S2 that isn’t shared with S1. We let d + d′ denote
pointwise addition for distance.

The search distance S1 � S2 = d accounts for traces that don’t match, but
switches to synchronization mode if it can align memoization actions. The search
distance between empty traces is zero. Skipping an action in search mode incurs
a cost of 1 in addition to the distance between the tail of the trace (search/*/L
rules, the right rules are omitted). Upon simultaneously encountering similar
memoizing actions M1(S1)·S′

1 and M2(S2)·S′
2 (search/synch rule), the search

distance can switch to synchronizing the bodies S1 and S2, while separately
searching for further synchronization of the tails S′

1 and S′
2. Two memoizing

actions are similar M1 ≈ M2 if they are both applications of the same function

484 R. Ley-Wild, U.A. Acar, and G. Blelloch

and argument (Mi = appvf$vx⇓vi); note that the return values need not coincide.
The cost of the synchronization and search are added to the cost of 1 for the
memoization match in each trace.

Turning to the synchronization distance, the S1�S2 = d judgement attempts
to structurally match the two traces. Identical work in both traces incurs no
cost, but synchronization returns to search mode either nondeterministically or
when work cannot be reused because traces don’t match. Synchronization mode
is only meant to be used on traces generated by the evaluation of the same
expression under (possibly) different stores.

The synchronization distance between empty traces is zero. Encountering
identical local actions allows distance to remain in synchronization mode without
cost (synch/l rule). Synchronizing memoizing actions (synch/m rule) requires
the actions to be identical; this allows the bodies as well as the tails to be synchro-
nized separately and their distance compounded. Note that even if the bodies
don’t match completely and return to search mode, memoizing actions provide a
degree of isolation because tails can be matched independently. Synchronization
falls back to search mode (synch/search rule) nondeterministically or neces-
sarily when the actions differ (e.g., because actions don’t match).

The definition of Src trace distance is a relation because of nondeterminism in
how global distance slices the traces and when local distance alternates between
search and synchronization mode. While it is desirable to minimize the distance
between runs (and thus the update time), the dynamic semantics of Tgt has
nondeterministic allocation and memoization in order to avoid committing to
an implementation. We show that any distance derivable for Src programs is
preserved in Tgt (Corollary 1).

Example. Returning to the map example (Section 2), if � contains h::t, the trace
slice of map(�) has the form: appmap$�⇓�

′
(get�→h::t·appf$h⇓h′

(T f(h))·�·puth′::t′↑�′)
where the trace T f(h) of f(h) is assumed to have O(1) size, and � is a hole for the
recursive call map(t) = t′; we abbreviate such a slice as mh::t(�). Thus the traces for
the two runs from the example are, (abusing notation by confusing a location with
its contents): m1..n::k(mk::nil(mnil)) and mk::1(m1..n::nil(mnil)), where m1..n::h(�)
abbreviates m1::2(· · · mn::h(�) · · ·).

Under monotonic reuse, change-propagation can only do as well as the local
trace distance. We assume trace distance has a bias towards synchronizing the
right-hand trace (which corresponds to greedy reuse). This derivation shows
that trace distance is O(n), with the relevant portions underlined with the same
notation as in Section 2:

m
nil � m

nil = 〈0, 0〉 synch

m
nil � m

nil = 〈O(1), O(1)〉 search/synch

m
nil � m

1..n::nil
. (m

nil) = 〈O(1), O(n)〉 search/*/R

m
nil � m

1..n::nil(mnil) = 〈O(1), O(n)〉 synch/search

m
k::nil(mnil)� m

k::1(m1..n::nil(mnil)) = 〈O(1), O(n)〉 synch

m
k::nil(mnil)� m

k::1(m1..n::nil(mnil)) = 〈O(1), O(n)〉 search/synch

m
1..n::k
. (m

k::nil(mnil))� m
k::1(m1..n::nil(mnil)) = 〈O(n), O(n)〉 search/*/L

Non-monotonic Self-Adjusting Computation 485

Read bottom up: (1) search discards m1..n::k with O(n) cost on the left; (2)
mk::nil and mk::1 match with O(1) cost, the synchronization is partial because
the tails differ; (3) search discards m1..n::nil with O(n) cost on the right; (4)
and finally mnil synchronizes with O(1) cost. Note that the memoizing action

for the application map$k appears at the head of both mk::m
nil

and mk::1, which
enables switching from search to synchronization mode (cf. rule memo/match
in the evaluation semantics of Tgt, Subsection 4.1). On the other hand, the local
action that fetches k from the store finds differing tails (mnil and 1), which re-
quire switching back to search mode (cf. rule change in the change-propagation
semantics of Tgt, Subsection 4.1).

Under non-monotonic reuse, change-propagation can do as well as the global
trace distance. This derivation decomposes each run into separate trace slices
for 1..n, k, and nil. Since the slices are nearly identical, their distance is O(1)
to account for the initial synchronization and the return to search mode for the
differing tails. Adding the local distances yields a global distance of O(1).

m
1..n::k(mk::nil(mnil)) � m

1..n::k(�), mk::nil(�), mnil

m
k::1(m1..n::nil(mnil)) � m

k::1(�), m1..n::nil(�), mnil

m
nil � m

nil = 〈O(1), O(1)〉
m
1..n::k(�)� m

1..n::nil(�) = 〈O(1), O(1)〉
m
k::nil(�)� m

k::1(�) = 〈O(1), O(1)〉
m
1..n::k(mk::nil(mnil))��

m
k::1(m1..n::nil(mnil)) = 〈O(1), O(1)〉

4 The Tgt Language

The Tgt language is a call-by-value λ-calculus that enforces a continuation-
passing style (CPS) discipline to help identify opportunities for reuse and com-
putations for re-execution. The language includes modifiable references to track
data dependencies and a memoization primitive to identify opportunities for
computation reuse across runs.2 The language is self-adjusting: its semantics
includes evaluation to reduce expressions to values, and change-propagation to
adapt computations to input changes. To support non-monotonic computation
reuse, the dynamic semantics receives a trace of a previous run that can be
sliced into subcomputations for reuse with reordering. Section 5 shows how Src
programs are CPS-compiled into equivalent self-adjusting Tgt programs.

The following grammar gives the syntax of types τ , expressions e, values v,
and adaptive commands κ.
τ ::= res | nat | τx → τ | τ mod e ::= v | caseN vn ez (x .es) | ef vx
v ::= x | zero | succ v | fun f .x .e | � | κ κ ::= halt v | memo e | put v vk | get vl vk

Reference commands have an explicit continuation vk identifying the computa-
tion that follows the command. The CPS discipline restricts a function applica-
tion ef vx to have a value argument. Modifiables τ mod are mutable references

2 Memoization in self-adjusting computation reuses computation between runs,
whereas classical memoization [15] reuses results within a single run.

486 R. Ley-Wild, U.A. Acar, and G. Blelloch

with commands put and get for allocation and dereference. The type res is an
opaque answer type, while halt is a continuation that injects a final value into
the res type. The dynamic semantics identifies opportunities for computation
reuse at memo commands, which enable replaying the trace of a previous run.

4.1 Static, Dynamic, and Cost Semantics

The typing judgement Σ;Γ � e : τascribes the type τ to the expression e in the
store and variable typing contexts Σ and Γ . For brevity, we only give the types
of the adaptive commands:

halt : τ → res memo : res → res

put : τ → (τ mod → res) → res get : τ mod → (τ → res) → res

The following rules give the dynamic and cost semantics of evaluation S;σ; e ⇓E

T ′;σ′; v′; d′(left) and change-propagation S;S;σ � T ′;σ′; v′; d′(right).

e ⇓ κ S; σ; κ ⇓K T
′
; σ

′
; v

′
; d

′

S; σ; e ⇓E T
′
; σ

′
; v

′
; d

′
�S� = κ S, S; σ; κ ⇓K T

′
; σ

′
; v

′
; d

′

S;S;σ � T
′
; σ

′
; v

′
; d

′ change

|S| = c

S;σ; halt v ⇓K halt
v
; σ; v; 〈c, 1〉

|S| = c

S; halt
v
; σ � halt

v
; σ; v; 〈c, 0〉

memo/miss
S; σ; e ⇓E T

′
; σ

′
; v

′
; d

′

S; σ;memo e ⇓K memo
e·T ′

; σ
′
; v

′
; 〈0, 1〉 + d

′
S;S;σ � T

′
; σ

′
; v

′
; d

′

S; memo
e·S;σ � memo

e·T ′
; σ

′
; v

′
; d

′

memo/hit
S; e

m
� S

′
;Se S

′
;Se; σ � T

′
; σ

′
; v

′
; d

′

S; σ;memo e ⇓K memo
e·T ′

; σ
′
; v

′
; 〈1, 1〉 + d

′

� /∈ dom σ σl = σ[� 	→ v]

S; σl; vk � ⇓E T
′
; σ

′
; v

′
; d

′

S; σ;put v vk ⇓K put
v↑�
vk

·T ′
; σ

′
; v

′
; 〈0, 1〉 + d

′

� /∈ dom σ σl = σ[� 	→ v]

S;S; σl � T
′
; σ

′
; v

′
; d

′

S; put
v↑�
vk

·S;σ � put
v↑�
vk

·T ′
; σ

′
; v

′
; d

′

� ∈ dom σ σ(�) = v

S; σ; vk v ⇓E T
′
; σ

′
; v

′
; d

′

S; σ; get � vk ⇓K get
�→v
vk

·T ′
; σ

′
; v

′
; 〈0, 1〉 + d

′

� ∈ dom σ σ(�) = v

S;S;σ � T
′
; σ

′
; v

′
; d

′

S; get
�→v
vk

·S;σ � get
�→v
vk

·T ′
; σ

′
; v

′
; d

′

The large-step evaluation relation S;σ; e ⇓E T ′;σ′; v′; d′ (resp. S;σ;κ ⇓K

T ′;σ′; v′; d′) reduces the expression e (resp. the adaptive command κ) under
the store σ, yielding the value v′ and the updated store σ′. Evaluation also takes
a list of trace slices S from a previous run which are available for reuse, and
produces an execution trace T ′ of the current run and a pair of costs d′ = 〈c, c′〉
for work c discarded from the reuse trace slices and new work c′ performed for
the current run. The auxiliary evaluation relation e ⇓ v′ reduces an expression
e to a value v′ by the standard (and thus, elided) function and case-analysis
β-reductions; such evaluation is pure and independent of the store.

A Tgt trace T is a sequence of reference and memo actions A, ending in a halt
action. A trace slice S is a trace segment, possibly ending in a holee marker
that indicates the rest of the trace (corresponding to the run of e) was stolen for
out-of-order reuse. Note that a trace is also a trace slice without holes. S and U
range over lists and non-empty lists of trace slices; concatenation extends to the
first slice: A·(S, S) = (A·S, S).

Non-monotonic Self-Adjusting Computation 487

As ::= putv↑�vk
| get�→v

vk
A ::= As | memoe T ::= haltv | A·T

H ::= haltv | holee S ::= H | A·S S ::= • | S, S U ::= S, S

The halt v command yields a computation’s final value, with a cost of 1 for the
current run and a cost c = |S| summing the work discarded from the reuse trace
slices S, where the cost of a trace slice is the number of actions (except holes,
which don’t represent previous work) in the trace:

|holee| = 0 |haltv| = 1 |A·S| = 1 + |S|
An adaptive reference command uses the store (put and get rules) and passes
the result to the continuation; the trace is extended with the corresponding
action labeled by the location, value, and continuation, and incurs a cost of 1
for the current run. Note that it is acceptable (and, indeed, often desirable) for
the location � chosen by put to appear in the reuse trace slices because it can
enable subsequent memo-matching on work from the previous run involving � .

A memoized expression memo e in Tgt has no special behavior when eval-
uated from scratch (memo/miss rule): it evaluates the body e and extends
the trace with a memo action memoe, incurring a cost of 1 for the current run.
The memo/hit rule exploits the reuse trace from the previous evaluation and
switches to change-propagation if the same expression was memoized and eval-
uated in the previous run.

The memoization judgement S; e
m
� S′

1;S
′
e splits the reuse trace S into a

suffix trace slice S′
e that corresponds to a (partial) previous run of e (under a

(possibly) different store), and a prefix trace S′
1 of the work preceding S′

e with
an explicit holee end marker to indicate the stolen tail.

S; e
m
� S′;S′

e

A·S; e m
� A·S′;S′

e

hit

memo
e·Se; e

m
� hole

e;Se

S; e
m
� S

′
;S′

e

S, S; e
m
� S, S

′
;S′

e

S; e
m
� S′;S′

e

S, S; e
m
� S′, S;S′

e

Under monotonic memoization the prefix S′
1 would be discarded incurring a

cost of |S′
1|, but under non-monotonicity it remains available for later reuse.

Memoization extends to trace lists S; e
m
� S

′
;S′

e by memo-matching with one
trace from the list.

The change-propagation relation S;S;σ � T ′;σ′; v′; d′ replays the partial ex-
ecution trace S under the store σ, yielding the value v′ and the updated store
σ′, with an updated execution trace T ′ and a pair of costs d′ = 〈c, c′〉 for work c
discarded from S, S (viz. thedotted/red work from the previous run’s trace) and
new work c′ performed for T ′ (viz. thedotted/red and dashed/orange work for

the new run’s trace); the additional reuse traces S are other computations from
the previous run that may be reused if change-propagation returns to evaluation.
Any work that can be replayed from the previous run is free (viz. the solid/green
work common to both traces). A halt action can be replayed to obtain the (un-
changed) final value, incurring the cost of discarding the additional reuse traces.
An adaptive action can be replayed without cost if the action is consistent with
the current store, the tail of the trace can be recursively change-propagated and
then extended with the same action. However, if a reference action is inconsistent
with the store (e.g., a specific location can’t be allocated or a dereference fetches
a different value), then change-propagation must switch back to evaluation. A

488 R. Ley-Wild, U.A. Acar, and G. Blelloch

trace slice S can be reified back into an adaptive command κ = �S�, the tail
trace slice S′ (if any) can be ignored because adaptive actions capture the rest
of the computation in the continuation:

�haltv� = halt v �holee� = memo e �memoe·S′� = memo e
�putv↑�vk

·S′� = put v vk �get�→v
vk

·S′� = get � vk

Thus, change-propagation can reify an inconsistent trace slice S and re-evaluate
the command, while keeping the trace S for possible reuse later (change rule).
Note that the reified put (resp. get) forgets the (stale) location (resp. value).
The change rule does not, however, require the action to be inconsistent; this
nondeterminism intentionally avoids committing to particular allocation and
memoization policies.

4.2 Consistency of Change-Propagation

Suppose we have a Tgt program e such that Σ; · � e : res and an initial store σ1

of type Σ
Σ1. We can evaluate e under the store σ1 and no reuse traces, yield-
ing the initial result v′1 and a trace T ′

1: •;σ1; e ⇓E σ′
1; v

′
1;T

′
1; d

′
1. After this initial

evaluation, we can consider another store σ2 of type Σ
Σ2 and update the out-
put of the evaluation with respect to this store by applying change-propagation
to T ′

1 under the store σ2: •;T ′
1;σ2 � T ′

2;σ
′
2; v

′
2; d

′
2. The consistency of change-

propagation asserts that the result and trace obtained by change-propagation are
identical to those obtained by from-scratch evaluation (i.e., without any reuse
traces). In the presence of non-monotonic memoization the reuse trace may be
sliced, so consistency must be generalized to deal with trace slices and employs
the auxiliary judgements S wfwrt e to mean S results from slicing a from-scratch
execution of e (•; ; e ⇓E T ′; ; ; and T ′; e m

� S;S′
e), and S wf to mean S wfwrt e

for some e. Consistency is a corollary of the following theorem by instantiating
S as the empty list and S′

1 as T ′
1.

Theorem 1 (Consistency of Change-Propagation). If S wf, S′
1 wfwrt e,

and S;S′
1;σ2 � T ′

2;σ
′
2; v

′
2; , then •;σ2; e ⇓E T ′

2;σ
′
2; v

′
2; .

If S wf and S;σ2; e ⇓E T ′
2;σ

′
2; v

′
2; , then •;σ2; e ⇓E T ′

2;σ
′
2; v

′
2; .

4.3 Trace Distance

In this section, we introduce a notion of trace distance and show that the cost of
change-propagation may be bounded by the distance between the input and the
result traces. The definition of distance is similar to Src, in Section 5 we show
that they are asymptotically the same.

The S � U ′ judgement splits a Tgt trace slice S into a non-empty list of slices
U ′ by (non-deterministically) replacing memo actions with holes.

H � H ; •
S � S′;S

′

A·S � A·S′;S
′

S � S′;S
′

memo
e·S � hole

e; memoe·S′, S
′

Non-monotonic Self-Adjusting Computation 489

The judgement extends to decomposing lists of slices U � U ′ by appending
the decomposition of each slice in the list. The judgement U

π
� U ′ means U ′ is

a permutation of U .
The global (search) distance U1��U2 = d of two slice lists U1 and U2 results

from slicing and permuting each list, and taking their local search distance.

U1 � U ′
1 U ′

1
π
� U ′′

1 U2 � U ′
2 U ′

2
π
� U ′′

2 U ′′
1 � U ′′

2 = d

U1 �� U2 = d

Since global distance accounts for computation reordering, the local search dis-
tance U1 �U2 = d accounts for differences between traces in order until it finds
matching memoization actions, then it can use the local synchronization distance
U1�U2 = d to account for reuse between traces until they differ, at which point
it must return to search distance. The distance d = 〈c1, c2〉 quantifies the cost c1
of work in U1 that isn’t shared with U2 and the cost c2 of work in U2 that isn’t
shared with U1. Analogous to the dynamic semantics of Tgt, search distance
accounts for discarding old work on the left and performing new work on the
right, while synchronization distance reuses work between runs.

|H1| = c1 |H2| = c2

H1; •�H2; • = 〈c1, c2〉

h/L
|H1| = c1 S1;S1 � U2 = d

H1;S1, S1 � U2 = 〈c1, 0〉+ d haltv; • � haltv; • = 〈0, 0〉
S1;S1 � U2 = d

A·S1;S1 � U2 = 〈1, 0〉 + d
a/L

S1;S1 � S2;S2 = d

A·S1;S1 � A·S2;S2 = d

S1;S1 � S2;S2 = d

memoe·S1;S1 � memoe·S2;S2 = 〈1, 1〉 + d
memo/hit

U1 � U2 = d

U1 � U2 = d

The search distance between halt or hole actions is the length of each action.
Skipping an action incurs a cost of the length of the action for the corresponding
trace and forces distance to remain in search mode (*/L rules, the right rules
are omitted). Two identical memo actions incur a cost of 1 each and enable
switching from search to synchronization mode.

Synchronization distance, as in Src, is only meant to be used on traces gener-
ated by the evaluation of the same expression under (possibly) different stores
(though synchronization distance exists between any two traces). The synchro-
nization distance between halt actions is 〈0, 0〉, and assumes both actions return
the same value. Identical adaptive actions match without cost and allow distance
to continue synchronizing the tail. Synchronization may return to search mode,
either nondeterministically or because adaptive actions don’t match.

The following shows that the distance between a program’s trace T and some
traces S coincides with the cost of evaluating the program with reuse traces S.

Theorem 2 (Dynamic Semantics Coincides with Distance). If S wf, and
•;σ; e ⇓E T ′;σ′; v′; , then S �� T ′ = d iff S;σ; e ⇓E T ′;σ′; v′; d.

The following result shows that for pure computations with unique function
calls, greedy non-monotonic reuse is optimal in the sense that it achieves minimal

490 R. Ley-Wild, U.A. Acar, and G. Blelloch

trace distance. The uniqueness condition means that an application ef$ex with
a given function ef and argument ex occurs at most once during the execution.
This assumption is necessary because in the presence of duplicate calls and
nondeterministic allocation, greedily stealing a computation may unnecessarily
cause computation to become inconsistent. The purity assumption is necessary
because effects can introduce dependencies between computations that incur an
additional cost to reorder (see Section 6).

Theorem 3 (Optimality of Greediness). Given two pure computations with
unique function calls, greedy memo-matching is an optimal memoization policy
that change-propagates with asymptotically minimal distance.

Proof. By the uniqueness assumption, greedy memo-matching achieves maximal
reuse of the computation, whence the Tgt-level distance is minimized and in turn
the Src-level distance is minimized, up to a constant factor.

5 Translation

In this section, we describe a semantics- and trace distance-preserving translation
from Src to Tgt

To translate from Src to Tgt, we use an adaptive continuation-passing style
transformation. The explicit continuation helps identify the scope of inconsistent
store actions that need to be re-executed as well as identical memoized compu-
tations that can be reused. That translation was previously used for monotonic
self-adjusting computation with traces and local trace distance [12]; we exploit
its robustness to extend it to the non-monotonic setting by generalizing to trace
slices and global trace distance.

Program Translation. To establish the semantic connection, we define transla-
tion for types �τ src� = τ tgt, expressions �esrc� vtgtk = etgt with an explicit Tgt-level
continuation vtgtk , values �vsrc� = vtgt. The translation is a standard CPS conver-
sion except that store primitives are translated into Tgt store commands with
an explicit continuation vk, and the function translation threads the continua-
tion through the store and uses explicit memo operations before and after the
function body to isolate the function call from the rest of the computation.

The correctness and efficiency of the translation is captured by the fact that
well-typed Src programs are compiled into (statically and dynamically) equiv-
alent well-typed Tgt programs with the same asymptotic complexity for initial
runs (i.e., Tgt evaluation with an empty reuse trace), which are straightforward
adaptations of the proofs for the monotonic variant of Tgt.

Theorem 4 (Static and Dynamic Preservation). If Σ;Γ � e : τ , and
�Σ� ; �Γ � , Γ ′ � vk : �τ� → res, then �Σ� ; �Γ � , Γ ′ � �e� vk : res.
If σ0; e0 ⇓ T ;σ1; v1; c0, and •; �σ1�
σk; vk �v1� ⇓E Tk;σ2; v2; 〈 , c1〉, then •; �σ0�

σk; �e0� vk ⇓E T ′;σ2
 σe; v2; 〈 , Θ(c0 + c1)〉.

Non-monotonic Self-Adjusting Computation 491

Trace Translation. To establish the trace distance connection, we define a trace
translation �Ssrc� vtgtk U tgt

k = U tgt of a Src trace slice Ssrc using vtgtk as an initial
continuation and suffix slice list U tgt

k to produce a Tgt slice list U tgt corresponding
to the original computation (with explicit holes). The proof of global trace dis-
tance preservation requires establishing the preservation of local trace distance,
which in turn requires auxiliary translations for a trace slice Ssrc extracted from
a larger computation and for non-empty Src slice list U src.

Corollary 1 (Src/Tgt Distance Soundness). If S imp
1 �� S imp

2 = 〈 , c〉, then�
S imp
1

�
id1 U

tgt
id1��

�
S imp
2

�
id2 U

tgt
id2 = 〈 , Θ(c)〉, where U tgt

idi is the identity trace.

Note that since Src and Tgt distance are quasi-symmetric, analogous results hold
of the left component of distance. This means that change-propagation has the
same asymptotic time-complexity as trace distance.

6 The Change Propagation Algorithm

Here we describe a concrete algorithm and associated data structures for effi-
ciently supporting the reordering of the trace. This goes into a level more detail
than the target semantics in Section 4 allowing an analysis of running time. We
use CPA to refer to the change propagation algorithm in contrast to the ab-
stract change propagation mechanism of Section 4. We use TDS to refer to the
concrete data structure used for traces generated during the run of the program
and updated by the CPA.

The main idea of the CPA is to traverse the trace in execution order while
identifying the parts of the trace that need to be rerun (the ⇓E and ⇓K rela-
tions in Subsection 4.1) and the parts that can be reused (the � relation in
Subsection 4.1). In particular it is important to skip over the part that can be
reused without incurring any cost. An important aspect is therefore to identify
after a memo hit the next place in the trace that does not match the previous
trace—i.e., the next inconsistency. Once this is identified the CPA also needs
to splice the part between the match and the inconsistency out of the previous
TDS and append it to the current TDS.

The TDS is based on a totally ordered timeline with a timestamp for each
action in the trace—i.e., all memo and reference actions. This timeline therefore
has a one-to-one correspondence to the trace in the target semantics. The TDS
also maintains for each modifiable reference the timestamps for all actions on
the reference, and for each get action it keeps the continuation that needs to
be rerun if the value of the reference is changed. To support reordering this
timeline needs to allow extraction and insertion of chunks of trace. As discussed
below, this can be implemented reasonably efficiently. Finally the TDS needs
to maintain a memo table mapping all memoized function calls and associated
arguments to the timestamp at which the call is made. Here we assume that if
there are multiple identical calls, only one is stored.

492 R. Ley-Wild, U.A. Acar, and G. Blelloch

Algorithm CPA (S, T , Q, ts)
��� ti = find the next element in Q greater than ts
�� �� ti is the end ���� T ++ S[ts,end]

���� ��� Tr = S[ts,ti)
S’ = S − Tr

(tm, Q′, Tn) = run continuation of ti until memo match in S’
tm is the timestamp of the memo match
Q′ is Q extended such that every put(�) during

the run adds all associated get(�)s to the queue
Tn is the new trace

T ’ = T ++ Tr ++ Tn

�� �� tm is the end ���� T ’
���� CPA (S’, T ’, Q′, tm)

Fig. 1. The non-monotonic change propagation algorithm

Figure 1 describes the non-monotonic CPA. The algorithm starts with an
input trace S (i.e., the list of trace slices S in the Tgt semantics, but the sepa-
ration into pieces is implicit) and generates an output trace T for the updated
run. The algorithm maintains a queue Q of the timestamps of inconsistent reads
(get actions for which the value of the corresponding reference has changed),
ordered by time. The queue is initialized to include all the get actions on any
input references that have changed. The time ts represents a finger (position) in
S which is the start of a piece of trace that is being reused. Initially, ts is at the
start of S; at each step (recursive call), the algorithm finds the next inconsistent
read past ts. If there is none, then there are no more inconsistencies and the
algorithm is done by appending the trace in S past the finger onto the end of
T . If the next inconsistent read is at time ti, CPA extracts the part of the trace
between ts (inclusive) and ti (exclusive) because it hasn’t changed since the last
run and can be reused by simply appending it to the output trace (skipping the
� replay transitions). This chunk is also removed from the input trace since we
don’t want to use the same part of the input trace more than once.

Since the read at ti is inconsistent (reads a different value from before) the
algorithm needs to rerun the continuation for that read. While the continuation
runs it looks for a memo match in S and stops when it finds one. This match
could be anywhere in S, and in particular out of order with respect to matches
found in previous steps. While running, whenever a change is made to a reference
that existed in the previous run (a write with a new value), the timestamps for
all the reads associated with that reference are added to Q′. Thus when the
rerun is completed, all inconsistent reads caused by the run are properly marked
in Q′ and all memoized function calls are placed in the memo table for future
reference. The rerun returns the timestamp tm of the memo match, as well as
the modified queue Q′ and the new trace segment Tn for the computation that
has just run. Now CPA can extend the original output trace T with the reusable
trace Tr and the new trace Tn. Thus on every step (except perhaps the last),
the algorithm adds one reused chunk of trace and one new chunk of trace to the
output trace. Only the new chunks require work.

Non-monotonic Self-Adjusting Computation 493

This algorithm implements the change propagation scheme described in Sec-
tion 4 and is therefore correct as long as it properly identifies the change rule
from the Tgt dynamic semantics—i.e., it properly identifies the next difference
in the trace. This identification is correct since the only way a get of a pure ref-
erence from the source language can become inconsistent (read a different value)
is if the original put has changed. These reference updates are all included in Q.
The important property is that any reordering among the reads does not affect
the values read since the write happens before all reads. Also the order of a read
and write cannot swap since that would be an invalid program and would not be
generated by any trace. This is not true for imperative source references, where
there can be interleaving between writes and reads and a reordering of traces
can swap the ordering of a read and write.

Now let’s consider the running time of CPA. Certainly all new computation
needs to be run but this is accounted for in the trace distance. The other costs
of the algorithm include the time for extracting and appending chunks of the
trace, the cost for the queue operations, and the cost for memo lookup and
associated insertion into the memo table. We use Tsplice(n) to indicate the time to
append or extract a chunk of trace for a trace of size n. Using balanced trees this
can easily be implemented in O(log n) time, and with some work comparisons
between timestamps in the trace can be made to work in O(1) time. We use
Tqueue(n) to indicate the time to insert or delete in the queue of size n. This
is easy to implement in O(log n) time per operation as long as the comparison
of time stamps is O(1) time. We assume the memo lookup uses standard hash
tables and therefore takes constant expected time per operation (either lookup
or insertion). Consider a computation in which the total new computation is c,
the total number of recursive calls of the CPA is l, the total trace distance just
counting reads is r, and the maximum of the sizes of the input and output traces
is n. The running time is then O(c+ lTsplice(n)+ (r+ l)Tqueue(n)). Relating this
to the trace distance measured by the semantics, change propagation for two
traces S1 and S2 such that S1 �� S2 = 〈c1, c2〉 will run in time O((c1 + c2)(1 +
Tsplice(n) + Tqueue(n))) = O((c1 + c2) log n).

Example. The Tgt trace of map has the form (abbreviations given below):

callmap$�⇓�
′

︸ ︷︷ ︸

·get�→h::t

︸ ︷︷ ︸

·callf$h⇓h′ ·T f(h)·retf$h⇑h′

︸ ︷︷ ︸

· �
︸︷︷︸

·puth′::t′↑�′
︸ ︷︷ ︸

·retmap$�⇑�′
︸ ︷︷ ︸

h� · g · Fh · � · p · h�

where T f(h) is the body of f(h) and � is a hole for the recursive call map(t) = t′.3

The trace segments callg$x⇓a and retg$x⇑a represent the memoized function call
and return that result from translating a Src trace appg$x⇓a(); they (1) enable
reusing the subsequent trace up to the next inconsistent action and (2) identify
an inconsistency (i.e., need to re-execute at the return) if the function is being
reused in a different calling context (i.e., returning to a different continuation).

3 For brevity, we omit the Tgt continuations on actions (e.g., a call has a continuation
argument, a return passes the result to the continuation).

494 R. Ley-Wild, U.A. Acar, and G. Blelloch

Next, we consider the CPA updating map. The table below shows the iterations
of CPA with the reuse trace S and the trace T of the new run as it is built.

iteration first run (S) second run (T)

1
1�gF 1 · · · n�g

.
Fnk�g

.
F knil� gp

nil� p
k�.p

n� · · · p1� k�g
.

2
1�gF 1 · · · n�g

.
Fn F knil� gp

nil� p
k�.p

n� · · · p1� F k

3
1�gF 1 · · · n�g

.
Fn nil� gp

nil� p
k�.p

n� · · · p1�.
1�gF 1 · · · n�g

.

4 Fn nil� gp
nil� p

k�.p
n� · · · p1�. Fn

5
nil� gp

nil�. . p
k�.p

n� · · · p1�.
nil� gp

nil� p
. . . .

6 p
k�.p

n� · · · p1�.
n� · · · p1�pk�

. . .

The queue Q consists of inconsistent reads (e.g., g) due to input changes and

inconsistent returns (e.g.,
n� and the return at the end of Fn) because the calling

context (i.e., caller) has changed. We usedotted/red in S for inconsistent actions
and in T for new work (viz. Tn), dashed/orange in S for a partially inconsistent
trace and in T for partially reused work (viz. Tr ++ Tn), and solid/green in S
and T for the reused trace (viz. Tr).

The initial map on [1, . . . , n, k] produces the first trace S. Moving k to the front
changes the input to [k, 1, . . . , n], and Q is initialized with the now-inconsistent

get actions for k and n. In the first CPA iteration,
k� is reused and the following g

is re-run because it’s inconsistent and immediately followed by a memo-match in

F k; in S, the return
k� is marked inconsistent because of the new caller (originally

called from
n�, but now from the top-level) and the consumed trace segments are

removed (indicated by blanks in the next iteration). In the second iteration,
F k = callf$h⇓h

′ ·T f(h)·retf$h⇑h′
. reuses the call and body, but re-runs the tail

because of the different tail computation (map$[1, . . .] instead of map$nil). The
third and fourth iterations likewise reuse the map and f calls for 1..n and mark
1� inconsistent because of the different caller. The fifth iteration reuses the call
and body for nil, but has to re-execute the return

nil� and p of n because of the
new caller. Finally, in the sixth iteration, the map returns of n..2 are reused, and

the returns
1� and

k� are re-run because they have new callers. The reuse trace S

is left over with unused remnants p
k�. and

1�. which must be discarded.

7 Related Work

Self-adjusting computation has been realized through several formal languages
and implementations. The first was a pure higher-order language with a modal
type system that was implemented both as a Standard ML library with a monad
and explicit destination-passing [2] and a Haskell library using several monads
to enforce the modal constraints [6]. Subsequent proposals included a direct-style

Non-monotonic Self-Adjusting Computation 495

higher-order language compiled into a continuation-passing style (CPS) higher-
order language implemented in the MLton Standard ML compiler [13], and a
low-level imperative language implemented as a compiler for C [10]. All of these
designs focus on strict languages with call-by-value (CBV) functions that eagerly
evaluate function arguments4 and none of them supported efficient reordering.
Approaches based on pure memoization (function caching) alone [16,14] allow
for incrementality with reordering; since they lack the fine-grained dependence
tracking of modifiable references, they can only provide coarse-grained reuse and
are inefficient for deeply-nested changes (e.g., changing the last element of a list).
Previous work introduced a cost semantics for self-adjusting computation with
updatable references and monotonic reuse, and showed analogous correctness
properties of change-propagation and compilation [12].

8 Conclusion and Future Work

Self-adjusting computation (SAC) combines dynamic dependence tracking and
memoization to effectively update a computation in response to input changes.
However, since previous approaches are based on updating a timeline of the
computation in monotonic (i.e., time-increasing) order and a greedy approach to
memo matching, they perform inefficiently when subcomputations are reordered.

We generalize SAC with non-monotonic reuse to support input changes that
affect the order of subcomputations. We give a high-level source language for
expressing pure self-adjusting programs equipped with a notion of trace dis-
tance to quantify the dissimilarity of computations under an input change. We
give a semantics- and trace distance-preserving translation to a low-level target
language and show that trace distance coincides asymptotically with change-
propagation (i.e., update). We also provide and analyze a new algorithm that
realizes the semantics of change-propagation with reordering, which incurs a log-
arithmic overhead. In future work, we will evaluate the algorithm and extend
non-monotonicity to other programming paradigms (e.g., updatable references
and laziness).

References

1. Acar, U.A., Blelloch, G.E., Blume, M., Tangwongsan, K.: An experimental analysis
of self-adjusting computation. In: PLDI (2006)

2. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. ACM
TOPLAS 28(6), 990–1034 (2006)

3. Acar, U.A., Blelloch, G.E., Tangwongsan, K., Türkoğlu, D.: Robust kinetic convex
hulls in 3D. In: European Symposium on Algorithms (September 2008)

4. Acar, U.A., Cotter, A., Hudson, B., Türkoğlu, D.: Dynamic well-spaced point sets.
In: Symposium on Computational Geometry (2010)

5. Acar, U.A., Ihler, A., Mettu, R., Sümer, Ö.: Adaptive Bayesian inference. In: Neural
Information Processing Systems, NIPS (2007)

4 Haskell is lazy, but the use of monads gives SAC primitives eager evaluation.

496 R. Ley-Wild, U.A. Acar, and G. Blelloch

6. Carlsson, M.: Monads for incremental computing. In: ICFP (2002)
7. Chiang, Y.-J., Tamassia, R.: Dynamic algorithms in computational geometry. Pro-

ceedings of the IEEE 80(9), 1412–1434 (1992)
8. Demers, A., Reps, T., Teitelbaum, T.: Incremental evaluation of attribute gram-

mars with application to syntax-directed editors. In: POPL (1981)
9. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J.

(ed.) Algorithms and Theory of Computation Handbook, ch.8, CRC Press (1999)
10. Hammer, M.A., Acar, U.A., Chen, Y.: CEAL: a C-based language for self-adjusting

computation. In: PLDI (2009)
11. Ley-Wild, R.: Programmable Self-Adjusting Computation. PhD thesis, CSD, CMU

(2010)
12. Ley-Wild, R., Acar, U.A., Fluet, M.: A cost semantics for self-adjusting computa-

tion. In: POPL (2009)
13. Ley-Wild, R., Fluet, M., Acar, U.A.: Compiling self-adjusting programs with con-

tinuations. In: ICFP (2008)
14. Liu, Y.A., Stoller, S., Teitelbaum, T.: Static caching for incremental computation.

ACM TOPLAS 20(3), 546–585 (1998)
15. Michie, D.: “Memo” functions and machine learning. Nature 218, 19–22 (1968)
16. Pugh, W., Teitelbaum, T.: Incremental computation via function caching. In:

POPL (1989)
17. Ramalingam, G., Reps, T.: A categorized bibliography on incremental computa-

tion. In: POPL (1993)
18. Shankar, A., Bodik, R.: DITTO: Automatic incrementalization of data structure

invariant checks (in Java). In: PLDI (2007)

	Non-monotonic Self-Adjusting Computation
	Introduction
	Overview
	The Src Language
	Static, Dynamic, and Cost Semantics
	Trace Distance

	The Tgt Language
	Static, Dynamic, and Cost Semantics
	Consistency of Change-Propagation
	Trace Distance

	Translation
	The Change Propagation Algorithm
	Related Work
	Conclusion and Future Work
	References

