
Aspect-Oriented Runtime Monitor Certification�

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar

University of Texas at Dallas
{hamlen,micah.jones1,meera.sridhar}@utdallas.edu

Abstract. In-lining runtime monitors into untrusted binary programs
via aspect-weaving is an increasingly popular technique for efficiently
and flexibly securing untrusted mobile code. However, the complexity of
the monitor implementation and in-lining process in these frameworks
can lead to vulnerabilities and low assurance for code-consumers. This
paper presents a machine-verification technique for aspect-oriented in-
lined reference monitors based on abstract interpretation and model-
checking. Rather than relying upon trusted advice, the system verifies
semantic properties expressed in a purely declarative policy specifica-
tion language. Experiments on a variety of real-world policies and Java
applications demonstrate that the approach is practical and effective.

Keywords: Abstract interpretation, in-lined reference monitors, model-
checking, security.

1 Introduction

Software security systems that employ purely static analyses to detect and reject
malicious code are limited to enforcing decidable security properties. Unfortu-
nately, most useful program properties, such as safety and liveness properties,
are not generally decidable and can therefore only be approximated by purely
static analyses. For example, signature-based antivirus products accept or re-
ject programs based on their syntax rather than their runtime behavior, and
therefore suffer from dangerous false negatives, inconvenient false positives, or
both (cf., [16]). This has shifted software security research increasingly toward
more powerful dynamic analyses, but these dynamic systems are often far more
difficult to formally verify than provably sound static analyses.

An increasingly important family of such dynamic analyses are those that
modify untrusted binary code prior to its execution. In-lined reference monitors
(IRMs) instrument untrusted code with new operations that perform runtime
security checks before potentially dangerous operations [27]. The approach is mo-
tivated by improved efficiency (since IRMs require fewer context switches than
external monitors), deployment flexibility (since in-lining avoids modifying the
VM or OS), and precision (since IRMs can monitor internal program operations

� Supported by AFOSR award FA9550-08-1-0044 and NSF award NSF-1065216. Any
views expressed do not necessarily reflect those of the NSF or AFOSR.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 126–140, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Aspect-Oriented Runtime Monitor Certification 127

not readily visible to an external monitor). Most modern IRM systems are imple-
mented using some form of aspect-oriented programming (AOP) [32,28,7,8,14].
Such IRMs are implemented as pointcut -advice pairs: pointcuts identify security-
relevant program operations and advice prescribes local code transformations
sufficient to guard such operations. This suffices to enforce safety policies [27,18]
and some liveness policies [26].

To provide exceptionally high assurance guarantees, recent work has sought
to reduce the (potentially large) trusted computing bases (TCBs) of IRM
frameworks by separately machine-verifying the self-monitoring code they pro-
duce [17,1,30,31]. For example, the S3MS project uses a contract-based verifier [1]
to avoid trusting the the much larger in-liner (over 900K lines of Java code if
one includes the underlying AspectJ system [22]) that generates the IRMs.

However, TCB-minimization of large IRM systems has been frustrated by the
inevitable inclusion of significant, trusted code within the AOP-style policy spec-
ifications themselves. Verifiers for these systems can prove that the IRM system
has correctly in-lined the policy-prescribed advice code but not that this advice
actually enforces the desired policy. Past case studies have demonstrated that
such advice is extremely difficult to write correctly, especially when the policy is
intended to apply to large classes of untrusted programs rather than individual
applications [21]. Moreover, in many domains, such as web ad security, policy
specifications change rapidly as new attacks and vulnerabilities are discovered
(cf., [23,29,30]). Thus, the considerable effort that might be devoted to formally
verifying one particular aspect implementation quickly becomes obsolete when
the aspect is revised in response to a new threat.

To address this open challenge, we present Cheko : the first IRM-certification
framework that verifies full, AOP-style IRMs against purely declarative policy
specifications without trusting the code that implements the IRM. Cheko uses
light-weight model-checking and abstract interpretation to verify untrusted (but
verifiably type-safe) Java bytecode binaries against trusted policy specifications
that lack advice. Policies declaratively specify how security-relevant program op-
erations affect an abstract system security state. Unlike contracts, which denote
code transformations, policies in our system therefore denote pure code prop-
erties. Such properties can be enforced by untrusted aspects that dynamically
detect impending policy violations and take corrective action. The woven aspects
are verified (along with the rest of the self-monitoring code) against the trusted
policy specification prior to its execution.

Cheko was inspired by our prior work on model-checking IRMs [30,29,9],
but includes numerous substantial theoretic and pragmatic leaps beyond those
earlier works. These include:

– support for a full-scale Java IRM framework (the SPoX IRM system [14,20])
that includes stateful (history-based) policies, event detection by pointcut-
matching, and IRM implementations that combine (untrusted) before- and
after-advice insertions;

– a novel approach to dynamic pointcut verification using Constraint Logic
Programming (CLP) [19]; and

128 K.W. Hamlen, M.M. Jones, and M. Sridhar

– proofs of correctness based on Cousot’s abstract interpretation framework [5]
that link the denotational semantics of SPoX policies to the operational
semantics of the abstract interpreter.

Section 2 begins with related work, followed by an overview of the SPoX policy
language and the rewriter in §3. Section 4 presents a high-level description of
the verification algorithm. (A more detailed treatment with proofs is available
in the companion technical report [15].) Section 5 presents in-depth case-studies
of several security policy classes that we enforced on numerous real-world ap-
plications, and discusses challenges faced in implementing and verifying these
policies. Finally, §6 concludes with recommendations for future work.

2 Related Work

IRMs were first formalized in the PoET/PSLang/SASI systems [11,27,10], which
implement IRMs for Java bytecode and Gnu assembly code. IRM systems have
subsequently been developed for many architectures (cf., [24,4]). Most of these
express security policies in an AOP or AOP-like language with pointcut ex-
pressions for identifying security-relevant binary program operations, and code
fragments (advice) that specify actions for detecting and prohibiting impending
policy violations. A hallmark of these systems is their ability to enforce history-
based, stateful policies that permit or prohibit each event based on the history
of past events exhibited by the program. This is typically achieved by express-
ing the security policy as an automaton [27,25] whose state is reified into the
untrusted program as a protected global variable. The IRM tracks the current
security state at runtime by consulting and updating the variable as events occur.

Machine-certification of IRMs was first proposed as type-checking [33]—an
idea that was later extended and implemented in the Mobile system [17]. Mo-
bile transforms Microsoft .NET bytecode binaries into safe binaries with typing
annotations in an effect-based type system. The annotations constitute a proof
of safety that a type-checker can separately verify to prove that the transformed
code is safe. Type-based IRM certification is efficient and elegant but does not
currently support dynamic pointcut matching. It has therefore not been applied
to AOP-style IRMs to our knowledge.

ConSpec [2,1] adopts a security-by-contract approach to AOP IRM certifica-
tion. Its certifier performs a static analysis that verifies that contract-specified
guard code appears at each security-relevant code point. While certification-via-
contract facilitates natural expression of policies as AOP programs, it has the
disadvantage of including the potentially complex advice code in the TCB.

Our prior work [30] is the first to adopt a model-checking approach to verify
such IRMs without trusted guard code. The prototype IRM certifier in [30]
supports reified security state, but it does not support dynamic pointcuts and
its support for advice is limited to a very constrained form of before-advice.
It therefore does not support real-world IRM systems or their policies, which
regularly employ dynamic pointcuts and after-advice.

Aspect-Oriented Runtime Monitor Certification 129

In contrast, the verifier presented in this work targets SPoX [14,20], a fully
featured, purely declarative AOP IRM system for Java bytecode. SPoX policies
are advice-free; any advice that implements the IRM remains untrusted and
must therefore undergo verification. Policy specifications consist of pointcuts
and declarative specifications of how pointcut-matching events affect the secu-
rity state. The abstract security state-changes specified by SPoX policies are
significantly higher-level and simpler than the arbitrary advice code admitted
by non-declarative AOP languages. Thus, SPoX policies are a significant TCB
reduction over AOP contracts that implement them.

3 Policy Language and Rewriter

As an example of how software security policies are specified in SPoX, Fig. 1
specifies a policy that permits applications to send at most 10 email messages
per run. The policy says that Mail.send API calls increment security state s up
to 10, but an 11th call triggers a policy violation. Such a policy could be useful
for preventing spam.

1 (state name="s")
2 (forall "i" from 0 to 9
3 (edge name="count"

4 (call "Mail.send")
5 (nodes "s" i, i+ 1)))
6 (edge name="10emails"

7 (call "Mail.send")
8 (nodes "s" 10,#))

Fig. 1. A policy permitting at most 10 email-send events

More formally, SPoX policies denote security automata [3]—finite- or infinite-
state machines that accept languages of permissible event sequences. Sets of edges
in the security automaton are described by edge structures, each of which con-
sists of a pointcut expression (Lines 4 and 7) and at least one nodes declaration
(Lines 5 and 8). The pointcut expression defines a common label for the edges
in the set, while each nodes declaration imposes a transition pre-condition and
post-condition for a particular state variable. The pre-condition constrains the
set of source states to which the edge applies, and the post-condition describes
how the state changes when an event satisfying the pointcut expression and all
pre-conditions is exhibited. Events that satisfy none of the outgoing edge labels
of the current security state leave the security state unchanged. Policy-violations
are explicitly identified with the reserved post-condition “#”.

SPoX derives its pointcut language from AspectJ, allowing policy writers to
develop policies that regard static and dynamic method calls and their argu-
ments, object pointers, and lexical contexts, among other properties. In order to
remain fully declarative, SPoX omits explicit, imperative advice. Instead, poli-
cies declaratively specify how security-relevant events change the current security

130 K.W. Hamlen, M.M. Jones, and M. Sridhar

automaton state. Rewriters then synthesize their own advice in order to enforce
the prescribed policy. The use of declarative state-transitions instead of imper-
ative advice facilitates formal, automated reasoning about policies without the
need to reason about arbitrary code [21].

The SPoX rewriter takes as input a Java binary archive (JAR) and a SPoX
policy, and outputs a new application in-lined with an IRM that enforces the
policy. The high-level in-lining approach is essentially the same as the other IRM
systems discussed in §2. Each method body is scanned for potentially security-
relevant instructions, and sequences of guard instructions are in-lined around
those to detect and preclude policy-violations at runtime.

In-lined guard code must track event histories if the policy is stateful. To do
so, the rewriter reifies abstract security state variables into the untrusted code
as static, private class fields. The guard code then tracks the abstract security
state by consulting and updating the corresponding fields. The runtime guards
must also evaluate any statically undecidable portions of pointcut expressions
to decide whether impending events are actually security-relevant. For example,
to evaluate pointcut (argval 1 (intgt 2)), it might dynamically test whether
x > 2, where x is the impending operation’s first argument.

(A=S ∧ A=T) 0.1
1 if (Policy.s >= 0 && Policy.s <= 9)

(A=S ∧A=T ∧ S≥0 ∧ S≤9) 1.1
2 Policy.temp s := Policy.s+1;

(A=S ∧ A=T ′ ∧ S≥0 ∧ S≤9 ∧ T=S+1) 2.1
(A=S ∧ A=T ∧ (S<0 ∨ S>9)) 2.2

3 if (Policy.s == 10)
(A=S ∧ A=T ′ ∧ S≥0 ∧ S≤9 ∧ T=S+1 ∧ S=10) 3.1

(A=S ∧A=T ∧ (S<0 ∨ S>9) ∧ S=10) 3.2
4 call System.exit(1);

(A=S ∧ A=T ′ ∧ S≥0 ∧ S≤9 ∧ T=S+1 ∧ S �=10) 4.1
(A=S ∧A=T ∧ (S<0 ∨ S>9) ∧ S �=10) 4.2

5 Policy.s := Policy.temp s;
(A=S′ ∧ A=T ′ ∧ S′≥0 ∧ S′≤9 ∧ T=S′+1 ∧ S′ �=10 ∧ S=T) 5.1

(A=S′ ∧ A=T ∧ (S′<0 ∨ S′>9) ∧ S′ �=10 ∧ S=T) 5.2
6 call Mail.send();
(A′=S′ ∧A′=T ′ ∧ S′≥0 ∧ S′≤9 ∧ T=S′+1 ∧ S′ �=10 ∧ S=T ∧A′=I ∧ I≥0 ∧ I≤9 ∧A=I+1) 6.1

(A′=S′ ∧ A′=T ′ ∧ S′≥0 ∧ S′≤9 ∧ T=S′+1 ∧ S′ �=10 ∧ S=T ∧ A′=10 ∧A=#) 6.2
(A′=S′ ∧A′=T ′ ∧S′≥0∧S′≤9∧T=S′+1∧S′ �=10∧S=T ∧ (A′<0∨A′>9)∧A′ �=10∧A=A′) 6.3

(A′=S′ ∧ A′=T ∧ (S′<0 ∨ S′>9) ∧ S′ �=10 ∧ S=T ∧ A′=I ∧ I≥0 ∧ I≤9 ∧ A=I+1) 6.4
(A′=S′ ∧ A′=T ∧ (S′<0 ∨ S′>9) ∧ S′ �=10 ∧ S=T ∧ A′=10 ∧A=#) 6.5

(A′=S′ ∧ A′=T ∧ (S′<0 ∨ S′>9) ∧ S′ �=10 ∧ S=T ∧ (A′<0 ∨ A′>9) ∧A′ �=10 ∧ A=A′) 6.6

Fig. 2. An abstract interpretation of instrumented pseudocode

The left column of Fig. 2 gives pseudocode for an IRM that enforces the
policy in Fig. 1. For each call to method Mail.send, the IRM tests two possible
preconditions: (1) 0 ≤ s ≤ 9 and (2) s = 10. In the first case, it increments s;
in the second, it aborts the process. Observe that in this example security state
s has been reified as two separate fields of class Policy (s and temp s) in order
to prevent join point conflicts. This reflects a reality that any given policy has a
variety of IRM implementations, many of which contain unexpected quirks that
address non-obvious, low-level enforcement details.

Aspect-Oriented Runtime Monitor Certification 131

4 Verifier

Our verifier takes as input (1) a SPoX security policy, (2) an instrumented,
type-safe Java bytecode program, and (3) some optional, untrusted hints from
the rewriter (detailed shortly). It either accepts the program as provably policy-
satisfying or rejects it as potentially policy-violating. Type-safety is checked by
the JVM, allowing our verifier to safely assume that all bytecode operations obey
standard Java memory-safety and well-formedness. This keeps tractable the task
of reliably identifying security relevant operations and field accesses.

The main verifier engine uses abstract interpretation to non-deterministically
explore all control-flow paths of the untrusted code, inferring an abstract pro-
gram state at each code point. A model-checker then proves that each abstract
state is policy-adherent, thereby verifying that no execution of the code enters a
policy-violating program state. Policy-violations are modeled as stuck states in
the operational semantics of the verifier—that is, abstract interpretation cannot
continue when the current abstract state fails the model-checking step. This re-
sults in conservative rejection of the untrusted code. The verifier is expressed as
a bisimulation of the program and the security automaton. Abstract states in
the analysis conservatively approximate not only the possible contents of mem-
ory (e.g., stack and heap contents) but also the possible security states of the
system at each code point.

The heart of the verification algorithm involves inferring and verifying rela-
tionships between the abstract program state and the abstract security state.
When policies are stateful, this involves verifying relationships between the
abstract security state and the corresponding reified security state(s). These
relationships are complicated by the fact that although the reified state often
precisely encodes the actual security state, there are also extended periods during
which the reified and abstract security states are not synchronized at runtime.
For example, guard code may preemptively update the reified state to reflect a
future security state that will only be reached after subsequent security-relevant
events, or it may retroactively update the reified state only after numerous oper-
ations that change the security state have occurred. These two scenarios corre-
spond to the insertion of before- and after-advice in AOP IRM implementations.
The verification algorithm must be powerful enough to automatically track these
relationships and verify that guard code implemented by the IRM suffices to pre-
vent policy violations.

To aid the verifier in this task, we modified the SPoX rewriter to export two
forms of untrusted hints along with the rewritten code: (1) a relation ∼ that
associates policy-specified security state variables s with their reifications r, and
(2) marks that identify code regions where related abstract and reified states
might not be synchronized according to the following definition:

Definition 1 (Synchronization Point). A synchronization point (SYNC) is
an abstract program state with constraints ζ such that proposition ζ∧(∨

r∼s(r �=
s)
)
is unsatisfiable.

132 K.W. Hamlen, M.M. Jones, and M. Sridhar

Cheko uses these hints (without trusting them) to guide the verification pro-
cess and to avoid state-space explosions that might lead to conservative re-
jection of safe code. In particular, it verifies that all non-marked instructions
are SYNC -preserving, and each outgoing control-flow from a marked region is
SYNC -restoring. This modularizes the verification task by allowing separate
verification of marked regions, and controls state-space explosions by reducing
the abstract state to SYNC throughout the majority of binary code which is
not security-relevant. Providing incorrect hints causes Cheko to reject (e.g.,
when it discovers that an unmarked code point is potentially security-relevant)
or converge more slowly (e.g., when security-irrelevant regions are marked and
therefore undergo unnecessary extra analysis), but it never leads to unsound
certification of unsafe code.

A Verification Example. Figure 2 demonstrates a verification example step-by-
step. The pseudocode constitutes a marked region in the target program, and the
verifier requires that the abstract interpreter is in the SYNC state immediately
before and after. At each code point, the verifier infers an abstract program state
that includes one or more conjunctions of constraints on the abstract and reified
security state variables. These constraints track the relationships between the
reified and abstract security state. Here, variable A represents the abstract state
variable s from the policy in Fig. 1. Reifications Policy.s and Policy.temp s

are written as S and T , respectively, with S ∼ A and T ∼ A. Thus, state SYNC
is given by constraint expression (A = S ∧ A = T) in this example.

The analysis begins in the SYNC state, as shown in constraint list 0.1. Line 1 is
a conditional, and thus spawns two new constraint lists, one for each branch. The
positive branch (1.1) incorporates the conditional expression (S ≥ 0 ∧ S ≤ 9) in
Line 2, whereas the negative branch (2.2) incorporates the negation of the same
conditional. The assignment in Line 2 is modeled by alpha-converting T to T ′

and conjoining constraint S = T + 1; this yields constraint list 2.1.1

Unsatisfiable constraint lists are opportunistically pruned to reduce the state
space. For example, list 3.1 shows the result of applying the conditional of Line 3
to 2.1. Conditionals 1 and 3 are mutually exclusive, resulting in contradictory
expressions S ≤ 9 and S = 10; therefore, 3.1 is dropped. Similarly, 3.2 is dropped
because no control-flows exit Line 4.

To interpret a security-relevant event such as the one in Line 6, the verifier
simulates the traversal of all edges in the security automaton. In typical policies,
any given instruction fails to match a majority of the pointcut labels in the
policy, so most are immediately dropped. The remaining edges are simulated by
conjoining each edge’s pre-conditions to the current constraint list and modeling
the edge’s post-condition as a direct assignment to A. For example, edge count
in Fig. 1 imposes pre-condition (0 ≤ I ≤ 9) ∧ (A = I), and its post-condition
can be modeled as assignment A := I + 1. Applying these to list 5.1 yields list
6.1. Likewise, 6.2 is the result of applying edge 10emails to 5.1, and 6.4 and 6.5
are the results of applying the two edges (respectively) to 5.2.

1 The + operation here denotes modular addition to model arithmetic overflows.

Aspect-Oriented Runtime Monitor Certification 133

Constraints 6.3 and 6.6 model the possibility that no explicit edge matches,
and therefore the security state remains unchanged. They are obtained by con-
joining the negations of all of the edge pre-conditions to states 5.1 and 5.2,
respectively. Thus, security-relevant events have a multiplicative effect on the
state space, expanding n abstract states into at worst n(m+1) states, where m
is the number of potential pointcut matches.

If any constraint list is satisfiable and contains the expression A = #, the
verifier cannot disprove the possibility of a policy violation and therefore conser-
vatively rejects. Constraints 6.2 and 6.5 both contain this expression, but they
are unsatisfiable, proving that a violation cannot occur. Observe that the IRM
guard at Line 3 is critical for proving the safety of this code because it introduces
constraint S′ �= 10 that makes these two lists unsatisfiable. If Lines 3–4 were not
included, the verifier would reject at this point because constraints 6.2 and 6.5
are satisfiable with A = # without clause S′ �= 10.

At all control-flows from marked to unmarked regions, the verifier requires
a constraint list that implies SYNC . In this example, constraints 6.1 and 6.6
are the only remaining lists that are satisfiable, and conjoining them with the
negation of SYNC expression (A = S) ∧ (A = T) yields an unsatisfiable list.
Thus, this code is accepted as policy-adherent.

Dynamically Decided Pointcuts. Verification of events corresponding to stati-
cally undecidable pointcuts (such as argval) requires analysis of dynamic checks
inserted by the rewriter, which consider the contents of the stack and local vari-
ables at runtime. Numeric comparisons are translated directly into constraint
expressions; for example, the instruction if(x>2) introduces clause X > 2 for
the positive branch and X ≤ 2 for the negative branch. Non-numeric dynamic
pointcuts (e.g., streq pointcut expressions) are modeled by reducing them to
equivalent integer encodings. For example, to support dynamic string regexp-
matching, Cheko introduces a boolean-valued variable Xre for each string-
typed program variable x and policy regexp re. Program operations that test x
against re introduce constraintXre = 1 in their positive branches and Xre = 0 in
their negative branches. An in-depth verification example involving dynamically
decidable pointcuts is provided in the companion technical report [15].

Limitations. Our verifier supports most forms of Java reflection, but in order
to safely track write-accesses to reified security state fields, the verifier requires
such fields to be static, private class members, and it conservatively rejects pro-
grams that contain reflective field-write operations within classes that contain
reified state. Thus, in order to pass verification, rewriters must implement reified
state fields within classes that do not perform write-reflection. This is standard
practice for most IRM systems including SPoX, so did not limit any of our tests.
Instrumented programs may detect and respond to the presence of the IRM
through read-reflection, but not in a way that violates the policy.

Our system supports IRMs that maintain a global invariant whose preserva-
tion across the majority of the rewritten code suffices to prove safety for small
sections of security-relevant code, followed by restoration of the invariant. Our

134 K.W. Hamlen, M.M. Jones, and M. Sridhar

experience with existing IRM systems indicates that most IRMs do maintain
such an invariant (SYNC) as a way to avoid reasoning about large portions
of security-irrelevant code in the original binary. However, IRMs that maintain
no such invariant, or that maintain an invariant inexpressible in our constraint
language, cannot be verified by our system. For example, an IRM that stores
object security states in a hash table cannot be certified because our constraint
language is not sufficiently powerful to express collision properties of hash func-
tions and prove that a correct mapping from security-relevant objects to their
security states is maintained by the IRM.

To keep the rewriter’s annotation burden small, our certifier also uses this
same invariant as a loop-invariant for all cycles in the control-flow graph. This
includes recursive cycles in the call graph as well as control-flow cycles within
method bodies. Most IRM frameworks do not introduce such loops to non-
synchronized regions. However, this limitation could become problematic for
frameworks wishing to implement code-motion optimizations that separate sec-
urity-relevant operations from their guards by an intervening loop boundary.
Allowing the rewriter to suggest different invariants for different loops would lift
the limitation, but taking advantage of this capability would require the devel-
opment of rewriters that infer and express suitable loop invariants for the IRMs
they produce. To our knowledge, no existing IRM systems yet do this.

While our certifier is provably convergent (since it arrives at a fixpoint for
every loop through enforcing SYNC on loop back-edges), it can experience state-
space explosions that are exponential in the size of each contiguous, unsynchro-
nized code region. Typical IRMs limit such regions to relatively small, separate
code blocks scattered throughout the rewritten code; therefore, we have not ob-
served this to be a significant limitation in practice. However, such state-space
explosions could be controlled without conservative rejection by applying the
same solution above. That is, rewriters could suggest state abstractions for arbi-
trary code points, allowing the certifier to forget information that is unnecessary
for proving safety and that leads to a state-space explosion. Again, the challenge
here is developing rewriters that can actually generate such abstractions.

Our current implementation and theoretical analysis are for purely serial pro-
grams; concurrency support is reserved for future work. Analysis, enforcement,
and certification of multithreaded IRMs is an ongoing subject of current research
with several interesting open problems (cf., [6]).

Soundness. Our certifier forms the centerpiece of the TCB of the system, allow-
ing the monitor and monitor-producing tools to remain untrusted. An unsound
certifier (i.e., one that fails to reject some policy-violating programs) can lead
to system compromise and potential damage. It is therefore important to estab-
lish exceptionally high assurance for the certification algorithm. We proved the
soundness of our approach using Cousot’s abstract interpretation framework [5].

The proof models the verification algorithm as the small-step operational
semantics of an abstract machine. A corresponding concrete operational seman-
tics models the Java VM’s interpretation of bytecode instructions. For brevity,
the concrete and abstract operational semantics concern a small, relevant core

Aspect-Oriented Runtime Monitor Certification 135

subset of Java bytecode instructions rather than the full bytecode language. The
core language is semantically connected to full Java bytecode through Classic-
Java [13,14]. Bisimulation of the abstract and concrete machines provably satis-
fies a soundness property that relates abstract states to the concrete states they
abstract. This is proved via the following progress and preservation lemmas.

Lemma 1 (Progress). If abstract machine state χ̂ is a sound abstraction of
concrete machine state χ, and χ̂ takes a step (i.e., the verifier does not reject),
then χ takes a step (i.e., the concrete machine does not exhibit a policy violation).

Lemma 2 (Preservation). If abstract machine state χ̂ soundly abstracts con-
crete machine state χ, and χ steps to χ′, then χ̂ steps to some state χ̂′ that is a
sound abstraction of χ′.

The preservation lemma proves that a bisimulation of the abstract and concrete
machines preserves the soundness relation, while the progress lemma proves that
as long as the soundness relation is preserved, the abstract machine anticipates
all policy violations of the concrete machine. Both proofs are standard (but
lengthy) structural inductions over the respective operational semantic deriva-
tions. Together, these two lemmas dovetail to form an induction over arbitrary
length execution sequences, proving that programs accepted by the verifier will
not violate the policy. Detailed operational semantics and proofs can be found
in the companion technical report [15].

5 Case Studies

Our prototype verifier implementation consists of 5200 lines of Prolog and 9100
lines of Java. The Prolog code runs under 32-bit SWI-Prolog 5.10.4, which com-
municates with Java via the JPL interface. The Java side parses SPoX policies
and Java bytecode, and compares bytecode instructions to the policy to recog-
nize security-relevant events. The Prolog code forms the core of the verifier, and
handles control-flow analysis, model-checking, and linear constraint analysis us-
ing CLP. Model-checking is only applied to code that the rewriter has marked as
security-relevant. Unmarked code is subjected to a linear scan that ensures that
it lacks security-relevant instructions and reified security state modifications.

We have used our prototype implementation to rewrite and then successfully
verify several Java applications, discussed throughout the remainder of the sec-
tion. Statistics are summarized in Table 1. All tests were performed on a Dell
Studio XPS notebook computer running Windows 7 64-bit with an Intel i7-
Q720M quad core processor, a Samsung PM800 solid state drive, and 4 GB of
memory. A more detailed description of each application can be found in [15].

In Table 1, file sizes are expressed in three parts: the original size of the main
program before rewriting, the size after rewriting, and the size of system libraries
that needed to be verified (but not rewritten). Verification of system library code
is required to verify the safety of control-flows that pass through them. Likewise,
each cell in the classes column has two parts: the number of classes in the main
program and the number of classes in the libraries.

136 K.W. Hamlen, M.M. Jones, and M. Sridhar

Table 1. Experimental Results

Total Model
File Sizes (KB) # Classes Rewrite # Verif. Check

Program Policy old / new/ libs old / libs Time (s) Evts. Time (s) Time (s)

EJE NoExecSaves 439/ 439/ 0 147/ 0 6.1 1 202.8 16.3
RText 1264/1266/ 835 448/ 680 52.1 7 2797.5 54.5
JSesh 1923/1924/ 20878 863/ 1849 57.8 1 5488.1 196.0
vrenamer NoExecRename 924/ 927/ 0 583/ 0 50.1 9 1956.8 41.0
jconsole NoUnsafeDel 35/ 36/ 0 33/ 0 0.6 2 115.7 15.1
jWeather NoSndsAftrRds 288/ 294/ 0 186/ 0 12.3 46 308.2 156.7
YTDownload 279/ 281/ 0 148/ 0 17.8 20 219.0 53.6
jfilecrypt NoGui 303/ 303/ 0 164/ 0 9.7 1 642.2 2.8
jknight OnlySSH 166/ 166/ 4753 146/ 2675 4.5 1 650.1 3.0
Multivalent EncrpytPDF 1115/1116/ 0 559/ 0 129.9 7 3567.0 26.9
tn5250j PortRestrict 646/ 646/ 0 416/ 0 85.4 2 2598.2 23.6
jrdesktop SafePort 343/ 343/ 0 163/ 0 8.3 5 483.0 17.8
JVMail TenMails 24/ 25/ 0 21/ 0 1.6 2 35.1 8.0
JackMail 165/ 166/ 369 30/ 269 2.5 1 626.7 8.9
Jeti CapLgnAttmpts 484/ 484/ 0 422/ 0 15.3 1 524.3 8.8
ChangeDB CapMembers 82/ 83/ 404 63/ 286 4.3 2 995.3 12.0
projtimer CapFileCreat 34/ 34/ 0 25/ 0 15.3 1 56.2 6.1
xnap NoFreeRide 1250/1251/ 0 878/ 0 24.8 4 1496.2 56.4
Phex 4586/4586/ 3799 1353/ 830 69.4 2 5947.0 172.7
Webgoat NoSqlXss 429/ 431/ 6338 159/ 3579 16.7 2 10876.0 120.0
OpenMRS NoSQLInject 1781/1783/ 24279 932/17185 78.7 6 2897.0 37.3
SQuirreL SafeSQL 1788/1789/ 1003 1328/ 626 140.2 1 3352.1 37.3
JVMail LogEncrypt 25/ 26/ 0 22/ 0 1.8 6 71.3 43.2
jvs-vfs CheckDeletion 277/ 277/ 0 127/ 0 4.4 2 193.9 6.3
sshwebproxy EncryptPayload 36/ 37/ 389 19/ 16 1.1 5 66.7 7.0

Six of the rewritten applications listed in Table 1 (vrenamer, jWeather,
jrdesktop, Phex, Webgoat, and SQuirreL) were initially rejected by our verifier
due to a subtle security flaw that our verifier uncovered in the SPoX rewriter.
For each of those cases, a bytecode analysis revealed that the original code con-
tained a form of generic exception handler that can potentially hijack control-
flows within IRM guard code. This could cause the abstract and reified security
state to become desynchronized, breaking soundness. We corrected this by man-
ually editing the rewritten bytecode to exclude guard code from the scope of the
outer exception handler. This resulted in successful verification. Our fix could be
automated by in-lining inner exception handlers for guard code to protect them
from interception by an outer handler.

The following discussion groups the case-studies into four policy classes. SPoX
policies are provided in a generalized form representative of the various instan-
tiations of the policy that we used for specific applications. The real policies
substitute the simple pointcut expressions in each sample with more complex,
application-specific pointcuts that are here omitted for space reasons.

Filename Guards. Our NoExecSaves policy (generalized below) prevents file-
creation operations from specifying a file name with an executable extension.
Such a policy could be used to prevent malware propagation.

Aspect-Oriented Runtime Monitor Certification 137

1 (edge name="saveToExe"

2 (nodes "s" 0,#)
3 (and (call "java.io.FileWriter.new")
4 (argval 1 (streq ".*\.(exe|bat|...)"))
5 (withincode "FileSystem.saveFile")))

The regular expression in Line 4 matches any string that ends in an exe-
cutable file extension. There are many file extensions that are considered to be
executable on Windows; we included all listed at [12]. This policy was enforced
on three applications: EJE, a Java code editor; RText, a text editor; and JSesh,
a heiroglyphics editor for use by archaeologists. After rewriting, each program
halted when we tried to save a file with a prohibited extension.

Another policy that prevents deletion of policy-specified file directories (not
shown) was enforced on jconsole. The policy monitors directory-removal sys-
tem API calls for arguments that match a regular expression specifying names
of protected directories. For vrenamer, a mass file-renaming application, we pro-
hibited files being renamed to include executable extensions.

Event ordering. A canonical information flow policy in the IRM literature pro-
hibits all network-send operations after a secret file has been read. The follow-
ing NoSndsAftrRds policy prevents calls to Socket.getOutputStream after any
call to java.io.File where the first argument refers to the Windows directory.

1 (edge name="FileRead"

2 (nodes "s" 0,1)
3 (and (call "java.io.File.*")
4 (argval 1 (streq "[A-Za-z]*:\\Windows\\.*"))))
5 (edge name="NetworkSend"

6 (nodes "s" 1,#)
7 (call "java.net.Socket.getOutputStream"))

We enforced this policy on jWeather, a weather widget application, and
YouTube Downloader (YTDownload in the table), which downloads videos from
YouTube. Neither program violated the policy, so no change in behavior occurred.
However, both programs access many files and sockets, so SPoX instrumented
both programs with a large number of security checks.

For multivalent, a document browsing utility, we enforced a policy that
disallows saving a PDF document until a call has first been made to its built-in
encryption method. The two-state policy is similar to the one shown above.

Malicious SQL and XSS protection. SPoX’s use of string regular expressions
facilitates natural specifications of policies that protect against SQL injection
and cross-site scripting attacks. One such policy is NoSqlXss, a policy that
uses whitelisting to exclude potentially dangerous input characters. We enforced
NoSqlXss on Webgoat.

One edge definition in the policy contained a large number of dynamic argval
pointcuts (twelve); nevertheless, verification time remained roughly linear in the
size of the rewritten code because the verifier was able to significantly prune

138 K.W. Hamlen, M.M. Jones, and M. Sridhar

the search space by combining redundant constraints and control-flows during
model-checking and abstract interpretation.

A similar policy was used to prevent SQL injection attacks on a search func-
tion in OpenMRS. The library portion of this application is extremely large but
contains no security-relevant events; thus, our non-stateful verification approach
for unmarked code regions was crucial for avoiding state-space explosions.

We also enforced a blacklisting policy (not shown) on the database access
client SQuirreL, preventing SQL commands which drop, alter, or rename tables
or databases. The policy used a regular expression guard to disallow all SQL
commands that implement these operations.

Ensuring advice execution. Most aspectual policy languages (e.g., [4,2,10,26])
allow policies to include explicit advice code that implements IRM guards and
interventions. Such systems can be applied to create custom implementations
of SPoX policies, such as those that perform custom actions when impending
violations are detected. Cheko can then take the SPoX policy as input and
verify that the implementation correctly enforces the policy.

To simulate this, we manually added encryption and logging calls immedi-
ately prior to email-send events in JVMail. Each email is therefore encrypted,
then logged, then sent. The SPoX policy LogEncrypt requires these events occur
in that order. After inserting the advice, we used the verifier to prove that the
rewritten JVMail application satisfies the policy. A similar policy was applied
to the Java Virtual File System (jvs-vfs), only allowing file deletion after ex-
ecution of advice code that consults the user. Finally, we enforced a policy on
sshwebproxy that requires the proxy to encrypt messages before sending.

6 Conclusion and Future Work

IRMs provide a more powerful alternative to purely static analysis, allowing
precise enforcement of a much larger and sophisticated class of security policies.
Combining this power with a purely static analysis that independently checks the
instrumented, self-monitoring code results in an effective, provably sound, and
flexible hybrid enforcement framework. Additionally, an independent certifier
allows for the removal of the larger and less general rewriter from the TCB.

We developed Cheko —the first automated, model-checking-based certifier
for an aspect-oriented, real-world IRM system [14]. Cheko uses a flexible and
semantic static code analysis, and supports difficult features such as reified se-
curity state, event detection by pointcut-matching, combinations of untrusted
before- and after-advice, and pointcuts that are not statically decidable. Strong
formal guarantees are provided through proofs of soundness and convergence
based on Cousot’s abstract interpretation framework. Since Cheko performs
independent certification of instrumented binaries, it is flexible enough to ac-
commodate a variety of IRM instrumentation systems, as long as they provide
(untrusted) hints about reified state variables and locations of security-relevant
events. Such hints are easy for typical rewriter implementations to provide, since
they typically correspond to in-lined state variables and guard code, respectively.

Aspect-Oriented Runtime Monitor Certification 139

Our focus was on presenting main design features of the verification algo-
rithm, and an extensive practical study using a prototype implementation of the
tool. Experiments revealed at least one security vulnerability in the SPoX IRM
system, indicating that automated verification is important and necessary for
high assurance in these frameworks.

In future work we intend to turn our development toward improving effi-
ciency and memory management of the tool. Much of the overhead we observed
in experiments was traceable to engineering details, such as expensive context-
switches between the separate parser, abstract interpreter, and model-checking
modules. These tended to eclipse more interesting overheads related to the ab-
stract interpretation and model-checking algorithms. We also intend to examine
more powerful rewriter-supplied hints that express richer invariants. Such ad-
vances will provide greater flexibility for alternative IRM implementations of
stateful policies.

References

1. Aktug, I., Dam, M., Gurov, D.: Provably Correct Runtime Monitoring. In: Cuellar,
J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 262–277. Springer, Heidelberg
(2008)

2. Aktug, I., Naliuka, K.: ConSpec - a formal language for policy specification. Science
of Comput. Prog. 74, 2–12 (2008)

3. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput-
ing 2, 117–126 (1986)

4. Chen, F., Roşu, G.: Java-MOP: A Monitoring Oriented Programming Environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. Sym.
on Principles of Prog. Lang., pp. 234–252 (1977)

6. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Security Monitor Inlining for
Multithreaded Java. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653,
pp. 546–569. Springer, Heidelberg (2009)

7. Dantas, D.S., Walker, D.: Harmless advice. In: Proc. ACM Sym. on Principles of
Prog. Lang. (POPL), pp. 383–396 (2006)

8. Dantas, D.S., Walker, D., Washburn, G., Weirich, S.: AspectML: A polymorphic
aspect-oriented functional programming language. ACM Trans. Prog. Lang. and
Systems 30(3) (2008)

9. DeVries, B.W., Gupta, G., Hamlen, K.W., Moore, S., Sridhar, M.: ActionScript
bytecode verification with co-logic programming. In: Proc. ACM Workshop on
Prog. Lang. and Analysis for Security (PLAS), pp. 9–15 (2009)

10. Erlingsson, Ú.: The Inlined Reference Monitor Approach to Security Policy En-
forcement. Ph.D. thesis, Cornell University, Ithaca, New York (2004)

11. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: A retrospec-
tive. In: Proc. New Security Paradigms Workshop (NSPW), pp. 87–95 (1999)

12. FileInfo.com: Executable file types (2011),
http://www.fileinfo.com/filetypes/executable

http://www.fileinfo.com/filetypes/executable

140 K.W. Hamlen, M.M. Jones, and M. Sridhar

13. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: Proc. ACM
Sym. on Principles of Prog. Lang. (POPL), pp. 171–183 (1998)

14. Hamlen, K.W., Jones, M.: Aspect-oriented in-lined reference monitors. In: Proc.
ACMWorkshop on Prog. Lang. and Analysis for Security (PLAS), pp. 11–20 (2008)

15. Hamlen, K.W., Jones, M.M., Sridhar, M.: Chekov: Aspect-oriented runtime moni-
tor certification via model-checking (extended version). Tech. rep., Dept. of Com-
put. Science, U. Texas at Dallas (May 2011)

16. Hamlen, K.W., Mohan, V., Masud, M.M., Khan, L., Thuraisingham, B.: Exploiting
an antivirus interface. Comput. Standards & Interfaces J. 31(6), 1182–1189 (2009)

17. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference monitor-
ing on. NET. In: Proc. ACM Workshop on Prog. Lang. and Analysis for Security
(PLAS), pp. 7–16 (2006)

18. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Prog. Lang. and Systems 28(1), 175–205 (2006)

19. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Program.,
503–581 (1994)

20. Jones, M., Hamlen, K.W.: Enforcing IRM security policies: Two case studies. In:
Proc. IEEE Intelligence and Security Informatics (ISI) Conf., pp. 214–216 (2009)

21. Jones, M., Hamlen, K.W.: Disambiguating aspect-oriented policies. In: Proc. Int.
Conf. on Aspect-Oriented Software Development (AOSD), pp. 193–204 (2010)

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

23. Li, Z., Wang, X.: FIRM: Capability-based inline mediation of Flash behaviors. In:
Proc. Annual Comput. Security Applications Conf. (ACSAC), pp. 181–190 (2010)

24. Ligatti, J.A.: Policy Enforcement via Program Monitoring. Ph.D. thesis, Princeton
University, Princeton, New Jersey (2006)

25. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. Int. J. Information Security 4(1-2), 2–16 (2005)

26. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM
Trans. Information and Systems Security 12(3) (2009)

27. Schneider, F.B.: Enforceable security policies. ACM Trans. Information and Sys-
tems Security 3(1), 30–50 (2000)

28. Shah, V., Hill, F.: An aspect-oriented security framework. In: Proc. DARPA Infor-
mation Survivability Conf. and Exposition, vol. 2 (2003)

29. Sridhar, M., Hamlen, K.W.: ActionScript In-Lined Reference Monitoring in Prolog.
In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 149–151. Springer,
Heidelberg (2010)

30. Sridhar, M., Hamlen, K.W.: Model-Checking In-Lined Reference Monitors. In:
Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 312–327.
Springer, Heidelberg (2010)

31. Sridhar, M., Hamlen, K.W.: Flexible in-lined reference monitor certification: Chal-
lenges and future directions. In: Proc. ACM Workshop on Prog. Lang. meets Pro-
gram Verification (PLPV), pp. 55–60 (2011)

32. Viega, J., Bloch, J.T., Chandra, P.: Applying aspect-oriented programming to se-
curity. Cutter IT J. 14(2) (2001)

33. Walker, D.: A type system for expressive security policies. In: Proc. of ACM Sym.
on Principles of Prog. Lang. (POPL) (2000)

	Aspect-Oriented Runtime Monitor Certification
	Introduction
	Related Work
	Policy Language and Rewriter
	Verifier
	Case Studies
	Conclusion and Future Work
	References

