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Abstract. We formalize delimited control with multiple prompts, in
the style of Parigot’s Au-calculus, through a series of incremental exten-
sions by starting with the pure A-calculus. Each language inherits the
semantics and reduction theory of its parent, giving a systematic way to
describe each level of control.
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1 Introduction

Control operators have become an integral part of modern programming lan-
guages. In particular, the flexible abstraction of continuation-based control is
becoming more mainstream in high-level languages. The classic control operator
is call-with-current-continuation, or call /cc, which has appeared in languages such
as Scheme and Ruby. call/cc allows the programmer to capture the surrounding
context of an expression, creating a continuation that serves as a return point
to “the rest of the program” from where call/cc was called. This style of control
abstraction is called abortive, since invoking a continuation captured by call/cc
aborts the computation currently in progress, and immediately returns to the
context stored in the continuation. Even though call/cc is a very flexible con-
trol operator, it has limits. For example, call/cc alone is not enough to simulate
mutable state in an otherwise state-free language.

Compared to abortive control, delimited control provides a more powerful
abstraction. The difference of delimited control is that the continuation behaves
like a normal function, so that multiple continuations may be composed together.
In addition, the scope of the control operator can be managed by setting a
prompt, limiting the context that can be captured. The shift and reset operators,
as presented by Danvy and Filinski [5], are expressive enough to simulate mutable
state. In fact, Filinski [I1I12] showed that the combination of shift and reset is
enough to give a direct style encoding for any effect written in monadic style, as
well as several layered effects.

An interesting extension of delimited control is the addition of multiple prompts
that can each delimit a different portion of the context. Dybvig, Peyton Jones,
and Sabry [8] define a general framework for delimited control in the presence of
multiple prompts, in which higher-level control operators may be defined. They
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provide an operational semantics and a monadic translation into a pure A-calculus
extended with stacks, as well as an implementation of the monadic effect in Haskell.
A direct implementation of delimited control with multiple prompts in OCaml is
given by Kiselyov [14]. In addition, Kiselyov, Shan, and Sabry [I5] give a language
that combines both delimited control and dynamic variables, showing that the two
effects interact in subtle ways. Garcia et al. [L3] showed that delimited control with
multiple prompts can represent call-by-need evaluation.

The goal of this paper is to provide a reduction theory for delimited control
with multiple prompts. Ariola et al. have formalized abortive and delimited con-
trol [2] in the style of Parigot’s call-by-value Ay, leading to a calculus called
A\utp. We use A\utp as a reference point since it has a well-understood reduction
theory that directly expresses the operational semantics. By extending Autp with
multiple prompts, we clearly delineate the reduction of delimited control with
multiple prompts in a way that is not apparent in the usual presentations based
on operational semantics. Our approach is to build up to the expressive power of
shift and shifty with multiple prompts in incremental steps, while using interme-
diate languages as stepping stones. We start with the pure A-calculus and make
small extensions to each language that are compatible with the previous seman-
tics. Separate concerns, such as binding and capture, are explicitly apparent in
the syntax of the language. The end result is a calculus that expresses delimited
control with multiple prompts, which arises naturally from the representation of
the semantics. Our contributions are:

— A better understanding of the dynamic nature of the prompt, in the con-
text of delimited control with a single prompt. We express this in terms of
an intermediate language with one dynamic variable that avoids recursive
bindings.

— A set of small, incremental extensions of A\utp, providing more expressive
languages that are compatible with the existing semantics. Each extension
enables direct encodings of additional, useful language constructs, and arises
as a natural extension of a less expressive language or intermediate language.

— A reduction theory for control with multiple prompts that is sound with
respect to the continuation passing style (CPS) semantics and expressive
enough to lead to the final answer. This reduction theory is compatible with
the one of Autp.

The overall strategy of the paper is as follows. In Sections 2 B M 6] [7, and
[@ we define our languages of interest. We start with the A-calculus (in 2]), and
extend it with control (Ay in ) and then with delimited control (Autp in M.
Then, we branch out in two separate directions, extending Autp with multiple
prompts (Afz in[@) and also transparent prompts ()\,ut/;\)Tin [[). Finally, we bring
At and )\ut/f)Ttogether, giving us a language of delimited control and multiple
prompts (A\zi'in @). We present the semantics of the new languages in three
different ways: first as a CPS transformation from the source language to the
pure A-calculus, then as a set of reduction rules, and finally as an operational
semantics. The CPS transformation implements a big-step evaluator for the
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language written in the A-calculus, and is used as our primary reference point
for the definition of the semantics. The reduction rules are a set of local program
transformations in the source language that correspond to reductions performed
in the CPS transformed program. The operational semantics arise as both a
restriction on the reduction rules and as the equivalent small-step evaluator for
the CPS transformation, and is derived by defunctionalizing the continuation of
the CPS [19/4]. We wrap up these sections with a discussion on expressiveness
by encoding control operators in the language. In Sections [l and [§] we present
two intermediate languages which are used as stepping stones for defining the
CPS transformations of our primary languages, and provide a good framework
for designing extensions.

2 Lambda Calculus: A

The syntax of A-calculus includes variables, function abstraction, and function
application. Unless otherwise specified, we let the set of Values be V ::= z | Az.t.

teTerm =V |t ta V e Value =z | Av.t

In this paper we are going to focus on the call-by-value setting, which restricts
substitution to values, as described by the 3, reduction rule: (Az.t) V. — t{V/z}.
An alternative way of presenting the semantics is to perform a translation which
hard-wires the evaluation strategy into the term itself. The transformation is
called continuation passing style (CPS); it splits a program into the current
work to be done and the rest of the computation, which is called a continuation.
The call-by-value CPS transform of the A-calculus is defined as follows:

C)\HSU]]]C =kx C)\[P\il,'t]]k =k )\ch[[t]] C)\Htl tg]]k = C)\Htl]]Af.C)\ﬂtQ]]AS.f sk

Variables and functions are both values, so during evaluation they are just passed
to the current continuation. The only non-value case, where actual computation
occurs, is in the function application step. First, the function is evaluated, and
its value is bound to f in the top continuation. Second, the argument is evaluated
and its value is bound to s in the next continuation. Finally, with values for both
terms, the function value is applied to the argument value, and the computation
continues with the original continuation k.

In the output of this transformation, terms are maps from continuations, &, to
final answers. Continuations, then, are maps from values to final answers. This
means that the CPS translation of a term does not execute by itself, it must
be given some initial continuation in order to begin the process of evaluation.
Following the sequent calculus tradition, we add the counterpart of this initial
continuation to the syntax, which explicitly marks the top-level, or final return
point of the whole program. We name this continuation * and specify that run-
ning a term consists of coupling that term with *, written as [x]¢, which we call
a command. Operationally, the command [+t is interpreted as evaluating the
term t in the empty context. We extend the syntax of our call-by-value calculus
with two new syntactic categories:
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c € Command :=[q)t q€CoTerm:=x teTerm:=V |t to

We also extend our previous CPS transform Cy with clauses for commands and
the constant x*.

Callglt] = Calt] Callgl Ci[*] = Az.x

The interpretation of the command [¢]t is to evaluate the term ¢ in the context
¢, which means to pass the continuation represented by ¢ to the term. The initial
continuation * just returns the value it is given without modifying it.

3 Lambda Calculus with Control: Parigot’s Au

Felleisen [9] extended the call-by-value lambda calculus with continuation ab-
straction. This allows a term to store its evaluation context as a special function
and to reinstall this context by invoking that function. The function representing
a continuation never returns to the call site. Here, we instead follow Parigot’s
approach [I§] because it provides a reduction theory which more accurately
simulates the operational semantics [1]. In Parigot’s Ay, continuations are not
functions. Similarly to the the top-level, continuations belong to a separate syn-
tactic category of co-terms. Intuitively, terms are producers of values, whereas
continuations are consumers of values. The invocation of a continuation is a
command. The syntax of Au extends the class of terms and co-terms as follows:

ce€ Command == [q)t te€Term =V |t; to | pac g€ CoTerm = | *
We define the CPS semantics of A by extending Cy for the new syntax:
Coulpa.clk = (Aa.Capulie]) k Covule] =a
The reduction semantics is then given by the following reduction rules:
(Aet) V.= t{V/z}  Erfpac = c{[d(Er[t])/[alt}  [glpac — cfq/a}

Where the one-step evaluation context Fj is defined as: Fy == 0O ¢t | V 0.
The term pa.c propagates its evaluation context piece-by-piece to each invo-
cation of « in ¢, until it reaches the top of its surrounding command. The
rule makes use of a new notion of substitution, called structural substitution;
c{[a](Er[t])/|a]t} should be read as: substitute each occurrence of [a]t in com-
mand ¢ with [o](E1[t]). When iterated, these two rules perform the big-step
capturing reduction that substitutes the entire evaluation context up to the top
of the command. The operational semantics of Ay is:

[HE[(Az.t) V] = [+]E[t{V/x}] (¥ Elpa.c] = ([« E[t]/[]t}

Where the evaluation context is: F ::= [ | E't | V E. The operational semantics
is sound and complete with respect to the CPS transform: Cy,[[*]t] — V iff
[*]t — [%]V.
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Expressiveness. Parigot’s Ay equipped with the top-level constant * gives us
the ability to express the call/cc (K) and the abort (A) control operators. One
can also express Felleisen’s C operator, which is definable in terms of call/cc and
abort.

K = Ah.pa.jalh (Az.p Ja)z) At=p [x]t

C=MK (M. A (h k) = Mrpafx]h Qx.p [a]z) e

4 Delimited Control: Autp

Delimiting control means temporarily re-defining the top-level in a program,
limiting the extent to which the evaluation context may be captured. Examples
of delimited control are the shift (S) and reset (#) operators given in the seminal
paper of Danvy and Filinski [5]. Felleisen [10/9] also extended his control theory
with a reset operator which he calls prompt. The prompt operator is shown to
be necessary in providing a fully abstract model of A-calculus [20].

In [2], it is shown that delimited control can be explained by replacing the
top-level constant % with the rebindable dynamic continuation variable tp. The
syntax of \utp is:

ceComm.:=|[qlt t€Term==V |t; ta|pgc q€ CoTerm:=a|tp (2)

The dynamic nature of tp is due to the fact that in a function like \z.u [tAp]x7
the binding of tp is taken from the environment active at the call site and not
in the environment active when the function is defined. This dynamic nature is
captured by adding the following reduction rule to the reduction theory of Au:

ptp.[tp]V — V

4.1 Continuation Passing Style (Ciufp)

We extend the Cy, transform to give C, g, the CPS transform for Aptp.

CAHt“p[[Nfbﬁ]]k =k (Crugplel) C)\H(p[[tAp]] = \z.x

Here, tp takes the place of the old constant *. However, now we also have a bind-
ing form for tp. When tp is bound over a command, the current continuation
is set aside and that command is run to completion. Then, when the command
has produced an answer value, that value is fed to the original continuation and
that context is restored. Unfortunately, the above translation of utp.c is not in
CPS form, since the term C, ¢ [c] is an application instead of a value. One can
remedy the situation by taking the output from C/\ng and running it through
the CPS transform Cy [5]. The composition of the two CPS transforms gives

us CthAp, a double CPS transform. There is no change to the clauses inherited
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from Cy,, since they were already in full CPS form. The only difference is in the
translation of tp:

Ci[u,t?) Hlu'f\p'c]]k = A’Y )\lutp HC]]A:B k z 7y Xutp[[tp]] = /\CE )\’Y YT

The CPS transform of a term is now a function requiring both a continuation
k and a meta-continuation ~. In addition, continuations now take both a value
and a meta-continuation as parameters. Here, the initial value for the meta-
continuation is y, which is initialized to Az.x.

Notice that we are now in the same situation as we were with the pure A-
calculus. The CPS translation of both terms and commands take an extra ar-
gument, but this fact is not reflected in the syntax of Autp. To reconcile the
difference between the CPS transform and the source language, we extend the
syntax of Autp in the same way we extended the pure A-calculus. We add a
second-order command, or meta-command, which explicitly names the meta-
continuation of the underlying first-order command. Since we can only mark the
initial meta-continuation of a command, we add the constant &, which is the
meta-top-level of the program. Thus, we extend the syntax of Autp given in %)
with meta-commands:

2]6

¢* € CoTerm? == ® ¢ € Command?® ::= [q
The double CPS translation of meta-commands and the meta-top-level ® follow
the same pattern as commands and the top-level in the pure A-calculus:

)\Htp[[[ lc] = )\Htp[[c]] C)\Mtp[[qg]] Autp[[®]] = \r.x

The standard way to evaluate the CPS form of term ¢ in this system is to provide
the initial continuation Az.\y.y x and the initial meta-continuation Az.z, which
translates to evaluating the meta-command [®][tp]¢t. If the meta-command is
reduced to [®][tp]V, then the value V is the final answer.

Expressiveness. The rebindable top-level is the additional power that allows
us to encode shift (S) and reset (#) in \utp:

it =t )t 8 = Mh.puev [fplh (A putp.[aa)

The above encoding resembles Filinski’s encoding [I1] of S and # in terms of
Felleisen’s C_and # operators. One can also encode a slightly different abort
operator, A®, which aborts up to the nearest binding of tp. This operator is
expressible in terms of shift alone.

AP =8 X t=p JEplt (3)

The behavior of this operator is different from the original abort, in that it does
not exit the program completely, but only removes the context up to the nearest
binding of tp.
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Unbound tp. It is important to note that in the above definition of Autp, the
tp variable is always bound throughout the entire execution of the program. In a
sense, the meta-continuation, which is responsible for giving the current binding
for tp, already comes with tp bound to the true top-level of the program. Next,
we analyze the impact of this choice.

Ezxample 1. The following example shows the successful evaluation of a meta-
command with an unbound use of tp, which is equivalent to the shift expression
SA 9 = po.ftp](A .9) (A\x.utp.[a]x).

[@][tpl o [tp) (A -9) (Az.ptp.[a]z))—»[e][tp]9
[[®][tp]9] = C3, [Pl 9 €3, [®] = C3 5 [®] 9 =9

Autp Autp Autp

2
CAMTJ
Alternative Initial Conditions. But what if we want to begin evaluation
with tp initially unbound? To do this, we will need to add the true top-level of
the program, =, back to our grammar along with a different meta-top-level in
which tp is considered unbound. Our syntax of Autp becomes:

¢ € Command?® ::= [¢°]c teTerm =V |t ta | pa.c
¢ € Command == [qt q € CoTerm = a | *
¢® € CoTerm? = e a€ CoVar == a | tp

Note that we now have both notions of abort as defined in () and (@). A™
removes the context up to the nearest binding of tp, whereas A removes the
context of the entire rest of the program.

The Ciut“p transform is extended with clauses for the new top-level and meta-
top-level. The meaning of the constant * is easy to define, but e is more tricky.

Ciut“p [¥] = Az \y.x C/Q\utTv [e] = o where~q free

When * is invoked with a value, the program immediately exits with that value
as a final answer. The meta-continuation is thrown away because the current
binding of tp is not needed. If the tp continuation is given a value without being
bound, then the program gets stuck; since tp was not defined there is not enough
information to continue. We need to map this stuck state down to the target
language of CthAp : the pure A-calculus. A natural way to do this is to make e,

the meta-top-level in which tp is unbound, a free variable. Then, invoking an
unbound tp with a value is translated to a stuck term.

The reduction semantics of Autp is extended with one more rule to reduce an
invocation of % under a binding for tp.

ptp. K]V — p [#]V

The meaning of [¥]V is to throw away the bindings of tp in v and return with the
value V as the final answer. Therefore, we can throw away an adjacent binding
of tp by turning it into an abort.
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Ezample 2. Let’s revisit the previous example using * and e to initialize execu-
tion instead of tp and ®.

[o][#]pcr.[tp] (A .9) (Aw.ptp.[a]x))—»[e][tp]9
ClupleltPI] = C [¢p] 9 Clumlel = Chulel 9= 9

Since tp was not initialized we get an error, represented by the stuck term ~q 9.

The reduction rules of Autp are sound and complete with respect to C Autp-

Theorem 1. If CthAp[[[o] [¥]t] =V then [o][*]t—s[e][x]V .
If M — M’ then Ciufp[[M]] =C2 _[M'].

Autp
Where the meta-syntactic variable M ranges over terms, commands, and meta-
commands. Here and throughout the paper, equality between terms in the A-
calculus are up to 8n reduction.
Even though we replaced ® with e in our language, we haven’t actually lost
anything. We can regain the original initial conditions by providing a binding
for tp at the top of the program.

Theorem 2. Cf\“ﬁ[[[O][*]ut/b-C]] = Ci,ﬁpm@]cﬂ

5 Intermediate Languages of Dynamic Binding: Atp, )\t/f)b

Ariola et al. [2] showed how the CPS of Autp can be factored into a state-passing
transformation to A extended with subtraction combined with a translation to
A-calculus with pairs. In order to better understand the dynamic nature of the
prompt binding, we investigate an alternative decomposition. We start by trans-
lating away the control effects from Autp (C \ufp)» leaving behind the dynamic
binding of tp. We then translate away the dynamic binding by first adopting a
typical environment passing translation (DAFp)- This however leads to an incor-
rect interpretation of the dynamic nature of tp. We thus propose another way of
translating the dynamic binding that models the behavior of the prompt (DMAP b).

5.1 Translating Control (Cy,,g)

We start with a CPS transform from Autp to an intermediate language with one
dynamic variable, \tp, with the following syntax:
¢ € Closure = [e]t teTerm ==V |t ta| tp
TeVar =1 |tp V € Value :=x | \T.t
Where e is the empty Environment . The C, 5 transform defines the call-by-

value application and the context capturing behavior of pa.c while using the
dynamic variable in Afp to manage the binding of tp.
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Crulla’)e] = [Crld°11C sl Cuplzlk =k
Couplldlt] = Cou 1] Couplal Coupl otk =k Ax.Cy 5 [1]

C)\H{E)HO(]] =« CAHff)[[tl tg]]k = CAH{E)Htl]]Af'CAHtTJ[[tQ]]AS'f sk
C/\H;p[[tAp]] = \r.ip z Cruplpa.clk = (Aa.Cy g lc]) k
CAMAPH*]] = \z.7 CAMQ:H']] —e

Note that C, .5 [tp] is n-expanded. Otherwise, in the translation of [tp]uca.c one

would obtain (Aa.Cy 5 [c]) tp. Since tp is not a value, the dynamic binding would
be looked up when « is defined, instead of when it is called. To better understand
the reason consider the following example.

Ezample 3. Tn [+]utp.[tp)uc.[a]((utp.[]I) x), notice that « is invoked with a
value under a rebinding of tp. The renaming of tp for « is captured by the more
recent binding, as shown by the reduction:

[#]tp. [Ep] . o] (b o] D) @) — [+t [60] (ufp.[BPIT) V)

If we instead adopt the transform C, 5 [tp] = tp then we would have to bind a
to the current value of tp, which is *.

5.2 Translating Dynamic Binding (D,g)

For a first attempt at defining the dynamic binding of tp, we try a simple
environment-passing style transform, D,g, where the environment is just the

value currently bound to tp. In the case that tp isn’t bound, as in the initial
environment e, we use the free variable v9. That is, we have D,g [e] = 0. The
rest of the transform is:

Dygllelt] = Dyglt] Daglel  Diglrwt]y = Az Xy Dyg[t]y
Dyglzly == D)\ﬁ,[[)\t/b.t]]'y = )\v.)\'y'.DAtAp[[t]]v
Dyg [tply = Dyglt1 t2lv = (Dyg[t1]7) (Daglit2lv) v

This transform is equivalent to a simplified version of Moreau’s calculus of dy-
namic binding [I7] with only one dynamic variable.

Unfortunately, this definition of dynamic binding does not properly capture
the meaning of the rebindable top-level since it creates vicious cycles, as shown
in the reduction of D,g o CAHG)[[[t/E)]utAp.[t/b]x]]'y:

AN vzv) MWy yy)y—= Ay A yy) e Qg YAy yy)— ...
This does not match the reductions of Autp, since one has: [tp]utp.[tp]lz — [tp]z.

In Moreau’s [I7] framework, this corresponds to the reduction:

dlet tp = (\y.tp y) intp z—» dlettp = (\y.tp y)in(A\y.tp y) z—» ...
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Remark 1. One can understand the dynamic abstraction Atp.t in terms of a
static abstraction and dynamic let, as Av. dlet tp = vint, where the transform
of dlet is Dyg[dlet tp = vint]y = Dygz[t]v.

5.3 Backtracking the Environment (D,»)

We see vicious cycles arise because dynamic binding allows for self-reference. In
order to evaluate the application tp V, we (1) lookup the value f most recently
bound to tp, and (2) evaluate f V in the current environment where f is still
bound. The root of our problem is in step (2). Instead, we want to evaluate f V
in a different environment where that same f isn’t bound. In particular, we want
to backtrack to the environment that was active just before f was bound to tp.
To do this, we restrict the grammar of Afp so that tp can only be used as an

. . . . o ~b
immediate application, giving us Atp .
teTerm==V |ty ta|tpt

We then modify D,g, to match the restricted grammar. In particular, we change
dynamic binding and application of tp to backtrack to a previous environment.

2N [Ap.t]y = ANy Dy [t]+ [tp — v] v[tp = v] = Azw
Do ltp tly = 7(tp) (D0 [t17) (tp) =7

When we bind a value v to tp, we wrap v in a function that will return to the pre-
vious dynamic environment when applied. Since values bound to tp are equipped
with their own environment, we do not need to pass the current dynamic envi-
ronment to the application tp V. Compare the new translation of tp V with the
original one: D,g [[tAp V]v =~ V ~. Notice that the restriction on how tp is used
allows us to eliminate the self-application of the environment . With the new
backtracking definition of dynamic binding, we no longer create the same cycle
as before in the reduction of D, o CM&J[[[t/b]ut/b.[tAp]x]]'y:

oM v 2 y) M2 y)y = QyM' Ay y) 2y =y a=[tp ]y

When we compose the two phases together, we get the derived translation D,\ﬁ) b0

2

C, uip» Which is exactly the same as our original translation C WY

Theorem 3. D, 0Cy 5 = CthAp
Remark 2. Note that the definition of * in Ciuﬁ) is exactly the environment-
passing style translation of the initial continuation Az.z. The backtracking be-
havior we present here is also necessary to express exceptions with dynamic
variables. A similar encoding was given by Moreau[I7] using an abort operator
to reinstall the right environment.
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6 Control with Multiple Prompts: Ap via b

We want to extend \utp with a multiple prompts so that binding prompt @ does
not interfere with prompt 8 and vice versa. This is different from the nested
definition of resets in the CPS hierarchy [7]. Unfortunately, this means that we
cannot use the iterated layered CPS approach to define our prompts. However,
now that we have factored the transform for Autp into two passes that flow
through an intermediate language with dynamic binding, it is easy to extend
the calculus to have multiple prompts by simply using an intermediate language
with multiple dynamic variables, \*, whose syntax is:

¢ € Closure ::= [e]t teTerm =V |t &2 | Tt
TeVaru=zx|Z V € Value ::= x| \T.t

Where e is the empty environment e. The definition of X uses the same
environment-passing style translation as )\tApb. The only thing that needs to change
from )\tApb to A? is dynamic binding and lookup. Now that there is more than one
variable, we may have to search through the environment for the variable that we
want.

v(@) =~ 2" y[@ — v] = Ap.if p= T then Az.v x yelsery p

Here the quotation brackets, ™, reify the dynamic variables into terms in the
target language. These terms must all be distinct and have decidable equality.

The language of control with multiple prompts, A1, is a simple extension of
A\utp with multiple dynamic top-level binders.

¢ € Command?® ::= [¢°]c teTerm =V |ty ta | po.c
¢ € Command = [q]t q € CoTerm = a | *
@® € CoTerm? := e acCoVar i=ala

The semantics of Aji is just the composed transform Dy, 0Cyyz, exactly as in Sec-
tion B3 except that multiple dynamic variables are used by Cyz, with one unique
variable for each different prompt. The reduction rules for multiple prompts are
a generalization of the reduction rules for single prompt tp.

~ ~

pa.fa]V —V pal BV — p BV pa [V — p x|V

Where a # B Just like how invocation of x throws away the dynamic envi-
ronment, invocation of the prompt S will throw away portions of its dynamic
environment until the correct binding is found. Then the usual 7-reduction of
prompts is available to resolve the invocation of the prompt.

To define the operational semantics for A1, we first give the evaluation con-
texts for i, which can be derived from a defunctionalization [19/4] of the con-
tinuation and environment used in the Dy, o Cyz transform.

E:=0|FEt|VE Fu=[gE E?:=0|F[ua.E* F?:.=[FE?
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The context E is just the standard call-by-value evaluation context for the pure
A-calculus. The meta-context E? drills down through any number of dynamic
bindings for continuation variables. Both F' and F? are convenient shorthand
for a (meta-)context embedded in a (meta-)command, and correspond exactly
with the continuation and meta-continuation in the CPS transform for Af.

The operational rules are derived from the fine-grained reduction rules using
the call-by-value contexts for A\ji to restrict where they may apply.

F2[F[(Az.t) V] = F[FI{V/a}]]  F*[Flpo.c]] = F*[e{F[t]/a]t}]
F?[Flua. B3 [[@lV]]] = F*[F[V]] (1B [[AV] = [¢*][+]V

Where E(% does not contain a binding for @. The reduction rules for A are
sound with respect to the transform Dy, o C»z, and the operational semantics is
complete with respect to the transform. Also, since the operational semantics are
just a coarse, limited form of the reduction rules, it follows that the reductions
are complete with respect to the operational semantics and that the operational
semantics is sound with respect to the transform.

Theorem 4. If M — M’ then D5, o Cxz[M] = D5, o Cag[M'].
If D5, o Cap[[e][*]t] = V' then [o][x]t —» [o][x]V. If 2 2 then c2—sc'2.

Expressiveness. With multiple prompts, we get the ability to set multiple
points in the program that we can abort to at will, giving us the multi-prompt
reset (#%) and abort (LA®) operators.

#5% = pa.alt A% =p [at
We can also encode exception handling with multiple independent exceptions.

raise e t = (\x.A° Exnz) t

thandlee z = u = case #° OKtof OKz = z | Exnz = u

The expression raise e t evaluates t and then aborts to the dynamically nearest
handler for e with an exception. The handling expression thandlee z = u
attempts to evaluate t. If ¢ successfully results in a value (represented as OKv),
then value v is returned. Otherwise, if an exception for e is raised (represented
as Exnv), then u is evaluated with the raised value v bound to x.

7 Delimited Control with Transparent Prompts: /\p,t/|\)T

We now take a break from A\fi and multiple prompts, and return to Autp in order
to examine an alternate extension. Another important delimited control operator
to consider is shifty (Sp) [16]. The difference between shift and shiftg is that when
shift captures its immediate context, it leaves the nearest delimiting reset in place,
whereas shifty removes the nearest reset after capturing its context. As discussed
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previously in Section ] shift and reset have encodings in Autp. However, to
capture the additional behavior of shifty we need to extend Autp with the ability
to render the binding of a prompt transparent, making it immediately disappear
and letting underlying terms see through to their surrounding context. The new
command 1P ¢ represents lifting the unevaluated term ¢ through the most recent

binding of tp and embedding the term in that context. The syntax of )\;LtApT is:

c* € Command? ::= [¢*]c teTerm ==V |t ta | pa.c
ce Command = [q]t | 4 ¢ q € CoTerm == a | *
¢* € CoTerm? == acCoVar == a|tp

We define a CPS for )\Mt/f)T in the style of Materzok and Biernacki’s [16] definition
of shiftg. This is an extension of the basic C, transform.

)\HtpT [ptp.c]k = C/\HtpT Ie] & C/\HtpT [[Ttp t] = )\HtpT It] C)\Htpr [tp] = Az Ak

Note that the translation of utp.c in C ! is different from the one in C, g.
Rather than always running the command to completion, and then passing the
result to the bound continuation k, we pass k as an extra argument to the
command. A continuation bound to tp is set aside and carried along in the
command as an extra argument. Then, in the case of [tAp]V, the list of extra
arguments is accessed and V' is returned to the most recent one. On the other
hand, in the case of 1t ¢, the continuation most recently bound to tp is accessed
and used to evaluate t.

For the purpose of comparison with C ugpe Ve Tun the output of C, ot through

the CPS transform Cy, which gives us the double CPS transform C/\MtApT
AT[[,utAp.c]]k‘ =\.C oo LA By
c? AT[[Ttp thy=~C? +[t] Aut“pT [tp] = Az My.y Ak o

Autp Aptp

The small difference in the binding of tp becomes immediately apparent in the
type of the meta-continuation. In Autp, the meta-continuation takes values to

final answers. In )\ptApT7 on the other hand, the meta-continuation takes terms
to final answers. The more general type allows the translation of 1 ¢ to pass ¢
unevaluated to the meta-continuation. The translation of [tp]V now has to com-
pensate for this extra generality. When the tp continuation is given a value z and
meta-continuation ~, it wraps that value up in the trivial term that immediately
returns x, and passes the new term to .

We can also define the transformation in terms of )\tApb, as in Section Bl Ex-
tending the meta-continuation becomes a binding to the dynamic variable tp,
and application of the meta-continuation becomes application of tp.

Cy ot [Pk = (MP.C, et [c]) (Mt k)
Crur (1% 8] = C, (1] Cy 0 [TP] = Azt Mk 2
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Notice the difference between the two uses of tp. In [tAp]t7 resolution of the tp vari-
able is delayed in a function that is passed to the term ¢, which may be captured
by the time the continuation is used. In contrast, 1t ¢, directly applies tp to a
term, immediately resolving the dynamic binding in the current environment.

Reduction of the new command is similar to [ff)]t, but with different priorities
between the continuation and the term. In ytAp.[tAp]t, tp is n-reduced only when ¢
is a value. The opposite occurs with tp. TtAp t, where tp is n-reduced immediately,
before ¢ can be fully reduced to a value.

ptp.[tp]V — V ptp. 1% ¢ — ¢

As before, operational rules are given by deriving the evaluation context from
the continuation and meta-continuation used in C restricting where reduc-
tion may apply.

Autp™s

E:=0|Et|TE F:u=[gE FE?:=0|F[utp.E? F?:=|[E?

With the evaluation contexts, the operational rules are just a coarse-grained
representation of the fine-grained reduction rules.

F2IF[(Axt) V] = FAF[{V/2}]] F2[F[pa.c]] = F?[e{ F[t)/[a]t}]
F2[F[utp.[tp]V]] = F?[F[V]] F2[F[utp. 1% t]]] = F2[F[t]
[*]E*[[+]V] = [¢°][x]V

The reduction rules and operational semantics are sound and complete with
respect to the transform CthApT as in Section [G
Theorem 5. If M — M’ then CthApT [M] = CthApT [M'].
If CthApT[[[O] [¥]t] = V then [o][]t —» [o][x]V. If ¢® — ¢/? then c?—c/?.

Expressiveness. To encode shifty (Sp) in )\ut/f)T, we need to use 1 to make the
nearest binding of tp transparent to its body. For comparison, we repeat shift’s
encoding:

#t = ptp.[tp]t S = Mh.pa.[tplh (Az.utp.[a]z) So = Mh.pa. 1% p (Az.utp.[a]z)

We can derive the operational rules for the three control operators from the

operational semantics of /\,ut/f)T. The two-part definition of evaluation contexts
mirrors Materzok and Biernacki’s[16] presentation of Sy using contexts and trails.
The derived rules show that the only difference between shift and shifty is the
presence or absence of the reset after capture.

E:=0|FEt|VE D :=0| D[E[#0))

D[E[(Az.t) V]] = DIE[H{V/z}] DIE[#V]] = DIE[V]]
D[E'[#E[So V]Il = DIE'[V (\z.#E[2])]] DIE[S V]| = DIV (Az.#E[x])]
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8 Intermediate Language of Dynamic Unbinding: )\ff)<:

Recall that in Section [l we had to ensure that the dynamic binding was non-
cyclic in order to properly model prompts. We accomplished this by backtracking
to a previous version of the dynamic environment whenever tp was applied to
a value. While the backtracking semantics of )\tApb and A\’ can also be used to
encode shifty and multiple prompt abort, it does not scale well beyond that. The
only time we can backtrack the environment is when we have a value to pass to
a dynamic variable. Instead, we can generalize the effect by allowing a form of

dynamic backtracking over a term. We modify )\tp with the ability to undo a
binding over an unevaluated term ¢, giving us )\tp

¢ € Closure := [e]t teTerm ==V |z <tpint |t ty
TeVarz=z|tp V e Value :=z | \T.t

Where e is the empty environment . The new term, z < tpint, has the effect
of undoing the most recent binding of tp in the current environment, exposing
the previous dynamic environment to the term ¢ while rebinding the value to
x. In essence, = < tpint is the reverse effect of a dynamic binding. The direct
application tp V can be expressed notationally by the new term: f < tpin f V.

The translation of )\tAp¢ is a modification of the basic environment-passing
style transform D,,. We must change how the environment is represented in
order to express the additional effect on the dynamic environment. We could im-
plement D¢« in a concrete way, representing the environment as a list structure
to store a history of dynamic bindings.

Dy = [Ap.t]y = M. XY Dyg=[t]v[tp — v] V[tp = v](tp) = (v,7)
Dyg= [z < tpint]y = let (x,7') = y(tp) in D“[t]y’

Here, binding tp to a new value v in an environment v just stores that binding
as the most recent one in ~, while looking up the binding of tp returns both the
value as well as the dynamic environment that was previously active before tp
was bound. The term x < fpint uses the extra information returned by lookup
to evaluate ¢ using the previous environment.

By refunctionalizing [6] the concrete list structure of the environment, we get
a translation from /\tAp<= to the pure A-calculus.

Dyg=[Mp-t]y = M. Xy Dyg=[t]y[tp > v] ~(tp) =
Dyg= [x < tpin tly = ’y(tp) Az.D"[t] ’y[ff) — o] = Ag.q vy

Looking up the current binding of tp is just an application of the current environ-
ment. The two return values are implemented by having lookup take a continua-
tion which accepts both the value bound to tp as well as the previous environment.
With the new syntax for rolling back the dynamic environment, we can translate

)\,utApT into )\t/f)¢ in a more concise way, where k is bound directly to tp.
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€Y s Lufp.clk = (MD.C, g1 [e]) b

ct 1% 1] = k < tpinC, 1 [t]k ct [ip] = Avk < tpink

Autp Autp ptp

9 Delimited Control with Multiple Prompts: Au' via A€

With just the simple addition of multiple prompts, we still don’t have enough
expressive power in Al to encode shift and reset with multiple prompts. The
dilemma is that in the presence of multiple prompts, a shift up to prompt @ not
only captures its immediate context up to the nearest reset, but also captures
all contexts bound behind non-matching resets until it finds a reset for @. The
continuation that shift captures will then restore the captured context as well
as seamlessly inserting a partial meta-context in place. In order to express the
full power of shift with multiple prompts, we will need some way of directly
manipulating the meta-context. This is reminiscent of the way shifty removes
the most recent binding of tp and exposes that context to an underlying term.
So in order to fully express shift with multiple prompts, we need to incorporate
both multiple prompt binding from Section [0l as well as transparent prompts
from Section [ In other words we need to merge multiple dynamic variables
from A’ in Section [f with the ability to roll back the dynamic environment from
Ap© in Section B

9.1 Dynamic Unbinding with Multiple Variables: A<

The shift operator with multiple prompts only captures a prefix of the meta-
context, up to the binding of a specific prompt. What we need is a way to roll
back the dynamic environment up to a given binding, while also remembering all
the information that would otherwise be discarded. That is, we need to extend
the dynamic unbinding effect from x < Zint to give us both the value that was
stored in T as well as a trace of all the changes to the environment after 7 was
bound. This trace is just a prefix of the current environment, and can be used
later to replay the changes over a future state of the environment, extending it
with all the dynamic bindings that were removed.

We merge both A and )\t/f)c, by combining both multiple dynamic variables
and reversal of dynamic binding, giving us A<.

¢ € Closure == [e]t e € Environment ::= e
teTerm =V |t t2| (A, z) < Zint | [A]lt zeVar=x|Z

The new class of variables, A, ranges over environment prefixes. Intuitively, the
term (A,z) < Zint undoes the most recent binding of Z, binding the value
stored in 7 to x while also capturing the prefix of the environment more recent
than Z into A. Then, the term ¢ is evaluated in the dynamic environment that
was in place immediately before  was bound. Closure under the prefix, [A]t,
extends the surrounding environment with all the dynamic bindings stored in A.
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Like before, the direct application T V' can be notationally defined with the more
general prefix-capturing form: ( , f) < Zin f V.

The semantics of X‘:, like /\'£A|o<=7 requires a redefinition of the dynamic environ-
ment. When we query the environment, we now must remember the previously
active environment as well as the prefix of bindings that were skipped over in
order to find the requested variable. Like in Section B we first define the new
environment in a concretely, using lists to implement environments and prefixes
and tuples to return multiple values.

D5.[(A,z) < Tint]y = let (A, 2,7") = v(Z) in D5 [t]Y
D5 [[Alt]y = (AQD5[t]) v
V@ = 2](@) =([],v,7)

VG = (@) =let (A, u,7) = 4(Z)
in (A[y — v],u,7)

Gt =t
AlZ = v]@t = AQ(N\y.t [T — v])

Dynamic variable lookup now builds up the prefix of bindings that are skipped
over in order to find the correct variable. This prefix of bindings can then be
used elsewhere to extend a term’s dynamic environment. Note that when a prefix
extends a term, the bindings in that prefix are more recent than the surrounding
dynamic environment and are bound in exactly the same order in which they
originally occurred.

Taking the concrete implementation, we can derive the pure A-calculus en-
coding by refunctionalizing the data structures. The environment prefix is now
a function mapping terms to terms which implements the extension operation
from before. Multiple return values are emulated by taking a continuation that
accepts each of the three return values separately.

D (A1) < Findly =+(@) MeDs [l Dy [[Aly = A Dy [ 4
v(Z) =~ 2" Y[z — v] = Ap.if p = T then A\g.q (At.t) v
else \q.y p Md.q (\t.0 \Y'.t o [Z — v])

9.2 Capture Up to a Prompt: A\’

We are now finally ready to define the full calculus with capture up to an arbi-
trary prompt. A\ii' extends A\Ji with the ability to capture a prefix of the meta-
context up to a prompt, and then later extend the current meta-context with
that prefix.
¢* € Command? ::= [¢*]c teTerm =V |ty tg | pa.c
¢ € Command == [q]t | > A1%.t | [Ale q € CoTerm = a |
¢® € CoTerm? ::= e aecCoVar i=al|a

The command p?A1%.t captures a portion of its meta-context as A, up to
the nearest binding of the prompt @. Then, that portion of the meta-context
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is removed and the most recent binding of @& becomes unbound. ¢ is then evalu-
ated in the context formerly bound to @ and the remaining meta-context.
The CPS translation from \i' to A<isa merging of C; and C S The new

syntactic forms in Afi" can be defined in terms of the intermediate language N
Capturing a portion of the meta-context up to & translates to capturing a prefix
of the dynamic environment while unbinding @, and extending the meta-context
becomes extending the dynamic environment. Like in C:utApT’ the invocation of

a prompt is changed due to the change in the way dynamic variable lookup is
performed. The CPS transform for \ii' is an extension of the basic C Ap transform.

Capr [P A194] = (A, a) < @inCypt [t
Crat[[4]c] = [A]Cxz [€] Cyirla] = Az.( ,a) = dinaz

The final derived transform shares a resemblance with the one given by Dybvig
et al. [8]. However, since we only treat shift/shifto-like operators, the environment
is an ordered list of bindings, rather than an arbitrary marked stack.

The reduction rules for capture up to a prompt must incrementally move
a prefix of the meta-context into the underlying term. Rather than move the
complete context bound to a prompt all at once, we can use the ordinary u-
abstraction to capture that context and move it inward to where it is needed.
By using an ordinary p-abstraction, we can capture the context formerly bound
to B one step at a time.

pa A%t — t{c/[Alc}  pBpP At — pB.p* A7 t{[A)[B)pB.c/[Alc}

When under a non-matching prompt 6 , W2 A 19 t must take the context currently
bound to 6 and rebind it to B wherever A is invoked in ¢. This can be done by
giving the context a fresh static name with a static y-abstraction, and binding
B to that continuation variable inside of A. The static py-abstraction is then able
to reduce further, incrementally absorblng its context and filling in the renewed
bindings for 6 1n51de A. If instead p?A 19t is under a binding of the prompt &,
then t is placed in the context bound to @ and A is eliminated in ¢, since there
is no more prefix for it to capture.

The operational semantics for A\iT is an extension of the semantics for M.
The evaluation contexts and operational rules for A\fi hold for A\fiT. We only need
to include the additional rule for the command p2A 19.t.

E:=0|FEt|VE Fu=[gE E?:=0|Fpa.E* F?:=[¢*E?
F?[Flua. B3 [ A 1% 4] = FPF[H{E3[e]/[A]e}]
Where EZ does not contain a binding for @. Like with Az the reduction rules

and operational semantics are sound and complete with respect to the transform
’DXC o C)\ﬁ¢ .

Theorem 6. If M — M’ then D5 o Cyzt [M] = D5 o Cypt [M'].
If D5 o Capr[[o][%]t] = V then [o][«]t — [o][+]V. If ¢* — ¢'* then c*—»c?.
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Expressiveness. With capture of the dynamic environment up to a given prompt,
we can encode the full behavior of both shift and shifty with multiple prompts:

S& = A.pB.pu? A 1% h (\z.pa.[A][f)z) #% = pa.[a)t
S% = Mh.puB.pu? A 1% pa.alh (\e.pa.|A)f)z)

8% h captures the current context as well as the dynamic prefix up to the most
recent binding of the prompt @, which is kept in place. Then, h is given a
function which, when applied, will evaluate its argument in the captured context
and dynamic prefix under a new binding of a. S§ is like S® except that after
capturing the dynamic prefix, the prompt @ is unbound and the context bound
to @ is exposed to the given function. The only difference in their encodings is
that S® replaces the reset of @ after capturing the meta-context, while Sg does
not.

Using the operational semantics from Section 0.2l we can derive the opera-
tional semantics for our encoding of the #%, S%, and S{)Q control operators.

E:=0|Et|VE D =0 | DIE[#%0]
DIE[(Az.t) V]| = D[E[H{V/z}]] DIE[#°V]| = DIE[V]]
DIE[#*D'[E'[S* V]]]] =» DIE#*V (A #"D'[E'[z]))]] where#* ¢ D'
D[E[#'D'[E'[S§ V]a]] = D[E[V (\z.#%D'[E'[z]])] where #% ¢ D'

10 Conclusion

We have provided a calculus which allows us to study delimited control with
multiple prompts. To do this, we used an intermediate language of dynamic
binding in order to define the semantics of multiple prompts. Kiselyov et al. [15]
have also investigated the relationship between dynamic binding and delimited
control by giving a language that gives the programmer access to both. Interest-
ingly, their approach is the opposite of ours. They directly define the dynamic
binding in terms of delimited control with multiple prompts. On the other hand,
we use the conceptually simpler notion of dynamic binding as a stepping stone
for understanding delimited control with multiple prompts.

Our interest in delimited control with multiple prompts came from the de-
sire of formalizing a call-by-need abstract machine. Both call-by-value and call-
by-name A-calculi can be presented in the sequent calculus style as abstract
machines, where the active redex is always at the top of the term [3]. With call-
by-need, however, the active redex can become buried under bindings of delayed
terms during evaluation. As discussed by Garcia et al. [I3], call-by-need can be
represented in terms of delimited control with multiple prompts. In that spirit,
we want to achieve a deeper understanding of the equational theory of delimited
control in the presence of more than one prompt, aiming at formalizing clas-
sical lazy evaluation in the sequent setting. As future work, we plan to tackle
completeness of the equational theory with respect to the CPS semantics. We
are also interested in understanding the type theory that arises from the CPS
semantics.
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