Java Memory Model-Aware Model Checking

Huafeng Jin, Tuba Yavuz-Kahveci, and Beverly A. Sanders

University of Florida

Abstract. The Java memory model guarantees sequentially consistent
behavior only for programs that are data race free. Legal executions of
programs with data races may be sequentially inconsistent but are sub-
ject to constraints that ensure weak safety properties. Occasionally, one
allows programs to contain data races for performance reasons and these
constraints make it possible, in principle, to reason about their correct-
ness. Because most model checking tools, including Java Pathfinder, only
generate sequentially consistent executions, they are not sound for pro-
grams with data races. We give an alternative semantics for the JMM
that characterizes the legal executions as a least fixed point and show
that this is an overapproximation of the JMM. We have extended Java
Pathfinder to generate these executions, yielding a tool that can be
soundly used to reason about programs with data races.

Keywords: model checking, relaxed memory model, benign data races.

1 Introduction

The memory model of a programming language defines which values a thread
can see when reading a variable from shared memory. If the memory model
is sequential consistency (SC), then the program behaves as if all of its reads
and writes occur in some order consistent with the program order on individual
threads, and each read of a variable sees the most recent write to that variable
in the order.

Memory systems in most modern multi-core processors are not sequentially
consistent and in addition, a variety of compiler optimizations that would be
correct in a sequential program may introduce sequentially inconsistent behavior
into a multi-threaded one. For example, consider the program in Fig. [l In any
sequentially consistent execution, depending on how the threads interleave, the
x field of the single object involved would change from 0 to 3 at some point
and then remain 3 thereafter. A common compiler optimization which causes
no problems in a single threaded program might, however, replace the last read
rl.x in Thread 1 with an assignment, r5 = r2. This admits executions where it
appears that the value of r1.x changes from 0 to 3 and then back to 0. Such an
execution is not sequentially consistent.

Sequential consistency is desirable because it corresponds with programmers’
intuition. Also, it allows formal reasoning techniques and tools, most of which

C. Flanagan and B. Konig (Eds.): TACAS 2012, LNCS 7214, pp. 220-E36] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Java Memory Model-Aware Model Checking 221

assume sequential consistency, to be used.
Most model checkers, for example, implic-
itly assume sequential consistency. If we used Thread 1 Thread 2
a model checker such as Java Pathfinder to
check the scenario in Fig. [I], the legal, but the
sequentially inconsistent execution described

Initially p == q, px == 0

rl=p; 16=np;
r2 =rl.x;r6.x = 3;

3 =q;
earlier would not be generated or checked. A — ?3.){,
Typical programming language memory 5 — rl.xj

models guarantee sequential consistency only
for programs that are data race free. A data Fig.1. Execution trace with
race is a pair of conflicting operations (i.e. the conflicting accesses to the same
operations are performed by different threads, = memory location. Variable
both access the same memory location and at ~ names that begin with r are
least one is a write) that are not ordered by local variables of a thread.
sufficient synchronization. Exactly what con- ~ Lhis example is from
stitutes “sufficient synchronization” is defined L1} §17.3].
by, and specific to, the memory model. The
Java Memory Model (JMM), guarantees se-
quentially consistency only for programs that are data race free, but also con-
strains programs with data races in order to provide some weak security guar-
antees. If all of the legal executions, including the sequentially inconsistent ones,
of a data racy program still satisfy the program’s specification, then we can con-
sider a data race to be benign. Occasionally, one may want to take advantage
of this to improve performance. For example, intentional, benign data races can
be found in the java.lang.String and java. util . ConcurrentHashMap classes.

The JMM is complicated and reasoning about programs with data races is
difficult, thus tool support is desirable. We describe a JMM aware model checker,
Java PathRelaxer (JPR) that is an extension of Java Pathfinder [22]T5] and gen-
erates all of the legal executions of finite Java programs with data races so that
their properties can be verified. The way the JMM defines legal executions in
programs with data races does not lend itself to precise implementation with
a model checker and has been shown [23] to be stricter than the designers in-
tended. We use an alternate approach. Instead of defining a legal execution by
the existence of a sequence of justifying executions as the JMM does, we com-
pute a set of paths that is the least fixed point of a monotone function. We show
that the set of paths generated by JPR is an overapproximation of the set of
legal executions. Although the details of the formalization and implementation
of JPR are specific for Java, the main ideas are applicable to other languages
with a memory model based on the happens-before relation.

The main contributions of this paper are

— A new, fixed-point based, approach to the characterization of legal executions
for relaxed memory models.

— A tool, JPR that generates all of the legal executions according to the fixed-
point characterization.

222 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

— A proof that the fixed-point based approach is an overapproximation of the
JMM, and thus JPR is sound for Java programs with data races.
— Insights into how the JMM maps (or does not map) into program constructs.

2 Background

Below, we give a brief overview of the formal definition of the Java Memory
Model, including formal, JMM specific definitions of some concepts introduced
previously. Our treatment follows that of [1], which is in turn based on the
specification of the JMM given in [T9/11][]

An action a is a memory-related operation with an arbitrary unique ID, aid
that is performed by a thread tid, interacts with variable v or (monitor) lock m,
and has a kind. The kind is one of the following: volatile read from v, volatile
write to v, (non-volatile) read from v, (non-volatile) write to v, locking of lock
m, unlocking of lock m, starting a thread, detecting termination of thread, and
instantiating an object with a set of volatile fields wolatiles and a set of non-
volatile fields fields set to their default values. All of the action kinds, with the
exception of read and write are synchronization actions.

Definition 1 (Execution). An ezecution E s described by a tuple
<A7P7 SPO7§SO)WV> where

— A is a finite set of actions

— P is a program

— <po, the program order, is a partial order on A obtained by taking the union
of total orders representing each thread’s sequential semantics

— <so, the synchronization order, is a total order over all of the synchronization
actions in A

— V., the value written function, assigns a value to each write

— W, the write-seen function, assigns a write action to each read action so
that the value obtained by a read action v is V(W (r)).

A sequentially consistent (SC) execution is one where there exists a total order,
<se, on the actions consistent with <,, and <, and where a read r of variable
v sees the results of the most recent preceding write w, i.e.

- W(r) <ger
— For all reads r of variable v: if W(r) <, w <4 r and w writes to v then
W(r) = w.

! The most important differences between [19] and [I] are that the latter requires
that the total order for SC executions be consistent with both the synchronization
order and program order (as opposed to just the program order, correcting an appar-
ent oversight in the JMM formulation), formulates the semantics in terms of finite
executions, and ignores external actions.

Java Memory Model-Aware Model Checking 223

The JMM relaxes SC because it is not required that W return the “most recent”
write to the variable in question or that it is consistent for actions on different
threads.

The synchronizes-with relation, <., relates certain pairs of actions. For ex-
ample, the action unlocking a monitor synchronizes-with any subsequent (ac-
cording to <,) unlock of the same monitor. Other pairs include writing a volatile
variable and a subsequent read, the action of starting a thread and the first ac-
tion of the newly started thread, etc. See [11, §17.4.4] for a complete list. We
categorize the first action of a <j,, pair as a release action, and the second as an
acquire action. The happens-before order, <jp, is a partial order on the actions
in an execution obtained by taking the transitive closure of the union of <g,
and <p,. A well-formed execution satisfies type safety and some unsurprising
consistency requirements on the various partial and total orders. The two most
important rules for our purposes are intra-thread consistency and happens-before
consistency.

Definition 2 (Well-formed execution). See [1l, Definition 6] for the complete
definition.

7. Program order is intra-thread consistent: for each thread t, the sequence of
action kinds and values of actions performed by t in the program order <,
is sequentially validd with respect to P and t.

9. <pp is consistent with W : for all reads r of variable v, r Lpp W(r) and there

is no intervening write w to v, i.e. if W(r) <pp w <pp r and w writes to v
then W (r) = w.

Two operations from different threads conflict if neither is a synchronization
action, they access the same memory location and at least one is a write. A data
race is defined to be a pair of conflicting operations not ordered by §th

A Java program is correctly synchronized if all of its SC executions are data
race free. An important property of most programming language memory mod-
els, including the JMM [1TJ19] [I, Theorem 1], is that all legal executions of a
well-formed correctly synchronized program behave as if they are sequentially
consistent. This data race free guarantee (DRF) is important for programmers.
Because “correctly synchronized” depends only on the sequentially consistent
executions, detecting data races can be done with model checkers or other tools
that assume sequential consistency. Java RaceFinder (JRF) [I6I17], for exam-
ple, extends Java Pathfinder to precisely detect data races in Java programs
according to the memory model.

2 Sequential validity essentially means that given the values obtained when a variable
is read, each thread obeys the Java language semantics.

3 Because reads and writes of volatile variables are synchronization actions, a volatile
variable in Java can never be involved in a data race. Volatile variables can still be
involved in non-deterministic behavior that is sometimes called a race condition. In
this paper, we use the term race only in the context of data race as defined in the
JMM.

224 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

While most Java programs should be data race free, the JMM attempts to
define the semantics of programs with data races. The main goal was to provide a
modicum of security guarantees even for incorrect programs with data races while
still allowing as many optimizations as possible. Desirable properties include type
safety and no out-of-thin-air values.

While the notion of out-of-thin-air value has not been precisely defined, the
example in Fig. 2 [19] illustrates the idea and shows why well-formedness (Def.
) and in particular happens-before consistency, does not suffice. In a sequen-
tially consistent execution of the example in Fig. 2 the only values allowed are
rl==r2==0. However, letting W(Al) = B2, W(B1) = A2, and V(A2) =val,
and V(B2) =val, for any value val of the correct type, we have a well-formed
execution where rl == r2 == val, and in this situation, val is said to come
out-of-thin-air.

To rule out such cases, the JMM requires

legal executions to satisfy additional causal- Initially, x ==y == 0
ity conditions intended to rule out so-called

causal loops that could lead to self-justifying Thread 1 Thread 2
speculative executions. The idea is that a well- Al:rl =xBlir2 =y
formed execution E is legal if there is (roughly A2:y =r1B2:x =12

speaking) a sequence of well-formed execu-
tions E; with action sets A; and a subset of
actions C; called the commit set where each
committed read either sees a committed write
or a write that happens-before it. It is required
that C;_1 C C; and that the sequence even-
tually produces E with all of its actions com-
mitted.

Fig. 2. The rules for a well-
formed execution admit

traces with rl == r2 ==

val, for any arbitrary out-of-
thin-air value val of the correct
type

Definition 3 (Legal Execution). [1, Definition 7] A well-formed execution
E = (A, P, <po, <50, W, V) with happens-before order <pp is legal if there is a
finite sequence of sets of actions C; and well-formed executions E; = (A;, P, <po,
s <so0;s Wi, Vi) with happens-before order <pp, such that Co = ¢, Ci—1 C C; for
alli> 0, |JC; = A, and for each i > 0, the following are satisfied:

1. C; C Ay

2. <up; lo; =Zmb |c;

3. Ssoi C; =<s0 C;

5- Wl Ci—l = W|Ct—1

6. For all reads r € A; — Ciy, Wi(r) <pp, T

7. For all reads r € C; — Ci—1, W;(r) € Ci—1 and W(r) € C;_1

For example, in Fig. Bl suppose that we want to commit the write action
A2:y=r1;. Then V(A2) is the value read in action Al:rl=x. The value of z must
be obtained from a write that either happened-before Al (the initialization ac-
tion is the only option) or is already committed. In the former case, the value
read is 0, in the latter case, it is the value written by B2. Similarly, the value

Java Memory Model-Aware Model Checking 225

written in B2 must be the value read in B1, which must be either committed
or happen-before it. However, A2 was not committed, so the initialization ac-
tion is the only option. Thus the only possible outcome is r1==r2==0. Clearly,
understanding and using this definition is difficult for all but the most trivial
programs.

3 Java PathRelaxer (JPR)

In order to check properties of a program with data races, we want to generate all
the possible legal executions of the program under the JMM. To do this, we start
with a set of legal executions, namely the sequentially consistent ones. Then, from
those executions, we find which alternative writes could have been seen by a read,
i.e. what are other possibilities for W(r) that do not violate well-formedness,
and use these to generate additional executions. The process is repeated until
it converges. Completely out-of-thin-air values are avoided because each value
seen by a read must have been written in some execution already generated.
In the rest of this section, we describe how this process was implemented using
model checking in JPRA. In Sect. [we formulate the process more formally as
the computation of the least fixed-point of a monotone function and show that
the set of executions generated is an overapproximation of the JMM.

JPR extends Java Pathfinder (JPF) [22[15]. JPF is an explicit-state model
checker that analyzes Java bytecode. Its custom JVM provides an efficient repre-
sentation of the explored state space and can potentially provide paths (or traces)
corresponding to all possible interleaving of the threads. Assertions are checked at
appropriate points during generation of paths. Generic properties such as deadlock
freedom may also be checked. JPF has an extensible architecture via its Listener
interface. While standard JPF explores paths corresponding only to sequentially
consistent executions, JPR explores all paths allowed by the JMM.

The basic idea behind JPR is to maintain a map, WriteSet, that maps mem-
ory locations to sets of (write action, value written) pairs. For a read action
of variable x, instead of the standard JPF behavior where the read sees the
value of the most recent write to = on the current path (which also corresponds
to sequentially consistent behavior), a value from an element of WriteSet(x) is
chosen. By exploring all of the possible WriteSet entries at each point and dis-
carding paths that do not correspond to a well-formed execution, an iteration
of the JPR algorithm generates all of the well-formed paths consistent with a
given WriteSet. It also returns a possibly expanded WriteSet containing all of
the writes that occurred during its execution. By repeating the process until the
WriteSet no longer changes, JPR generates a superset of the legal executions of
the program.

The IMM AwareJPF algorithm given in Fig. Bl represents the overall struc-
ture of JPR. A JPR specific listener, JMMListener is registered with JPF,
then JPF is invoked iteratively. JMMListener takes the GlobalWriteSet from

4 A discussion of JPR focusing on more technical implementation issues related to
extending JPF can be found in [13].

226 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

JMMAwareJPF (Program)

2 GlobalWriteSet,q < GlobalWriteSet, e, + 0
converged + false

4| while —converged do

Call JPF(JMMListener(GlobalWriteSetyq))

6 GlobalWriteSetpew, < JMMListener. Global WriteSet, ey
if GlobalWriteSetye,, == GlobalWriteSet,; then
8 converged < true
else //not converged
10 GlobalWriteSet,y < GlobalWriteSet,ew
endwhile

Fig. 3. JIMMAwareJPF, the top level algorithm in JPR

the previous iteration and returns a new, possibly extended Global WriteSet, ter-
minating when GlobalWriteSet no longer changes. Initially, the Global WriteSet
is empty.

JMDMListener is described in Figs. dland Bl As various search related events
in JPF occur (i.e. start search, advance state, backtrack, execute an instruction,
as represented by the variable searchFEvent in Fig.) occur, the corresponding
code is executed. X is a representation of the current state and is pushed onto a
stack when a search starts and when the state advances, and popped when the
search backtracks. When the end of a path is reached, the path is tested to see
if it is well-formed. If so, the WriteSet of the current path is unioned with the
GlobalWriteSet,e.,, otherwise the current WriteSet and path are discardedﬁ

1| JMMListener(GlobalWriteSetyq)
GlobalWriteSetyew < 0 //New global WriteSet
3| X : (WriteSet, ActionSet, HBSet, ImposeSet, Read, Write, ThreadLast)
//Current state metadata
5| switch(searchEvent)
case SEARCH STARTS:
7 WriteSet <+ GlobalWriteSet
ActionSet + HBSet < ImposeSet + ()
9 Vloc : Read(loc) < undef, Write(loc) < undef
Vtid : ThreadLast(tid) < undef
11 Stack.push(X)
case STATE ADVANCES:
13 Stack.push(X)
case STATE BACKTRACKS:
15 X « Stack.pop()
if END OF PATH then
17 if path is well-formed then
GlobalWriteSete, <+ GlobalWriteSet,e, U WriteSet
19 else ignore write set and discard path
case INSTRUCTION EXECUTES:
21 See Fig. 5

Fig. 4. JMMListener algorithm

In JPR, JPF’s state representation is extended with the additional informa-
tion given below, where Aid is the domain of action IDs, Val is the domain of
values, Loc is the domain of memory locations, etc. Action was defined in Sect. 2l

5 Although not shown in the algorithm, because paths may be discarded, assertion
violations are not reported until the end of the path is reached. This is a departure
from standard JPF behavior, which reports assertion violations when they occur.

24

26

28

30

32

34

64

66

Java Memory Model-Aware Model Checking 227

case EXECUTING ACTION where action = (aid, tid, kind, loc):
ActionSet < ActionSet U {action} // add current action to action set
HBSet <— HBSet U {(ThreadLast(tid), aid)} //update <pp due to <po
ThreadLast(tid) < aid
if iSRELEASE(kind) then
if kind == VOLATILE WRITE writing val then
Write(aid) < val
else if isAQCUIRE(kind) then
// for each release action rel that syncs with action do
for each rel = (raid, rtid, rkind, rloc) s.t. iSRELEASE(rel)
A (raid, aid) € HBSet do
HBSet < HBSet U {(raid, aid)} //update <pp due to <,
if kind == VOLATILE READ then
//let latest denote the most recent volatile write that syncs with action
let latest = (lid, ltid, lkind, lloc) s.t. lkind == VOLATILE WRITE A
(lid, aid) € HBSet N (Aay : ap € Aid N (ax, aid) € HBSet A Path(a) > Path(lid))
//Save the write action and value in Read. This is always a past write.
Read(aid) « (lid, false, Write(lid))
else if kind == WRITE of value val then
// if this write action is in the impose set, check for well-formedness
if for some wal’, (aid, val’) € ImposeSet then
if wal’ # val then
backtrack // value written is not the imposed value, abandon the path
else //check for <p, consistency
if 3r € ActionSet : Read(r.aid) == (aid, true, *) A r.aid <p, aid then
backtrack //not <pp consistent, abandon path
//else path is still well-formed, save values and continue
Write(aid) < val
WriteSet(loc) < WriteSet(loc) U {(aid, val)}
else if kind == READ then
non—deterministically choose (w, val) € WriteSet(loc) do
if w € ActionSet|,q then // this is a past read
//check for <pp consistency

if (Awa : wa € ActionSet A wa.kind == WRITE A wa.loc == loc
A w <pp wa.aid A wa.aid <p, aid) //<pp consistent past read
then

Read(aid) + (w, false, Write(w))

else //<pp inconsistent past read
continue with next write set entry

else // potential candidate for a future read

if (Aval’ : val’ € Val A (w,val’) € ImposeSet A val’ # val) then
ImposeSet < ImposeSet U {(w, val)}
Read(aid) < (w, true, val) //true indicates future write

else //illegal future read, was in impose set with inconsistent value
continue with next write set entry

Fig. 5. Continued from Fig.[dl The algorithm for enforcing JMM'’s semantics by keeping
track of write sets and happens-before relation among the actions executed on this path.

Path: Sequence of action ids that represent the current path of execution.
For a given action id aid, Path(aid) represents the index of that action id,
where Path(aid) is 1 for the id of the first executed action in Path.
WriteSet: Loc — 24**Val maps a memory location to a set of action ID,
value pairs, where each action is a WRITE.

ActionSet: 24¢°" contains the actions that have been executed on the
current path so far.

HBSet: 241xA41d 45 3 gset of pairs of action IDs where
(aidy, aidg) € HBSet* if and only if both are in ActionSet and
aid; <pp aide and where HBSet* is the transitive closure of the relation
represented by HBSet.

228 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

— ImposeSet: 247xVal is 4 set of action ID, value pairs, where each action
is a WRITE. In a well-formed path, if a read action r obtains a value val
from write action w which may be executed in the future, w must occur at
some point in any well-formed path containing r, and it must actually write
val. Thus the ImposeSet maps write actions to values imposed on them by
past reads.

— Read: Aid — Aid x boolean x Val maps READ and VOLATILE READ
action IDs to a triple containing the write action it sees, i.e. W(rid) and the
value it returns, W(V(rid)) for action id rid. The boolean value indicates
whether the W (rid) occured in the future on the current path.

— Write: Aid — Val maps WRITE and VOLATILE WRITE. action IDs to
the value written by the corresponding action, i.e. V(wid).

— ThreadLast: Tid — Aid maps a thread id to the latest action performed
by the thread and is used to maintain the program order, <,,.

4 Properties of the JPR Algorithm

In this section, we discuss the properties of JPR and its basic algorithms. Most
of the proofs and some lemmas are omitted for brevity but can be found in
the companion technical report [I2]. Executions are the abstraction used in the
JMM and defined in Def. [l while paths are the totally ordered sequences of
actions generated by JPR. We say that path p corresponds to execution £ =
(A, P, <po, <50, W, V) where A is the set of actions that occur in p, P is prog,
<po is the union over all threads of <jq, restricted to each thread, and <, is
<path restricted to the synchronization actions in p. If a non-volatile read r uses
WriteSet entry (w,val), then W(r) = w and V(w) = val. V(w) is well-defined
since all reads of the same write action in a path must get the same value.

For a fixed program, prog, usually considered to be understood, and let-
ting WS be the type of WriteSet, let JPRprog : WS — WS * Paths be a func-
tion that takes a ws € WS and returns a new WS and a set of paths paths.
JPRprog is a function represents an invocation of JPF seen in Fig. B where
Paths is the set of paths searched by JPF. For ws € WS and path p, we

JPR*

say that ws = pif p € JPRprog(ws).paths. We say that ws "— p if

JPR*

3 >0:pe (JPR%rOg(ws)).pathéﬁ. For convenience, we overload = and "=5

and also say ws — ws’ or ws "= ws' with the obvious meanings.
Lemma 1 (HBSet). JPR accurately records <pp for any generated path p or

prefiz of a path. It is invariant that for Va;,a; € p : a; # aj : a; <pp a; =
(ai,a;) € HBSet V (Jay, : (ai, ar) € HBSet A (ag,a;) € HBSet).

Proposition 1 (Safety). Let ws,. be the set of (w,v) pairs seen in the se-

quentially consistent executions of prog. If wse. '— p, then p corresponds to a
well-formed execution of prog.

5 1f 4 = 0, p must be empty.

Java Memory Model-Aware Model Checking 229

Proposition 2 (Completeness). JPRprog(ws) generates a path correspond-

ing to every well-formed execution of prog satisfying (Vreads r € A
(W (r), V(W(r))) € ws).

Lemma 2 (Monotonicity of JPRprog). JPRprog is monotonic, i.e.

—ws C ws' and JPRprog(ws) = (ws1,paths) and JPRprog(ws') =
(ws, paths’) then wsy C ws), and paths C paths’.
— ws C wsy.

Theorem 1 (Convergence). For finite state, terminating program prog, Sup-
pose that JPRprog is applied iteratively starting with wso. The process will reach
a fized point wsx in a finite number of steps and the resulting ws* will be the
least fized point of JPRprog at least wsg.

Proof. Noting that the (finite) set of (ws, paths) pairs with subset inclusion form
a complete lattice, the result from the Knaster-Tarski fixed point theorem and
lemma 21 O

Theorem 2 (Overapproximation). Let wss. be the smallest WriteSet con-
taining all of the values seen in the set of sequentially comsistent executions
of finite state, terminating program prog and wssc.x be the least fixed point of
JPRprog at least wss.. Let JPRpmg(wssc*).paths be the set of paths generated
by wsse. Let JmmLegalprog be the set of legal paths. Then JmmLegalprog C
JPRprog(stc*).pa,thS.

The above results show that the set of paths generated by JPRprog is an overap-
proximation of the JMM. As a practical matter, this means that JPR is sound:
if we show that a data race is benign by tesing with JPR then we can conclude
that a precise tool (if one existed) would also find it benign. On the other hand,
the overapproximation allows false alarms. Below, we discuss the source of the
imprecision in JPR.

In the example shown in
Fig.[Bl JPR generates a path Initially, x =y =2 =0
with result r1 ==12 == 1,
and 1r3 ==0. There is a Thread 1 Thread 2 Thread 3 Thread 4
valid path where action D2 Al:t1=xBl:r2=yCl:z=1Dl: 13 =z
writes 1, Al reads D2, A2 A2:y =11 B2: x =12 D2: x =13
writes 1, Bl reads A2, B2
writes 1. Then, on the next
iteration, Al reads B2 (and
imposes 1), Bl reads A2, and then B2 successfully writes 1 as imposed by Al,
while D1 reads the initialization action. However, this is not legal according to
the JMM. In order for rl1 == 12 == 1 to appear in a JMM-legal execution,
D2 would need to be a committed action with V(D2) == 1. But then r3 must
already be 1, so the execution is not legal. The value 1 is considered to come out-
of-thin-air in any execution where r3 == 0. Note that this is the same program

Fig.6

230 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders
Initially, x ==y == 0 Initially, x ==y == 0

Thread 1 Thread 2

rl=x; 12=y;

y =rl; if(r2 == 2)
x =1;

Thread 1 Thread 2
rl=x; r2=y;
y=rl; if(r2 < 2)
X = 3;
X = 2;
(a) rl == r2 == 2 is allowed
by approach scope but forbid-
den by approach occurrence.

else
x = 1;
(b) r1 == 12 == 1 is allowed by ap-
proach occurrence but forbidden by
scope.

Fig. 7. ActionIlD examples

as Fig. @l with the addition of Threads 3 and 4. In Fig. Bl JPR does not gener-
ate paths with out-of-thin-air values. Thus JPR may generate illegal paths with
out-of-thin-air values only when the out-of-thin-air values actually do appear in
some generated path. It does not generate completely arbitrary out-of-thin air
values. JPR could be made more precise by tracking impose requirements across
iterations and dependent actions at the cost of significantly increased time and
space overhead.

5 Experience

One of the difficulties encountered when implementing JPR was the lack of
a well-defined connection between the notion of executions used to define the
JMM and actual Java programs. This manifested itself in the representation of
the actionID. Within a single execution, the basic requirement of the actionIDs
is uniqueness. However, both the JMM definition of legal executions (Def. [3) and
JPR require that the identity of actions be compared across different executions
and paths, i.e. we must be able to determine if, say, a read of x in one execution
or path is the same action as a read of z in another by comparing their IDs.
This becomes problematic for programs with branches.

We considered four approaches to identify actions. Let ¢ be the thread, k be
the kind, v be the variable, and val be the value read or written.

Occurrence. (k,t,v,mn). n counts occurrences of k-actions by thread ¢ on v.
Scope. (t,5,n). S refers to the lexical scope, repeated invocations of the same
instruction, such as in a loop are differentiated by a sequence number n.
Value. (k,t,v,val). Actions with the same k,v, and t are distinguished by the
value. This is the approach used in [7] is not adequate because actions are
no longer uniquely identified if a thread writes the same value to a variable
more than once.

Occurence-Val. (k,t,v,val,n). Adds an occurence countn to valuewith the
consequence that for a write w, V(w) always maps to the same value, making
legality rules @ and [[in Def. [}l redundant and inoperative, respectively.

Java Memory Model-Aware Model Checking 231

scope occurrence occurrence-val JPF

hr . . .
#thr iter T states M iter T states M iter T states M T state M

tcl 2 314 16415 3 14 16415 3 1.5 1731508 4415
te3 3 3 41 231525 3 4.1 231524 3 4.7 258225 0.9 349 15
teh* 4 3112 632626 3123 632626 314.8 687726 1.2 1169 15
tc7 2 4 22 49625 4 22 49625 4 23 55726 08 6415
tc9 3 3 30 173715 3 3.0 173715 3 3.3 192915 1.0 279 15
tc9a 4 3 22 8015 3 22 8015 3 2.7 91415 0.9 26115
tcll 2 4 31 114726 4 3.2 114726 4 4.0 145225 0.9 9515
tcl3 2 3 12 3215 3 1.2 3215 3 1.2 3215 0.8 2415
tcl7 2 319 56515 3 19 56515 3 19 64115 0.8 7215
tcl9 3 3 52 220525 3 5.6 220525 3 5.5 250225 0.9 38115
hash 2 3 15 23715 3 15 23715 3 1.5 23715 0.7 6015
hash 4 33831244233 338.21244234 3 38.6 12442 34 1.7 3720 15
hash?2 2 3 13 2315 3 1.3 2315 3 13 2315 0.8 9815
isprime 2 3 20 30815 3 21 30815 3 22 30823 0.9 11815
dcl 2 3 11 2215 3 1.2 2215 3 1.2 2215 0.9 24315
peterson 2 3 15 8315 3 1.5 8315 3 1.5 8315 1.0 19415
dekker 2 313 2415 3 1.2 2415 3 1.2 2415 09 20315

Fig. 8. Experimental results comparing the performance of JPR using ActionID ap-
proaches scope, occurrence, and occurrence-val, respectively. Column T represents
the total time in seconds; column M represents the maximum memory consumption in
megabytes. * means that JPR generates paths not allowed by JMM.

The different approaches yield different sets of legal executions. Consider Figs.
[7hl and [fal Approach occurrence allows the outcome in Figs. [[h because both
assignments to x are considered to be the same action; if committed, the as-
signments could be included in the justifying executions. However, it forbids the
outcome in Fig. [Tal since the assignment x = 2 in two different executions may
have different actionIDs depending on whether or not the branch was taken.
Approach scope allows the indicated outcome in Fig. [Tal because regardless of
the execution order, x = 2 is within the same lexical scope and can be com-
mitted and verified. It does not allow the outcome in Fig. because the two
x = 1 actions are within different scopes and if one is committed, it is impossi-
ble for the action to be included in subsequent verification executions. We have
implemented scope, occurrence, and occurrence-val in JPR and compared
these approaches for several examples. A thorough analysis of which ActionID
approach would be more appropriate for JMM, however, is outside the scope of
this paper; we limit our contribution to calling the issue to the research commu-
nity’s attention and implementing the three approaches in JPR.

We ran JPR on three groups of test programs. Representative results are listed
in Fig. [8 The columns contain the number of threads, and for each action ID
approach described above, the number of iterations of JPF required to converge,
the total time, the number of states visited in the final iteration, and the max-
imum memory consumed, respectively. The final columns indicate the resource

232 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

public final class String{

2 private final char value[]; //final fields set in constructor
private final int offset , count;
4 private int hash; //not final, default value is 0

6 public int hashCode(){
int h = hash;
8 int len = count;
if (h == 0&&len > 0){
10 int off = offset;
char val[] = value;
12 for(int i = 0; i < len; i++){h = 31xh + val[off++];}
hash = h;
14 }
h = hash; //redundant read
16 return h;

}
18 }

Fig. 9. The data races are benign line [[5is removed from the program. Otherwise, the
races are not benign

usage for standard JPF for comparison purposes. All testing was performed on a
2.27 GHz Intel(R) Core(TM) i5 CPU, 4 GB main memory, with 64-bit Windows
7 operating system, JDK 1.6, and JPF version 6.

The first group, labeled tcl through tc20 are the test cases derived from the
JMM Causality Test Cases [14], which were designed to illustrate the properties
of the JMM (even numbered test cases are omitted for brevity, correctly synchro-
nized test cases are not interesting). For these, we output the paths generated by
JPR and compared them with the legal executions according to JMM. All legal
executions were generated with tc5 and tc10 generating forbidden executions.
tch is the example in Fig. [6 and discussed in section [l #c10 is similar.

The second group contains more realistic examples. In hash, the hashCode
method (Fig. @ with line[IH deleted) contains a racy lazy initialization of its hash
field; the read of hash (Line[7) and the write of hash (Line [[3) may form a data
race. This race is benign because in all legal executions, even the sequentially
inconsistent ones, a call to the hashCode method will always return the correct
hash code value. The assertions applied in both the 2-thread version and 4-thread
version of hash confirm this finding.

hash2 on the other hand, calls a slightly different version of hashCode (Fig.
[@) where the returned value is reread from hash (Line [TH). This is correct under
sequential consistency, but under the JMM, the race is not benign; a thread
calling hashCode could get the initial value 0 instead of the correct hash code.
The assertions failed in this case.

In isprime [20, §2.6], data races occur when multiple threads read and write
elements of a shared array without synchronization. Because accesses to array
elements in Java do not have volatile semantics, these accesses are racy and reads
may see stale values. In this program, reading a stale value affects performance
but not overall correctness; it always correctly identifies the prime numbers. The
assertion succeeded in this test case.

Java Memory Model-Aware Model Checking 233

class Foo{

2 private Helper helper = null;
public Helper getHelper() {
4 if (helper == null){
//read helper without synchronization, if not null, return value imme-

diately.

6 ysynchronized(this){ //if helper was null, acquire monitor and read it again
if (helper == null){ //if it is still null

8 helper = new Helper(); //instantiate a Helper object

10 } //release the monitor lock by leaving synchronized block

12 return helper;

}
Fig.10. Double checked locking

The third group contains the well-known synchronization problems. dcl is
the infamous double-checked locking (DCL) idiom [2] which attempts to reduce
locking overhead by lazy initialization of an object, but fails to safely publish
the object, allowing other threads to see a partially constructed object. In the
test case, two threads call the getHelper() method of Foo shown in Fig.

peterson and dekker are implementations of the classic mutual exclusion algo-
rithms without using volatiles. They guarantee mutual exclusion under sequen-
tial consistency, but fail in relaxed memory models such as JMM. Assertions
inserted to check non-interference in the critical sections in peterson and dekker
failed as expected. The paths in which dcl, peterson, and dekker had assertion
violations are legal according to JMM and therefore were detected by JPR but
are not exhibited by sequentially consistent programs. Standard JPF cannot
detect these problems.

6 Related Work

Ferrara [9] used a fixed point formulation to interpret the happens-before mem-
ory model. This work was done in the context of abstract interpretation, but was
not implemented into a real tool. Botincan, et. al. [3] showed that the causality
requirements of the JMM are undecidable.

Work has been done using various techniques to verify programs under re-
laxed hardware and programming language memory models. JUMBLE [10] is
a dynamic analysis system that implements an adversarial memory by keeping
track of a history of writes to racy variables. When a racy variable is read, the
adversarial memory returns some past value that JMM allows and is likely to
crash the program. Unlike JPR, this tool does not consider nonracy variables and
cannot simulate reading from a future write, hence can only provide an under-
approximation of JMM. RELAXER [6], a two-phase analysis tool, employs dy-
namic analysis in its first phase to detect races on SC executions and predicts
potential happen-before cycles if run under one of TSO, PSO, or PSLO. In the
second phase, it runs the tested program under the relaxed memory model with
a controlled scheduler that realizes the one with happen-before cycle to check

234 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

for program violations. JPR can be extended with a similar heuristic to prefer
exploring paths that may end up with a happen-before cycles. We also mention
that we have extended JPF to implement the TSO and PSO memory models.
While not of significant practical interest, these could be implemented without
requiring iteration, thus giving an illustration of the significant complexity of
the JMM.

Burckhardt, Alur and Martin [4] applied a SAT-based bounded verification
method to check concurrent data types under relaxed memory ordering models
employed by multiprocessors while Burckhardt and Musuvathi [5] described a
monitor algorithm that could be implemented by model checkers to verify re-
laxed memory models due to store buffers. The MemSAT system [2I] system
accepts a test program containing assertions and an axiomatic specification of
a memory model and then uses a SAT solver to find a trace that satisfies the
assertions and axioms, if there is one. Both the original JMM specification [I1],
and the modified version proposed by [I] were found to have surprising results
when applied to the JMM Causality test cases. MemSAT is intended to be used
with small “litmus test” programs to debug memory model specifications. In
contrast, JPR is intended to reason about programs. It explores all possible
paths according to the JMM and reports any assertion (program constrain vi-
olation) violations, which can help to decide whether the races are benign or
not. JPR can be used with programs containing object instantiation, loops and
other features that are not well supported in MemSAT. The authors of Java
memory model developed a simple simulator for the JMM [I§] which appears to
be geared more towards understanding the memory model than serving as a tool
for program analysis. De et al. [8] developed OpMM which uses a model checker
similar to Java PathFinder for state exploration. In contrast to JPR, OpMM is
an underapproximation of the JMM where read actions can see past writes that
occur before it in a sequentially consistent execution. As an underapproximation,
OpMM could be used for bug detection of racy programs, but not verification.

7 Conclusion

We have described JPR, an extension of JPF that generates an overapproxima-
tion of the JMM. With this extension, JPF can also be applied to the verification
of Java programs with data races. Our approach runs the model checking algo-
rithm in an iterative way to compute a least fixed point of a monotone function
that can generate sequentially inconsistent executions.

Although, like any tool based on model checking, state-space explosion is a
potential problem, we were able to successfully use the tool to show that data
races in some examples are benign. We also demonstrated assertion violations
in some programs, which are not detectable without awareness of the JMM.

Finally, we have shown that an operational semantics of JMM requires more
precise definition of the action ID concept. We have proposed, implemented,
and empirically compared three approaches. Although, drawing a conclusion on
which of these approaches would be the most appropriate one is outside the
scope of this paper, we hope to start a fruitful discussion on the topic.

Java Memory Model-Aware Model Checking 235

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Aspinall, D., Sevéik, J.: Formalising Java’s Data Race Free Guarantee. In: Schnei-

der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 22-37. Springer,
Heidelberg (2007)

. Bacon, D., Bloch, J., Bogda, J., Click, C., Haahr, P., Lea, D., May, T., Maessen, J.,

Manson, J., Mitchell, J.D., Nilsen, K., Pugh, B., Sirer, E.G.: The “double-checked
locking is broken” declaration,
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

. Botin¢an, M., Glavan, P., Runje, D.: Verification of Causality Requirements in Java

Memory Model Is Undecidable. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6068, pp. 62-67. Springer, Heidel-
berg (2010)

. Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded Model Checking of Concurrent

Data Types on Relaxed Memory Models: A Case Study. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 489-502. Springer, Heidelberg (2006)

. Burckhardt, S., Musuvathi, M.: Effective Program Verification for Relaxed Memory

Models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107-120.
Springer, Heidelberg (2008)

. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory

models. In: ISSTA (2011)

. Cenciarelli, P., Knapp, A., Sibilio, E.: The Java Memory Model: Operationally,

Denotationally, Axiomatically. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 331-346. Springer, Heidelberg (2007)

. De, A., Roychoudhury, A., D’Souza, D.: Java Memory Model aware software vali-

dation. In: PASTE (2008)

Ferrara, P.: Static analysis via abstract interpretation of the happens-before mem-
ory model. In: Proceedings of the 2nd International Conference on Tests and Proofs
(2008)

Flanagan, C., Freund, S.N.: Adversarial memory for detecting destructive races.
In: PLDI, pp. 244-254 (2010)

Gosling, J., Joy, B., Steele, G., Bracha, G.: Java Language Specification, 3rd edn.
Addison-Wesley (2005)

Jin, H., Yavuz-Kahveci, T., Sanders, B.A.: Java memory model-aware model check-
ing. Tech. Rep. REP-2011-516, Department of Computer and Information Science,
University of Florida (2011), http://www.cise.ufl.edu/tr/REP-2011-516/

Jin, H., Yavuz-Kahveci, T., Sanders, B.A.: Java Path Relaxer: Extending JPF for
JMM-aware model checking. In: JPF Workshop 2011 (2011)

JMM causality test cases,

http://www.cs.umd.edu/ pugh/java/memoryModel/
unifiedProposal/testcases.html

Java Pathfinder, http://babelfish.arc.nasa.gov/trac/jpf

Java Racefinder,
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-racefinder
Kim, K., Yavuz-Kahveci, T., Sanders, B.A.: JRF-E: Using model checking to give
advice on eliminating memory model-related bugs. In: ASE (2010)

Manson, J., Pugh, W.: The Java Memory Model simulator. In: Workshop on Formal
Techniques for Java-like Programs (2002)

Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005 (2005)

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cise.ufl.edu/tr/REP-2011-516/
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-racefinder

236 H. Jin, T. Yavuz-Kahveci, and B.A. Sanders

20. Oracle thread analyzer’s user guide,
http://download.oracle.com/docs/cd/E18659_01/html/821-2124/gecqt.html

21. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: checking axiomatic specifications of
memory models. In: PLDI (2010)

22. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering Journal 10(2) (April 2003)

23. Sevéik, J., Aspinall, D.: On Validity of Program Transformations in the Java Mem-
ory Model. In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 27-51. Springer,
Heidelberg (2008)

http://download.oracle.com/docs/cd/E18659_01/html/821-2124/gecqt.html

	Java Memory Model-Aware Model Checking

	Introduction
	Background
	Java PathRelaxer (JPR)
	Properties of the JPR Algorithm
	Experience
	Related Work
	Conclusion
	References

