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Abstract. We settle three basic questions that naturally arise when
verifying multi-stage functional programs. Firstly, does adding staging
to a language compromise any equalities that hold in the base language?
Unfortunately it does, and more care is needed to reason about terms
with free variables. Secondly, staging annotations, as the name “annota-
tions” suggests, are often thought to be orthogonal to the behavior of a
program, but when is this formally guaranteed to be true? We give ter-
mination conditions that characterize when this guarantee holds. Finally,
do multi-stage languages satisfy useful, standard extensional facts—for
example, that functions agreeing on all arguments are equivalent? We
provide a sound and complete notion of applicative bisimulation, which
establishes such facts or, in principle, any valid program equivalence.
These results greatly improve our understanding of staging, and allow
us to prove the correctness of quite complicated multi-stage programs.

1 Introduction

Multi-stage programming (MSP) allows programmers to write generic code with-
out sacrificing performance; programmers can write code generators that are
themselves generic but are staged to generate specialized, efficient code. Generic
codes are excellent targets for verification because they are verified only once and
used many times, improving modularity of the correctness proof. However, few
formal studies have considered verifying generators written with MSP, and MSP
research has predominantly focused on applications that confirm performance
benefits [BIAT2I8J6] and on type systems [28/T7I32T6I29/30].

A key assumption behind the use of MSP is that it enhances performance while
preserving the structure of the code, and that it therefore does not interfere much
with reasoning [18/4]. The power function is a good example of MSP preserving
structure, presented here in MetaOCaml syntax.

let rec power n x = if n = 1 then x else x * power (n-1) x
let rec genpow n x = if n = 1 then x else .<."x * .7 (genpow (n-1) x)>.
let stpow n = .!.<fun z — .7 (genpow n .<z>.)>.
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The power function subsumes all functions of the form fun x — x*x*...*x but
incurs recursive calls each time it is called. Staging annotations can eliminate this
overhead by unrolling the recursion in genpow. Brackets .<e>. delay an expres-
sion e. An escape .~e must occur within brackets and causes e to be evaluated
without delay. The e should return a code value .<e’>., and ¢’ replaces .~e. For
example if n = 2, the genpow n .<z>. in stpow returns a delayed multiplication
.<zxz>.. This is an open term, but MetaOCaml allows manipulation of open
terms under escapes. Run .'!e compiles and runs the code generated by e, so
stpow 2 evaluates to the closure fun z — z*z, which has no recursion. These
annotations in MetaOCaml are hygienic (i.e., preserve static scoping [9]), but
are otherwise like LISP’s quasiquote, unquote, and eval [20].

This example is typical of MSP usage, where a staged program stpow is meant
as a drop-in replacement for the unstaged program power. Note that if we are
given only stpow, we can reconstruct the unstaged program power by erasing
the staging annotations from stpow—we say that power is the erasure of stpow.
Given the similarity of these programs, if we are to verify stpow, we naturally
expect stpow ~ power to hold for a suitable equivalence (=) and hope to get
away with proving that power satisfies whatever specifications it has, in lieu of
stpow. We expect power to be easier to tackle, since it has no staging annotations
and should therefore be amenable to conventional reasoning techniques designed
for single-stage programs. But three key questions must be addressed before we
can apply this strategy confidently:

Conservativity. Do all reasoning principles valid in a single-stage language carry
over to its multi-stage extension?

Conditions for Sound Erasure. In the power example, staging seems to preserve
semantics, but clearly this is not always the case: if {2 is non-terminating, then
.<f2>. 3% 2 for any sensible (). When do we know that erasing annotations
preserves semantics?

Ezxtensional Reasoning. How, in general, do we prove equivalences of the form
e ~ t?7 It is known that hygienic, purely functional MSP satisfies intensional
equalities like 8 [27], but are too weak to prove such properties as extensionality
(i.e., functions agreeing on all inputs are equivalent). Extensional facts like this
are indispensable for reasoning about functions, like stpow and power.

This paper settles these questions, focusing on the untyped, purely functional
case with hygiene. We work without types to avoid committing to the particulars
of any specific type system, since there are multiple useful type systems for MSP
[28129130]. It also ensures that our results apply to dynamically typed languages
[9]. Hygiene is widely accepted as a safety feature, and it ensures many of the nice
theoretical properties of MSP, which makes it easy to reason about programs,
and which we exploit in this study. We believe imperative MSP is not yet ready
for an investigation like this. Types are essential for having sane operational
semantics without scope extrusion [16], but there is no decisive solution to this
problem, and the jury is still out on many of the trade-offs. The foundations
for imperative hygienic MSP does not seem to have matured to the level of the
functional theory that we build upon here.
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1.1 Contributions

We extend previous work on the call-by-name (CBN) multi-stage A calculus, AV
[27], to cover call-by-value (CBV) as well (Section 2)). In this calculus, we show
the following results.

Unsoundness of Reasoning Under Substitutions. Unfortunately, the answer to
the conservativity question is “no.” Because AU can express open-term manip-
ulation (see genpow above), equivalences proved under closing substitutions are
not always valid without substitution, for such a proof implicitly assumes that
only closed terms are interesting. We illustrate clearly how this pathology occurs
using the surprising fact (A .0) = % 0, and explain what can be done about it
(Section 3)). The rest of the paper will show that a lot can be achieved despite
this drawback.

Conditions for Sound FErasure. We show that reductions of a staged term are
simulated by equational rewrites of the term’s erasure. This gives simple termi-
nation conditions that guarantee erasure to be semantics-preserving (Section 4)).
Considering CBV in isolation turns out to be unsatisfactory, and borrowing CBN
facts is essential in establishing the termination conditions for CBV. Intuitively,
this happens because annotations change the evaluation strategy, and the CBN
equational theory subsumes reductions in all other strategies whereas the CBV
theory does not.

Soundness of FExtensional Properties. We give a sound and complete notion of
applicative bisimulation [I/T0] for A\Y. Bisimulation gives a general extensional
proof principle that, in particular, proves extensionality of A abstractions. It also
justifies reasoning under substitutions in some cases, limiting the impact of the

non-conservativity result (Section ).

Throughout the paper, we emphasize the general insights about MSP that we
can gain from our results. The ability to verify staged programs fall out from
general principles, which we will demonstrate using the power function as a
running example. A technical report [14] gives proof details and discussions that
we cut out due to space limitations. This paper is intelligible by itself, but we
note throughout the paper what additional information to expect in the report.

The most substantial additional material in the report is a correctness proof of
the longest common subsequence (LCS) algorithm, meant for readers who wish
to see how the erasure idea fares on more complex programs than power. LCS uses
a sophisticated code-generation scheme that requires let-insertion coupled with
continuation-passing style (CPS) and monadic memoization [26]. These features
make an exact description of the generated code hard to pin down; nonetheless,
a proof similar to that of power can be adapted fairly straightforwardly.

2 The AV Calculus: Syntax, Semantics, and Equational
Theory

This section presents the multi-stage A calculus AV. This is a simple but ex-
pressive calculus that models all possible uses of brackets, escape, and run in
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Levels f,m €N Variables z,y € Var Constants c¢,d € Const
Ezpressions et € Ex=c|x|Xxelee]|(e)]| e]|le
Ezact Level 1lv : E — N where

def

vz &0 Wweo lv(er e2) €ef max(lver,lves) lv(Te) =lve+1

lv(Az.e) Lve lv(e) Lef max(lve —1,0) lv(le) Cve
Stratification €’ t' € ' %' {e:lve < (}
Values u?, 00 € VO u=c| Az.e® | (%)
Wttt g P L ot

Programs p € Prog ™ {e” . FV(e°) = @}
Contexts CeCtzu=e|Xx.C|CeleC|(C)| C|!C

Fig. 1. Syntax of AV, parametrized in a set of constants Const

MetaOCaml’s purely functional core, sans types. The syntax and operational
semantics of AV for both CBN and CBV are minor extensions of previous work
[27] to allow arbitrary constants. The CBN equational theory is more or less as
n [27], but the CBV equational theory is new.

Notation. A set S may be marked as CBV (Sy) or CBN (Sy,) if its definition
varies by evaluation strategy. The subscript is dropped in assertions and defini-
tions that apply to both evaluation strategies. Syntactic equality (« equivalence)
is written (=). The set of free variables in e is written FV(e). For a set S, we
write S¢1 to mean {e € S: FV(e) = &}.

2.1 Syntax and Operational Semantics

The syntax of AU is shown in A term is delayed when more brackets
enclose it than do escapes, and a program must not have an escape in any non-
delayed region. We track levels to model this behavior. A term’s exact level lve
is its nesting depth of escapes minus brackets, and a program is a closed, exactly
level-0 term. A level-0 value (i.e., a value in a non-delayed region) is a constant, an
abstraction, or a code value with no un-delayed region. At level £ > 0 (i.e., inside
¢ pairs of brackets), a value is any lower-level term. Throughout the article, “the
set of terms with exact level at most £”, written E¥, is a much more useful concept
than “the set of terms with exact level exactly ¢”. When we say “e has level £” we
mean e € B, whereas “e has exact level £ means lve = £. A context C is a term
with exactly one subterm replaced by a hole e, and C[e] is the term obtained
by replacing the hole with e, with variable capture. Staging annotations use the
same nesting rules as LISP’s quasiquote and unquote [9], but we stress that they
preserve scoping: e.g., (A\x.” (Az.(x))) = Az."(Ay.(y))) Z Ay."(Ax.(y))).

A term is unstaged if its annotations are erased in the following sense; it is
staged otherwise. The power function is the erasure of stpow modulo 7
reduction.



Reasoning about Multi-stage Programs 361

Evaluation Contexts (Productions marked [¢] apply only if the guard ¢ is true.)
(CBN) £5™ € ECtaq™ == o[m =£] | Ax.E5™[¢ > 0] | (1™ | ~€4-1™ e > ()
| 186™ | g8m et | ot EE™[0 > 0] | ¢ £ = 0]
(CBV) £9™ € ECtay™ = o[m =£] | Ax.£5™[¢ > 0] | (1™ | ~€41™ e > ()
| !gé,m | 51’.,m e(’. | 1)[' 51’.,m
Substitutable Arguments a,b € Arg::=v° (CBV) a,b¢€ Arg:= e (CBN)

Small-steps e’ ~» t* where:
SS-3 SS-By SS-6
(CBN) (CBV) (¢,d) € domo
(Az.e%) t° ~ [t°/z]e® (Az.e%) v° ~ [v°/z]e’ cd~d(c,d)
SS-E SS-R SS-Ctx
e
~7 0 0 0 0 Lmp . m Lmpm
(e) e He ) e o N e

Fig. 2. Operational semantics of AU, parametrized in an interpretation (partial) map
§: Const x Const — {v e Vi :v=|v|}

Definition 1 (Erasure). Define the erasure |le|| by

def def def ~ def
[zl =z lel = ¢ [Azell = Azl [7ell = [lell

def def def
lex e2ll = [leall lle2ll (el = el Itell = llell

The operational semantics is given in examples are provided below.
Square brackets denote guards on grammatical production rules; for instance,
ECtay™ = o[m = (] | ... means e € ECtzy;™ iff m = (. An £, m-evaluation
context £4™ takes a level-m redex and yields a level-£ term. Redex contractions
are: 3 reduction at level 0, § reduction at level 0, run-bracket elimination at
level 0, and escape-bracket elimination at level 1. CBN uses SS-3 and CBV uses
SS-pBy. All other rules are common to both evaluation strategies.

Small-steps specify the behavior of deterministic evaluators. Every term de-
composes in at most one way as E4™[t] where t is a level-m redex, and the
small-step reduct is unique if it exists. The § reductions are given by a partial
map 0 : Const x Const — {v € V. : v = ||v||}, which is undefined for ill-formed
pairs like §(not, 5). We assume constant applications do not return staged terms.

The difference between CBV and CBN evaluation contexts is that CBV can
place the hole inside the argument of a level-O application, but CBN can do
so only if the operator is a constant. This difference accounts for the fact that
CBYV application is always strict at level 0, while CBN application is lazy if the
operator is a A but strict if it is a constant. At level > 0, both evaluation strategies
simply walk over the syntax tree of the delayed term to look for escapes, including
ones that occur inside the arguments of applications.

Notation. We write A I ¢ ot for a CBN small-step judgment and \Y |- e ot
for CBV. We use similar notation for ({}), (1), and (=) defined below. For any
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relation R, let R* be its reflexive-transitive closure. The metavariables a,b € Arg
will range over substitutable arguments, i.e., €® for CBN and v° for CBV.

For example, p1 = (Ay.(40+y)) (1+ 1) is a program. Its value is determined by
(«69), which works like in conventional calculi. In CBN, AU F p; 5 (404 (1+1)).

The redex (14-1) is not selected for contraction because (Ay.(404y)) o ¢ ECta>".
In CBV, (\y.(40 + y)) e € ECt2™°, so (1 + 1) is selected for contraction: AU F
p1 vy (Ay.(40 +y)) 2~ (40 +2).

Let po = (Az.z ("[(\ .(2)) 1])), where we used square brackets [ | as paren-
theses to improve readability. Let € be the subterm inside square brackets. In
both CBN and CBV, py decomposes as £[e?], where € = (\z.z (To)) € ECta®°,
and e° is a level-0 redex. Note the hole of £ is under a binder and the redex
€ is open, though ps is closed. The hole is also in argument position in the
application z (“e) even for CBN. This application is delayed by brackets, so
the CBN/CBYV distinction is irrelevant until the delay is canceled by !. Hence,
p2 5 A2z (7(2))) % (Az.2 2).

As usual, this “untyped” formalism can be seen as dynamically typed. In
this view, ~ and ! take code-type arguments, where code is a distinct type from
functions and base types. Thus (Az.z) 1, (0), and !5 are all stuck. Stuckness
on variables like 5 does not arise in programs for conventional languages be-
cause programs are closed, but in AU evaluation contexts can pick redexes under
binders so this type of stuckness does become a concern; see [Section 3.

Remark. Binary operations on constants are modeled by including their par-
tially applied variants. To model addition we take Const 2 ZU{+}U{+ : k € Z}
and set 0(+, k) = +x, 0(+x, k') = (the sum of k and £’). For example, in prefix
notation, (+ 3 5) ~ (+3 5) ~> 8. Conditionals are modeled by taking Const 2
{O), true,false,if} and setting §(if,true) = Aa.Ab.a () and §(if,false) =
Aa.Ab.b (). Then, e.g., if true (A .1) (A .0) v (Aa.Ab.a O) (A1) (A.0) »~ L.

Definition 2 (Termination and Divergence). An e € E’ terminates to

v eV atlevel Liff e v;* v, written e M v. We write e |/ to mean Jv. e i}z v. If

no such v exists, then e diverges (e ). Note that divergence includes stuckness.

The operational semantics induces the usual notion of observational equivalence,
which relate terms that are interchangeable under all program contexts.

Definition 3 (Observational Equivalence). e = t iff for every C such that
Cle], C[t] € Prog, Cle] {°<= C[t] I|° holds and whenever one of them terminates
to a constant, the other also terminates to the same constant.

2.2 Equational Theory

The equational theory of AV is a proof system containing four inference rules:
compatible extension (e = t = Cle] = C[t]), reflexivity, symmetry, and tran-

sitivity. The CBN axioms are \J def {B, Eu, Ry, ¢}, while CBV axioms are
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AU &of {Bv, Eu, Ry, d}. Each axiom is shown below. If e = ¢ can be proved from

a set of axioms @, then we write @ - e = ¢, though we often omit the & F in def-
initions and assertions that apply uniformly to both CBV and CBN. Reduction
is a term rewrite induced by the axioms: @ - e — ¢ iff e = ¢ is derivable from
the axioms by compatible extension alone.

Name Axiom Side Condition
Ié] (Az.e%) t0 = [t /x]el

By (Az.e%) 0¥ = [v°/x]el

Ey “(e) =e

Ry 1{e%) = e°

) cd=d(cd) (c,d) € dom¢

For example, axiom Sy gives AU I (X .0) 1 = 0. By compatible extension under
(o), we have ((A.0) 1) = (0), in fact ((A.0) 1) — (0). Note ((A .0) 1) »
(0) because brackets delay the application, but reduction allows all left-to-right
rewrites by the axioms, so (A .0) 1) — (0) nonetheless. Intuitively, (A .0) 1)
(0) because an evaluator does not perform this rewrite, but ((A .0) 1) — (0)
because this rewrite is semantics-preserving and a static analyzer or optimizer
is allowed to perform it.

Just like the plain A calculus, AU satisfies the Church-Rosser property, so
every term has at most one normal form (irreducible reduct). Church-Rosser also
ensures that reduction and provable equality are more or less interchangeable,
and when we investigate the properties of provable equality, we usually do not
lose generality by restricting our attention to the simpler notion of reduction.

Theorem 4 (Church-Rosser Property). e = ¢ <= Jt. e —* t +—* ¢'.

Provable equality is an approximation of observational equivalence. The con-
tainment (=) C (=) is proper because (=) is not semi-decidable (since AU is
Turing-complete) whereas (=) clearly is. There are several useful equivalences
in (=) \ (=), which we will prove by applicative bisimulation. Provable equality
is nonetheless strong enough to discover the value of any term that has one, so
the assertion “e terminates (at level £)” is interchangeable with “e reduces to a
(level-£) value”.

Theorem 5 (Soundness). (=) C (=).

Theorem 6. If ¢ € E‘v € V! then e | v = (¢ —* v Ae = v) and
e=veVli= FueViu=vre —*unel’u).

The CBN version of the equational theory given here is not identical to [27],
but generalizes the Ey rule from ~“(e°) = €° to “(e) = e. This minor gener-
alization comes in handy for eliminating redundant escapes and brackets. An
example is found in the proof that substitution preserves (=):

Proposition 7. e =t = [a/x]e = [a/x]t.
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Proof. The idea is to plug e, t into the context (Az.e) a and to apply /8y to
get [a/x]e = (A\z.€) a =~ (A\x.t) a = [a/x]t. However, 8/ does not apply if e, ¢
are not level 0, so we have to make them level 0. Take £ = max(lve,lvt). Then

Az (- (e) ) am Az {{---(t)--)) a, (1)

where e and ¢ are each enclosed in ¢ pairs of brackets. Now /8, applies, and
we get ((---([a/z]e)---)) = ({---([a/z]t) - - -)). Escaping both sides ¢ times gives

T (lafade) ) = T (a/adt) ) (2)

Then applying the FEy rule ¢ times gives [a/z]e ~ [a/x]t. The old Ey rule
“(e%) = e would apply only once here because the level of the ((--- ([a/z]e) - - -))
part increases—so the generalization is strictly necessary. O

shows that applying substitutions to an equivalence does not com-
promise its validity. This fact plays a role in the completeness proof of applicative
bisimulation (to be introduced in [Section 5)), but we will leave those details to
the technical report. The more interesting, and surprising, fact is that the con-
verse fails in AY—we cannot in general conclude e ~ t from Va. [a/x]e ~ [a/x]t.
We will discuss this issue in [Section 3l

Remark. Ry and 3/, cannot be generalized in a similar fashion as they in-
volve demotion—moving a term from one level to another. If we generalized Ry
to ! {e) = e, the e on the left appears in more brackets than on the right, so on
the left we need more escapes than on the right to un-delay a subterm of e. For
instance, if ¢ is some divergent level-0 term, (! (7t)) = ("t) is an instance of the
generalized Ry rule, but (! (")) |}° while (") 4°. The correct Ry rule avoids this
problem by restricting e to level 0, thus ! (e?) = €. The technical report proves
that equational rules entailing unrestricted demotion are always unsound.

3 Closing Substitutions Compromise Validity

Here is a striking example of how reasoning in AU differs from reasoning in
single-stage calculi. Traditionally, CBV calculi admit the equational rule

(B2) (My.e®) x=[z/yle" .

Plotkin’s seminal Ay [22], for example, does so implicitly by taking variables to
be values, defining x € V where V is the set of values for \y. But 5, is not ad-
missible in AV. For example, the terms (A .0) z and 0 may seem interchangeable,

but in AJ they are distinguished by the program context & & Az [(A (1)) o]):
a7 [(A (1) (X-0) 2)]) 1% but (Aa7[(A (1) 0) 47 (A1) . (3)

(Once again, we are using [ ] as parentheses to enhance readability.) The term on
the left is stuck because x ¢ V" and x «{?. Intuitively, the value of x is demanded
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before anything is substituted for it. If we apply a substitution o that replaces
x by a value, then o((A .0) ) = 00, so the standard technique of reasoning
under closing substitutions is unsound. Note the 3, redex itself need not contain
staging annotations; thus, adding staging to a language can compromise some
existing equivalences, i.e., staging is a non-conservative language extension.

The problem here is that AU can evaluate open terms. Some readers may
recall that Ay reduces open terms just fine while admitting 3., but the crucial
difference is that AV evaluates (small-steps) open terms under program contexts
whereas Ay never does. Small-steps are the specification for implementations,
so if they can rewrite an open subterm of a program, implementations must be
able to perform that rewrite as well. By contrast, reduction is just a semantics-
preserving rewrite, so implementations may or may not be able to perform it.

Implementations of AU including MetaOCaml have no runtime values, or data
structures, representing the variable z—they implement ¢ V°. They never
perform (A .0) z v 0, for if they were forced to evaluate (A .0) x, then they
would try to evaluate the z as required for CBV and throw an error. Some
program contexts in AV do force the evaluation of open terms, e.g., the £ given
above. We must then define a small-step semantics with (A .0) z % 0, or else
we would not model actual implementations, and we must reject (5,, for it is
unsound for (/) in such a small-step semantics. In other words, lack of 3, is an
inevitable consequence of the way practical implementations behave.

Even in Ay, setting x € V is technically a mistake because Ay implemen-
tations typically do not have runtime representations for variables either. But
in Ay, whether a given evaluator implements x € V or x ¢ V is unobservable.
Small-steps on a Ay program (which is closed by definition) never contract open
redexes because evaluation contexts cannot contain binders. Submitting pro-
grams to an evaluator will never tell if it implements x € V or « ¢ V. Therefore,
in Ay, there is always no harm in pretending x € V. A small-step semantics with
x € V gives the same (=) as one with z ¢ V, and 3, is sound for this (=).

Now, the general, more important, problem is that reasoning under substitu-
tions is unsound, i.e., Vo. oe =~ ot =% e = t. The lack of 3, is just an example of
how this problem shows up in reasoning. We stress that the real challenge is this
more general problem with substitutions because, unfortunately, 8, is not only
an illustrative example but also a tempting straw man. Seeing 3, alone, one may
think that its unsoundness is some idiosyncrasy that can be fixed by modifying
the calculus. For example, type systems can easily recover 5, by banishing all
stuck terms including 3, redexes. But this little victory over 3, does not justify
reasoning under substitutions, and how or whether we can achieve the latter is a
much more difficult question. It is unclear if any type systems justify reasoning
under substitutions in general, and it is even less clear how to prove that.

Surveying which refinements (including, but not limited to the addition of
type systems) for AU let us reason under substitutions and why is an important
topic for future study, but it is beyond the scope of this paper. In this paper,
we focus instead on showing that we can achieve a lot without committing to
anything more complicated than AU. In particular, we will show with applicative
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bisimulation (Section b)) that the lack of 3, is not a large drawback after all, as
a refined form of 3, can be used instead:

(CBa) Aa.Cl(Ny.e”) a] = Ax.Cllz/yle"] ,

with the side conditions that C[(Ay.€°) z], C[[z/y]e’] € E° and that C does not
shadow the binding of x. Intuitively, given just the term (\y.e’) z, we cannot
tell if x is well-leveled, i.e., bound at a lower level than its use, so that a value is
substituted for x before evaluation can reach it. C'5, remedies this problem by
demanding a well-leveled binder. As a special case, (3, is sound for any subterm in
the erasure of a closed term—that is, the erasure of any self-contained generator.

4 The Erasure Theorem

In this section we present the Erasure Theorem for AU and derive simple termi-
nation conditions that guarantee e = |e]|.

4.1 Theorem Statement

The theorem statement differs for CBN and CBV. Let us see CBN first. The in-
tuition behind the theorem is that all that staging annotations do is to describe
and enforce an evaluation strategy. They may force CBV, CBN, or some other
strategy that the programmer wants, but CBN reduction can simulate any strat-
egy because the redex can be chosen from anywhereEI Thus, erasure commutes

with CBN reductions (Figure 3(a)|). The same holds for provable equalities.

Theorem 8 (CBN Erasure). If \U - e —* ¢ then A\J F |le|| —* ||t]|. Also,
if \J Fe=tthen A\J I [le] = |I¢].

How does this Theorem help prove equivalences of the form e & ||e||? The theo-
rem gives a simulation of reductions from e by reductions from ||e|. If e reduces
to an unstaged term |[¢||, then simulating that reduction from |le|| gets us to
I, which is just [|¢||; thus e —* ||t]] «—* |le|| and e = ||e||. Amazingly,
this witness [|t|| can be any reduct of e, as long as it is unstaged! In fact, by
Church-Rosser, any ¢ with e = ||¢|| will do. So staging is correct (i.e., semantics-
preserving, or e ~ ||e||) if we can find this ||t||. As we will show in
this search boils down to a termination check on the generator.

Lemma 9 (CBN Correctness). (Ft. \Y Fe=[t]]) = A\ Fe=||e].

CBYV satisfies a property similar to [Theorem 8} but the situation is more subtle.
Staging modifies the evaluation strategy in CBV as well, but not all of them can
be simulated in the erasure by CBV reductions, for §, reduces only a subset

! This only means that reductions under exotic evaluation strategies are semantics-
preserving rewrites under CBN semantics. CBN evaluators may not actually perform
such reductions unless forced by staging annotations.
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)\U
T
NE e ——* ¢ NE e ——* ¢ NE e c
H—Hl l\l—\l H—Hl l\l—\l H
M E el ——== Nt AT el ——== el AT E el d
(a) CBN erasure. (b) CBV erasure. (c) CBV correctness lemma.

Fig. 3. Visualizations of the Erasure Theorem and the derived correctness lemma

of 3 redexes. For example, if 2 € EY is divergent, then (A .0) (£2) — 0 in
CBV, but the erasure (A .0) 2 does not CBV-reduce to 0 since {2 is not a value.
However, it is the case that AU = (X .0) £2 — 0 in CBN. In general, erasing

CBYV reductions gives CBN reductions (Figure 3(b))).

Theorem 10 (CBV Erasure). If \{ e —* ¢ then AJ I |le|]| —* ||¢]|. Also,
if \V e =tthen A\ F |le| =]

This theorem has similar ramifications as the CBN Erasure Theorem, but with
the caveat that they conclude in CBN despite having premises in CBV. In par-
ticular, if e is CBV-equal to an erased term, then e = ||e|| in CBN.

Corollary 11. (3t. \U Fe=t]]) = A Fe=|e].

CBN equalities given by this corollary may at first seem irrelevant to CBV pro-
grams, but in fact if we show that e and ||e|| CBV-reduce to constants, then the
CBN equality can be safely cast to CBV equality. summarizes this
reasoning. Given e, suppose we found some ¢, d that satisfy the two horizontal
CBYV equalities. Then from the top equality, [Theorem 11l gives the left vertical
one in CBN. As CBN equality subsumes CBV equality, tracing the diagram
counterclockwise from the top right corner gives A\Y ¢ = d in CBN. Then the
right vertical equality ¢ = d follows by the Church-Rosser property in CBN.
Tracing the diagram clockwise from the top left corner gives AY e = |le|.

Lemma 12 (CBV Correctness). If \V - ¢ = c and AU F |¢| = d, then
Ake=|el.

Thus, we can prove e = ||e|| in CBV by showing that each side terminates to
some constant, in CBV. Though we borrowed CBN facts to derive this lemma,
the lemma itself leaves no trace of CBN reasoning.

4.2 Example: Erasing Staged Power

Let us show how the Erasure Theorem applies to stpow. First, some techni-
calities: MetaOCaml’s constructs are interpreted in AY in the obvious man-
ner, e.g., let x = e in t stands for (Ax.t) e and let rec £ x = e stands for
let £ = O(Af.\zx.e) where O is some fixed-point combinator. We assume AU has
integers and booleans. For conciseness, we treat top-level bindings genpow and
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stpow like macros, so ||stpow| is the erasure of the recursive function to which
stpow is bound with genpow inlined, not the erasure of a variable named stpow.

As a caveat, we might want to prove stpow ~ power but this goal is not
quite right. The whole point of stpow is to process the first argument without
waiting for the second, so it can disagree with power when partially applied, e.g.,
stpow 0 (Y but power 0 ||°. We sidestep this issue for now by concentrating on
positive arguments, and discuss divergent cases in

To prove k > 0 = stpow k = power k for CBN, we only need to check that
the code generator genpow k terminates to some .<||e||>.; then the .! in stpow
will take out the brackets and we have the witness required for [Theorem 9l To
say that something terminates to .<||e||>. roughly means that it is a two-stage
program, which is true for almost all uses of MSP that we are aware of. This use
of the Erasure Theorem is augmented by the observation ||stpow|| = power—these
functions are not syntactically equal, the former containing an 7 redex.

Lemma 13. \J I ||stpow|| = power

Proof. Contract the 7 expansion by (CBN) 3. O
Proposition 14 (Erasing CBN Power). Vk € Z*. AU - stpow k = power k.
Proof. Induction on k gives some e s.t. genpow k .<x>. = .<|l¢|]>., so
stpow kK = .!.<fun x — ."(genpow k .<x>.)>.
= .!l.<fun x = .".<|le|>.>. =fun x = |le|
hence stpow k = ||stpow| k = power k by Lemmas [@ and [[3] |

The proof for CBV is similar, but we need to fully apply both stpow and its era-
sure to confirm that they both reach some constant. The beauty of [Theorem 121
is that we do not have to know what those constants are. Just as in CBN, the
erasure ||stpow|| is equivalent to power, but note this part of the proof uses Cf3,.

Lemma 15. \J I ||stpow|| &~ power
Proof. Contract the i expansion by Cf3,. O

Proposition 16 (Erasing CBV Power). For k € Zt and m € Z, \U +
stpow k m ~ power k m.

Proof. We stress that this proof works entirely with CBV equalities; we have no
need to deal with CBN once is established. By induction on k, we
prove that Je. genpow k .<x>. = .<|le||>. and [m/x]||e| ||° m’ for some m’ € Z.
We can do so without explicitly figuring out what ||e|| looks like. The case k =1
is easy; for k > 1, the returned code is .<x * ||¢/||>.where [m/x]||¢’|| terminates
to an integer by inductive hypothesis, so this property is preserved. Then

stpow Kk m = .!.<fun x — ."(gempow k .<x>.)>. m
= .l.<fun x = |le|>. m = [m/x]|e|]| =m' € Const.

Clearly power k m terminates to a constant. By [Theorem 15, ||stpow|| k& m also
yields a constant, so by [Theorem 12 stpow k m = ||stpow|| k m ~ power k m. O
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These proofs illustrate our answer to the erasure question in the introduction.
Erasure is semantics-preserving if the generator terminates to (|le||) in CBN, or
if the staged and unstaged terms terminate to constants in CBV. Showing the
latter requires propagating type information and a termination assertion for the
generated code. Type information would come for free in a typed system, but it
can be easily emulated in an untyped setting. Hence we see that correctness of
staging generally reduces to termination not just in CBN but also in CBV—in
fact, the correctness proof is essentially a modification of the termination proof.

4.3 Why CBN Facts Are Necessary for CBV Reasoning

So far, we have let erasure map CBV equalities to the superset of CBN equalities
and performed extra work to show that the particular CBN equalities we derived
hold in CBV as well. A natural, alternative idea is to find a subset of CBV
reductions that erase to CBV reductions. This alternative approach does work
[31U14], but we show here that it only works in simple cases.

The problem with erasing CBV reductions is that the argument in a 8, redex
may have a divergent erasure. If we restrict 8y to

(Bvy) ()\x.eo) I [vo/x]eo provided )\g - ||v0|| 10,

which checks that the argument’s erasure terminates, then reductions under the

axiom set )\‘% def {Bvy, Ev, Ry, d} erase to CBV reductions. But Sy is much too

crude, for it cannot reduce (Ay.e®) (z) (note x 71°) and fails to handle programs
as simple as stpow. A natural solution is to check carefulness under substitutions:

(Byy/o) (Az.e®) v° = [v°/x]e® provided AV F oo §° .
Ignoring some technical details, if we let /\E,IU/U L {Bvy/o, Eu, Ry, d} for any
substitution o : Var — VO, then )\‘%/0 e = t implies A/ I oe = ot. This
observation suffices to verify stpow (see the technical report for a demonstration).

However, careful reductions quickly become unwieldy in the face of binders.
For instance, if we write let =z = e in ¢ as a shorthand for (A\z.t) e, clearly

.!1.<let y = 0 in let =z = y in .7 ((Az.2) .<x+y>.)>.

is equivalent to its erasure. To prove this, we might observe that 8y /[0,0/z,y]
(Az.z) .<z+y>. = .<x+y>.; however, the “compatible extension”,

)\‘%/[QO/Ly]I—let x =y in ."((A\z.2) .<z+y>.) =...

does not hold because the z in )\‘%/[0, 0/x,y] cannot refer to the 2 bound in the
object term (else we would have to give up hygiene).

In general, we must reason under different substitutions in different scopes,
and it is tricky to propagate the results obtained under /\f,] ’ /o to an outer context
where some variables in ¢ may have gone out of scope. While it may not be
possible to pull off the bookkeeping, we find ourselves fighting against hygiene
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rather than exploiting it. In this sense, restricting CBV reductions gives a less
useful approach than appealing to CBN reasoning results, especially for programs
that generate nested binders. The longest common subsequence found in the
technical report is an example of such a generator.

5 Applicative Bisimulation

This section presents applicative bisimulation [IJI0], a well-established tool for
analyzing higher-order functional programs. Bisimulation is sound and complete
for (=), and justifies C3, (Section 3)) and extensionality, allowing us to handle
the divergence issues ignored in

5.1 Proof by Bisimulation

Intuitively, for a pair of terms to applicatively bisimulate, they must both termi-
nate or both diverge, and if they terminate, their values must bisimulate again
under experiments that examine their behavior. In an experiment, functions are
called, code values are run, and constants are left untouched. Effectively, this
is a bisimulation under the transition system consisting of evaluation ({}) and
experiments. If eRt implies that either e ~ t or e,t bisimulate, then R C ().

Definition 17 (Relation Under Experiment). Given a relation R C E x E,
= def

let R = RU (=). For £ >0 set u Rf; v iff uRv. For £ = 0 set u R(T) v iff either:
— u=v € Const, _
— u = Azr.e and v = Az.t for some e, s.t. Va.([a/z]e) R([a/z]t), or

— u = (e) and v = (t) for some e, s.t. eRt.

Definition 18 (Applicative Bisimulation). An R C E x E is an applicative
bisimulation iff every pair (e, t) € R satisfies the following: let £ = max(lve,lvt);
then for any finite substitution o : Var = Arg we have ge V= ot |, and if

aellzu/\atijzvthenuRffv.

Theorem 19. Given R C E x E, define R® df {(oe,0t) s eRt, (0 : Var = Arg)}.
Then R C (=) iff R® is an applicative bisimulation.

This is our answer to the extensional reasoning question in the introduction: this
theorem shows that bisimulation can in principle derive all valid equivalences,
including all extensional facts. Unlike in single-stage languages [IJT3/10], o ranges
over non-closing substitutions, which may not substitute for all variables or may
substitute open terms. Closing substitutions are unsafe since AV has open-term
evaluation. But for CBV, bisimulation gives a condition under which substitution
is safe, i.e., when the binder is at level 0 (in the definition of Az.e R(’r) Az.t). In
CBN this is not an advantage as Va.[a/z]eR[a/z]t entails [z/z]eR[z/z]t, but
bisimulation is still a more approachable alternative to ().

The importance of the substitution in Ax.e R(T) Az.t for CBV is best illustrated
by the proof of extensionality, from which we get Cf3, introduced in [Section 3
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Proposition 20. If e,t € E° and Va. (\z.e) a ~ (\z.t) a, then \z.e ~ \z.t.

Proof. Take R & {(Az.e, \z.t)}*. To see that R is a bisimulation, fix o, and note
that oAz.e, oAx.t terminate to themselves at level 0. By Barendregt’s variable
convention [2], z is fresh for o, thus cAz.e = Az.ce and oAzt = Ax.ot. We must
check [a/z]oe =~ [a/x]ot: by assumption o[a/z]e = ola/z]t, and one can show
that o and [a/x] commute modulo (=). Hence by [Theorem 19, Az.e ~ Az.t. O

Corollary 21 (Soundness of C3,). If C[(\y.€®) z],C[[z/y]e’] € E° and C
does not bind x, then Az.C[(\y.€) z] ~ \z.C[[z/y]e’].

Proof. Apply both sides to an arbitrary a and use [Theorem 20l with 3/8,. O

The proof of [Theorem 20 would have failed in CBV had we defined Az.e RY

Az.t <= eRt, without the substitution. For when e = (A .0) z and ¢ = 0,
the premise Va.[a/x]e ~ [a/z]t is satisfied but e % ¢, so Az.e and Az.t do not
bisimulate with this weaker definition. The binding in Az.e € EC is guaranteed to
be well-leveled, and exploiting it by inserting [a/x] in the comparison is strictly
necessary to get a complete (as in “sound and complete” ) notion of bisimulation.
Howe’s method [13] is used to prove [Theorem 19, but adapting this method
to AU is surprisingly tricky because A\Y’s bisimulation must handle substitutions
inconsistently: in [Theorem 18 we cannot restrict our attention to ¢’s that sub-
stitute away any particular variable, but in [Theorem 17, for Az.e R? Az.t, we
must restrict our attention to the case where substitution eliminates z. Prov-
ing [Theorem 19 entails coinduction on a self-referential definition of bisimula-
tion; however, [Theorem 17 refers not to the bisimulation whose definition it is
a part of, but to a different bisimulation that holds only under substitutions
that eliminate z. To solve this problem, we recast bisimulation to a family of
relations indexed by a set of variables to be eliminated, so that the analogue of
can refer to a different member of the family. is then
proved by mutual coinduction. See the technical report for more details.

Remark. Extensionality is a common addition to the equational theory for the
plain A calculus, usually called the w rule [2IJ15]. But unlike w in the plain A
calculus, AU functions must agree on open-term arguments as well. This is no
surprise since AV functions do receive open arguments during program execution.
However, we know of no specific functions that fail to be equivalent because of
open arguments. Whether extensionality can be strengthened to require equiv-
alence only under closed arguments is an interesting open question.

Remark. The only difference between[Theorem 18 and applicative bisimulation
in the plain A calculus is that [Theorem 18 avoids applying closing substitutions.
Given that completeness can be proved for this bisimulation, it seems plausible
that the problem with reasoning under substitutions is the only thing that makes
conservativity fail. Hence it seems that for closed unstaged terms, A\U’s (=)
could actually coincide with that of the plain A calculus. Such a result would
make a perfect complement to the Erasure Theorem, for it lets us completely
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forget about staging when reasoning about an erased program. We do not have
a proof of this conjecture, however. Conservativity is usually proved through a
denotational semantics, which is notoriously difficult to devise for hygienic MSP.
It will at least deserve separate treatment from this paper.

5.2 Example: Tying Loose Ends on Staged Power

In[Section 4.2 we sidestepped issues arising from the fact that stpow 0 #° whereas
power 0 |\°. If we are allowed to modify the code, this problem is usually easy
to avoid, for example by making power and genpow terminate on non-positive ar-
guments. If not, we can still persevere by finessing the statement of correctness.
The problem is partial application, so we can force stpow to be fully applied
before it executes by stating power ~ An.Ax.stpow n x.

Lemma 22. Let ¢’ a2y ' mean e’ ~ t'V(ce/} Aat'(}*) where £ = max(lve’, v t').
For a fixed e, t, if for every o : Var = Arg we have oe =4 ot, then e ~ t.

Proof. Notice that {(e,t)}* is an applicative bisimulation. O

Proposition 23 (CBN stpow is Correct). A\ I power ~ An.\z.stpow n .

Proof. We just need to show Ve,t € E°. power e t a2y stpow e t, because then
Ve,t € E°. Vo : Var — Arg. o(power e t) ~4 o(stpow e t), whence power ~
An.Ax.stpow n T by and extensionality. So fix arbitrary, potentially
open, e,t € E°, and split cases on the behavior of e. As evident from the following
argument, the possibility that e, ¢ contain free variables is not a problem here.
[If e 10 or e ||° u ¢ Z1] Both power e t and stpow e ¢ diverge.
[If e P’ me 7] Using [Theorem 14] power e = power m A stpow m = stpow e,
SO power e t = stpow e T. O

Proposition 24 (CBV stpow is Correct). AU F power ~ An.\z.stpow n .

Proof. By the same argument as in CBN, we just need to show power u v =4

stpow u v for arbitrary u,v € V.

[If u & Z"] Both power u v and stpow u v get stuck at if n = 0.

[If w € Z*) If u = 1, then power 1 v = v = stpow 1 v. If u > 1, we show that the
generated code is strict in a subexpression that requires v € Z. Observe that
genpow u .<x>. |[” .<e>. where e has the form .<x * t>.. For [v/z]e |° it is
necessary that v € Z. It is clear that power u v ||° requires v € Z. So either

v € Z and power u v }° and stpow u v )Y, in which case we are done, or v € Z
in which case [I’heorem 16| applies. a

Remark. Real code should not use An.\z.stpow m x, as it re-generates and
recompiles code upon every invocation. Application programs should always use
stpow, and one must check (outside of the scope of verifying the function itself)
that stpow is always eventually fully applied so that the 1 expansion is benign.
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6 Related Works

Taha [27] first discovered AV, which showed that functional hygienic MSP admits
intensional equalities like 3, even under brackets. However, [27] showed the mere
existence of the theory and did not explore how to use it for verification, or how to
prove extensional equivalences. Moreover, though [27] laid down the operational
semantics of both CBV and CBN, it gave an equational theory for only CBN
and left the trickier CBV unaddressed.

Yang pioneered the use of an “annotation erasure theorem”, which stated
e I° (Itl) = It = |le|| [31]. But there was a catch: the assertion ||t|| ~ |||
was asserted in the unstaged base language, instead of the staged language—
translated to our setting, the conclusion of the theorem was A F |[t|| = ||e|
and not A\Y I [|t|| & |le|. In practical terms, this meant that the context of
deployment of the staged code could contain no further staging. Code generation
must be done offline, and application programs using the generated ||¢|| must be
written in a single-stage language, or else no guarantee was made. This interferes
with combining analyses of multiple generators and precludes dynamic code
generation by run (.!). Yang also worked with operational semantics, and did
not explore in depth how equational reasoning interacts with erasure.

This paper can be seen as a confluence of these two lines of research: we com-
plete AU by giving a CBV theory with a comprehensive study of its peculiarities,
and adapt erasure to produce an equality in the staged language \U.

Berger and Tratt [3] devised a Hoare-style program logic for the typed
language Mini—MLE. They develop a promising foundation and prove strong
properties about it such as relative completeness, but concrete verification tasks
considered concern relatively simplistic programs. Mini—MLEl also prohibits ma-
nipulating open terms, so it does not capture the challenges of reasoning about
free variables, which was one of the main challenges to which we faced up.
Insights gained from AY should help extend such logics to more expressive lan-
guages, and our proof techniques will be a good toolbox to lay on top of them.

For MSP with variable capture, Choi et al. [7] recently proposed an alternative
approach with different trade-offs than ours. They provide an “unstaging” trans-
lation of staging annotations into environment-passing code. Their translation is
semantics preserving with no proof obligations but leaves an unstaged program
that is complicated by environment-passing, whereas our erasure approach leaves
a simpler unstaged program at the expense of additional proof obligations. It
will be interesting to see how these approaches compare in practice or if they
can be usefully combined, but for the moment they seem to fill different niches.

7 Conclusion and Future Work

We addressed three basic concerns for verifying staged programs. We showed that
staging is a non-conservative extension because reasoning under substitutions is
unsound in a MSP language, even if we are dealing with unstaged terms. De-
spite this drawback, untyped functional MSP has a rich set of useful properties.
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We proved that simple termination conditions guarantee that erasure preserves
semantics, which reduces the task of proving the irrelevance of annotations on a
program’s semantics to the better studied problem of proving termination. We
showed a sound and complete notion of applicative bisimulation for this setting,
which allows us to reason under substitution in some cases. In particular, the
shocking lack of 3, in AV is of limited practical relevance as we have C/3, instead.

These results improve our general understanding of hygienic MSP. We bet-
ter know the multi-stage A calculus’ similarities with the plain A calculus (e.g.,
completeness of bisimulation), as well as its pathologies and the extent to which
they are a problem. The Erasure Theorem gives intuitions on what staging an-
notations can or cannot do, with which we may educate the novice multi-stage
programmer. This understanding has brought us to a level where the proof of a
sophisticated generator like LCS is easily within reach.

This work may be extended in several interesting directions. We have specif-
ically identified some open questions about A\U: which type systems allow rea-
soning under substitutions, whether it is conservative over the plain A calculus
for closed terms, and whether the extensionality principle can be strengthened
to require equivalence for only closed-term arguments.

Devising a mechanized program logic would also be an excellent goal. Berger
and Tratt’s system [3] may be a good starting point, although whether to go with
Hoare logic or to recast it in equational style is an interesting design question.
A mechanized program logic may let us automate the particularly MSP-specific
proof step of showing that erasure preserves semantics. The Erasure Theorem
reduces this problem to essentially termination checks, and we can probably
capitalize on recent advances in automated termination analysis [I1].

Bisimulation is known to work for single-stage imperative languages, though
in quite different flavors from applicative bisimulation [19]. Adapting them to
MSP would make the emerging imperative hygienic MSP languages [1624)30]
susceptible to analysis. The Erasure Theorem does not apply as-is to imperative
languages since modifying evaluation strategies can commute the order of effects.
Two mechanisms will be key in studying erasure for imperative languages—one
for tracking which effects are commuted with which, and one for tracking mutual
(in)dependence of effects, perhaps separation logic [23] for the latter. In any case,
investigation of imperative hygienic MSP may have to wait until the foundation
matures, as noted in the introduction.

Finally, this work focused on functional (input-output) correctness of staged
code, but quantifying performance benefits is also an important concern for a
staged program. It will be interesting to see how we can quantify the performance
of a staged program through formalisms like improvement theory [25].
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