
Probabilistic Transition System Specification:
Congruence and Full Abstraction of Bisimulation�

Pedro Rubén D’Argenio and Matias David Lee

FaMAF, Universidad Nacional de Córdoba – CONICET
{dargenio,lee}@famaf.unc.edu.ar

Abstract. We present a format for the specification of probabilistic transition
systems that guarantees that bisimulation equivalence is a congruence for any
operator defined in this format. In this sense, the format is somehow comparable
to the ntyft/ntyxt format in a non-probabilistic setting. We also study the modular
construction of probabilistic transition systems specifications and prove that some
standard conservative extension theorems also hold in our setting. Finally, we
show that the trace congruence for image-finite processes induced by our format
is precisely bisimulation on probabilistic systems.

1 Introduction

Plotkin’s approach to operational semantics [21] is the standard way to give semantics
to specification and programming language in terms of transition systems. It has been
formalized with an algebraic flavor as Transition Systems Specifications (TSS) [8, 9, 12,
13, 20, etc.]. Basically, a TSS contains a signature, a set of actions or labels, and a set
of rules. The signature defines the terms in the language. The set of actions represents
all possible activities that a process (i.e., a term over the signature) can perform. The
rules define how a process should behave (i.e., perform certain activities) in terms of the
behavior of its subprocesses, that is, the rules define compositionally the transition sys-
tem associated to each term of the language. A particular focus of these formalizations
was to provide a meta-theory that ensures a diversity of semantic properties by sim-
ple inspection on the form of the rules. Thus, there are results on congruences and full
abstraction, conservative extension, security, etc. (see, e.g., [1, 2, 20] for overviews).

In this paper we focus on congruence and full abstraction. A congruence theorem
guarantees that whenever the rules of a TSS are in a particular format, then a desig-
nated equivalence relation is preserved by every context in the signature of such TSS.
Thus, for instance, strong bisimulation equivalence [19] is a congruence on any TSS in
the ntyft/ntyxt format [12]. Full abstraction is somewhat a dual result: an equivalence
relation is fully abstract with respect to a particular format if it is the largest relation
s.t. no context definable in the format can exhibit different behavior when applied to
two equivalent processes. For example, strong bisimilarity is fully abstract w.r.t. the
ntyft/ntyxt format [12] but not w.r.t. the tyft/tyxt format [13] or the GSOS format [8].

The introduction of probabilistic process algebras [4, 14, 25, etc.] motivated the need
for a theory of structural operational semantics to define probabilistic transition sys-
tems. A few results have appeared in this direction [6, 7, 16, 17] and, to our knowledge,

� Partially supported by Project ANPCYT PAE-PICT 02272 and SeCyT-UNC.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 452–466, 2012.
© Springer-Verlag Berlin Heidelberg 2012



Probabilistic TSS: Congruence and Full Abstraction of Bisimulation 453

only these works present congruence theorems for (probabilistic) bisimilarity [18], but
no full abstraction result. All previously mentioned studies consider transitions in the

form of a quadruple denoted by t
a,q−−−→ t′, where t and t′ are terms in the language, a is

an action or label, and q ∈ (0, 1] is a probability value. A transition of that form denotes
that term t can perform an action a and with probability q continue with the execution
of t′. Moreover, it is required that πt,a, defined by πt,a(t′) =

∑

t
a,q−→t′ q, is a probability

distribution. (This interpretation corresponds to the reactive view, it varies under the
generative view [25].) This notation introduces several problems. The first one is that
the transition relation cannot be treated as a set because two different derivations may
yield the same quadruple. This requires artifacts like multisets or bookkeeping indexes.
The second one is that formats need to be defined jointly on a set of rules rather than a
single rule to ensure that πt,a is a probability distribution. (Notice that πt,a depends on a
set of transitions which are obtained using different rules.)

Rather than following this approach, we directly represent transitions as a triple

t
a−→ πt,a. Thus, a single triple contains the complete information of the probabilistic

jump. Moreover, this representation also allows for non-determinism in the sense that

if t
a−→ π and t

a−→ π′ not necessarily π = π′ as requested by reactive systems. Hence,
our probabilistic transition system specifications (PTSS) define objects very much like

Segala’s probabilistic automata [22]. So, each probabilistic transition t
a−→ π is obtained

by a single derivation in our PTSSs, and hence formats focus on single rules (as it is
the case for non-probabilistic TSSs). This significantly eases the inspection of the for-
mat. In addition, a byproduct of this choice is that the proof strategies for the majority
of the lemmas and theorems of this paper are much the same as those for their non-
probabilistic relatives. We observe that this way of representing transitions in rules for
process algebra has already appeared in [5], it is also used in the Segala-GSOS for-
mat [7] and it is pretty much related to bialgebraic approaches to SOS [7, 15].

In this paper we introduce PTSS with negative and quantitative premises which also
allow for lookahead. We use stratification [9, 12] as means to define probabilistic tran-
sition systems and prove the existence and uniqueness of models for stratifiable PTSSs
(Sec. 3). We also propose a format, which we call ntμfν/ntμxν, that is very much like
the ntyft/ntyxt format in non-probabilistic TSS and show that bisimilarity is a congru-
ence for any operation defined under this format (Sec. 4). Besides, we give a definition
for the modular construction of PTSSs and give sufficient conditions to ensure that one
PTSS conservatively extends another (Sec. 5). We finally show that bisimilarity is fully
abstract with respect to the ntμfν/ntμxν format, that is, it is the coarsest congruence w.r.t.
any operator defined in ntμfν/ntμxν PTSSs that is included in trace equivalence (Sec. 6).

2 Preliminaries

We assume the presence of an infinite set of (term) variables V and we let x, y, z, x′,
x0, x1, . . . range over V. A signature is a structure Σ = (F, r), where (i) F is a set of
function names disjoint with V, and (ii) r : F → N0 is a rank function which gives
the arity of a function name; if f ∈ F and r( f ) = 0 then f is called a constant name.
Let W ⊆ V be a set of variables. The set of Σ-terms over W, notation T (Σ,W) is the



454 P.R. D’Argenio and M.D. Lee

least set satisfying: (i) W ⊆ T (Σ,W), and (ii) if f ∈ F and t1, · · · , tr( f ) ∈ T (Σ,W),
then f (t1, · · · , tr( f )) ∈ T (Σ,W). T (Σ, ∅) is abbreviated as T (Σ); the elements of T (Σ) are
called closed terms. T (Σ,V) is abbreviated as T(Σ); the elements of T(Σ) are called
open terms. Var(t) ⊆ V is the set of variables in the open term t.

Since our aim is to deal with languages that describe probabilistic behavior, apart
from signatures, variables, and terms, we also need to introduce probability distributions
on terms and variables to run on these distributions. Let Δ(T (Σ)) denote the set of all
(discrete) probability distributions on T (Σ). We let π, π′, π0, π1, . . . range over Δ(T (Σ)).
As usual, for π ∈ Δ(T (Σ)) and T ⊆ T (Σ), we define π(T ) =

∑
t∈T π(t). For t ∈ T (Σ),

let δt denote the Dirac distribution, that is, δt(t′) = if (t=t′) then 1 else 0. Moreover, the
product measure

∏n
i=1 πi is defined by (

∏n
i=1 πi)(t1, . . . , tn) =

∏n
i=1 πi(ti). In particular,

if n = 0, (
∏

j∈∅ π j) = δ() is the distribution that assigns probability 1 to the 0-ary
tuple. Let g : T (Σ)n → T (Σ) and recall that g−1(t′) = {�t ∈ T (Σ)n | g(�t) = t′}. Then
(
∏n

i=1 πi) ◦ g−1 is a well defined probability distribution on closed terms. In particular,
if g : T (Σ)0 → T (Σ) and g(()) = t, then (

∏
j∈∅ π j) ◦ g−1 = δ() ◦ g−1 = δt.

A distribution variable is a variable that takes values on Δ(T (Σ)). LetM be an infinite
set of distribution variables and let μ, μ′, μ0, μ1, . . . range overM. For a term variable
x ∈ V we let δx be an instantiable Dirac distribution. That is, δx is a symbol that
takes value δt whenever variable x takes value t. Let D = {δx : x ∈ V} be the set of
instantiable Dirac distributions according to the variable setV.

A substitution is a mapping that assigns terms to variables. In our case we need
to extend this notion to probabilistic variables and instantiable Dirac distributions. A
(closed) substitution ρ is a mapping in (V ∪M) → (T (Σ) ∪ Δ(T (Σ))) such that ρ(x) ∈
T (Σ) whenever x ∈ V, and ρ(μ) ∈ Δ(T (Σ)) whenever μ ∈ M. A substitution ρ extends
to open terms and sets as usual and to instantiable Dirac distributions by ρ(δx) = δρ(x).

Example 1. We introduce the signature of a probabilistic process algebra that includes
many of the most representative operators. We assume the existence of a setL of action
labels. Then, our signature (which is the base of our running example) contains: two
constants, 0 (stop process) and ε (skip process); a family of n-ary probabilistic prefix
operators a.([p1] ⊕· · ·⊕[pn] ) with a ∈ L, n ≥ 1, p1, . . . , pn ∈ (0, 1] s.t.

∑n
i=1 pi = 1 (we

usually write a.
∑n

i=1[pi]ti for given terms t1, . . . , tn); binary operators + (alternative
composition or sum), ; (sequential composition), and, for each B ⊆ L, ||B (parallel
composition); and a unary operator U( ) that we call unreach. The intended meaning of
a.
∑n

i=1[pi]ti is that this term can perform action a and move to term ti with probability
pi. The unreach operation U(t) can perform an action a and stop if there is a probabilis-
tic execution (or scheduler) from t in which action a is never performed (or properly
speaking, it is not performed with probability 1). Finally, t ||B t′ is a CSP-like parallel
composition where actions in B are forced to synchronize and all other actions should
be performed independently. The rest of the operators have the usual meaning. ��

3 Probabilistic Transition System Specifications

A (probabilistic) transition relation prescribes what possible activity can be performed
by a term in a signature. Such activity is described by the label of the action and a



Probabilistic TSS: Congruence and Full Abstraction of Bisimulation 455

probability distribution on terms that indicates the probability to reach a particular new
term. We will follow the probabilistic automata style of probabilistic transitions [22]
which are a generalization of the so called reactive model [18]. So, let Σ be a signature
and A be a set of labels. A transition relation is a set −→ ⊆ PTr(Σ, A), where PTr(Σ, A) =
T (Σ) × A × Δ(T (Σ)). We denote (t, a, π) ∈ −→ by t

a−→ π.
Transition relations are usually defined by means of structured operational semantics

in Plotkin’s style [21]. Algebraic characterizations of this style were provided in [9,
12, 13] where the term transition system specification was used and which we adopt
in our paper. In fact, based on these works, we define probabilistic transition system
specifications.

Definition 2. A probabilistic transition system specification (PTSS) is a triple P =
(Σ, A,R) where Σ = (F, r) is a signature, A is a set of labels, and R is a set of rules
of the form:

{tk ak−−→ μk : k ∈ K} ∪ {tl bl−−→ : l ∈ L} ∪ {μ j(W j) ≷ j q j : j ∈ J}
t

a−→ ∑i∈I pi(
∏

ni∈Ni
νni ) ◦ g−1

i

where K, L, J are index sets, I is a denumerable index set, each Ni is a finite index set,
t, tk, tl ∈ T(Σ), a, ak, bl ∈ A, μk, μ j ∈ M, W j ⊆ V, ≷ j ∈ {>,≥, <,≤}, pi, q j ∈ [0, 1] with
∑

i∈I pi = 1, each gi is a function s.t. gi : T (Σ)Ni → T (Σ), and νni ∈ M ∪D.

An expression of the form t
a−→ π, (t

a−→ , π(T ) ≷ p) is a positive literal (negative literal,
quantitative literal, resp.). For any rule r ∈ R, literals above the line are called premises,
notation prem(r); the literal below the line is called conclusion, notation conc(r). We
denote with pprem(r) (nprem(r), qprem(r)) the set of positive (negative, quantitative,
resp.) literals of the rule r. A rule r is called positive if there are no negative premises,
i.e., nprem(r) = ∅. A PTSS is called positive if it has only positive rules. A rule r
without premises is called axiom. In general, we allow that the sets of positive, negative,
and quantitative premises are infinite.

Substitutions provide instances to the rules of a PTSS that, together with some ap-
propriate machinery, allow us to define probabilistic transition relations. Given a sub-

stitution ρ, it extends to literals as follows: ρ(t
a−→ μ) = ρ(t)

a−→ ρ(μ), ρ(t
a−→ ) =

ρ(t)
a−→ , ρ(μ(W) ≷ p) = ρ(μ)(ρ(W)) ≷ p, and ρ(t

a−→ ∑i∈I pi(
∏

ni∈Ni
νni )◦g−1

i ) = ρ(t)
a−→

∑
i∈I pi(

∏
ni∈Ni

ρ(νni ))◦g−1
i . Then, the notion of substitution extends to rules as expected.

We say that r′ is a (closed) instance of a rule r if there is a (closed) substitution ρ so
that r′ = ρ(r). We say that ρ is a proper substitution of r if for all quantitative premise
ρ(μ(W)) ≷ p of r it holds that ρ(μ(w)) > 0 for all w ∈ W. Thus, if ρ is proper, all terms
in ρ(W) are in the support set of ρ(μ). Proper substitutions avoid the introduction of
spurious terms. This is of particular importance for the conservative extension theorem
(Theorem 14).

Example 3. The rules for the process algebra of Example 1 are defined in Table 1.
We consider the set of actions A = L ∪ {√} where

√
� L. In the table we use the

following shorthand notations for the target of the conclusion which we also adopt
along the paper. We omit the summation if I is a singleton and, if g(()) = t, we write



456 P.R. D’Argenio and M.D. Lee

Table 1. Rules for our probabilistic process algebra (Y ⊆ V is a countably infinite set)

ε
√
−→ δ0 a.

∑n
i=1[pi]xi

a−→ ∑n
i=1 piδxi

x
a−→ μ

x + y
a−→ μ

y
a−→ μ

x + y
a−→ μ

x
a−→ μ

x; y
a−→ μ; δy

a �
√ x

√
−→ μ y

a−→ μ′

x; y
a−→ μ′

x
a−→ μ y

a−→ μ′

x ||B y
a−→ μ ||B μ′

a ∈ B\{√}

x
a−→ μ

x ||B y
a−→ μ ||B δy

a � B ∪ {√} y
a−→ μ

x ||B y
a−→ δx ||B μ

a � B ∪ {√} x
√
−→ μ y

√
−→ μ′

x ||B y
√
−→ δ0

x
a−→

U(x)
a−→ δ0

x
b−→ μ μ(Y) ≥ 1 {U(y)

a−→ μ′y | y ∈ Y}
U(x)

a−→ δ0

b � a, x � Y

δt instead of (
∏

ni∈∅ νni ) ◦ g−1. Thus, in the rules of ε and U(x), we write δ0 instead of
∑

i∈{1} 1(
∏

ni∈∅ νni ) ◦ g−1
0 with g0(()) = 0. If g = id is the identity function, we only write

μ instead of μ◦ id−1 as it is the case in the conclusion of rules for +. Finally, for an n-ary
operator f , we write f (ν1, . . . , νn) instead of (ν1 × · · · × νn) ◦ f −1. For instance, in the
first rule of the sequential composition, we write μ; δy instead of (μ × δy) ◦ (;)−1.

We give some examples of closed instances of rules to understand the notation in the

target of the conclusion. Take the closed instance a.
∑3

i=1[pi]ti
a−→ ∑3

i=1 piδti of the rule
of the probabilistic prefix operator and assume that t1 � t2 = t3. Then, (

∑3
i=1 piδti )(t1) =

p1 which is what we expect. Moreover (
∑3

i=1 piδti )(t2) = (p2 + p3) which is also what
we expect, since we need (

∑3
i=1 piδti)({t1, t2, t3}) = 1 (and {t1, t2, t3} = {t1, t2}!).

Now, take the same term a.
∑3

i=1[pi]ti and the closed instance of the first rule of

sequential composition a.
∑3

i=1[pi]ti
a−→π

(a.
∑3

i=1[pi]ti);ε
a−→π;δε

with π =
∑3

i=1 piδti . Notice that (π; δε)(t2; ε) =

(π × δε)({(t2, ε)}) = (p2 + p3). Instead, for example, (π; δε)(t2; 0) = (π × δε)({(t2, 0)}) =
π(t2)δε(0) = 0, and (π; δε)(t2 + ε) = (π × δε)((;)−1({t2 + ε})) = (π × δε)(∅) = 0. ��
As has already been argued many times (see, e.g., [9, 12, 24]), transition system specifi-
cations with negative premises do not uniquely define a transition relation and different
reasonable techniques may lead to incomparable choices. In any case, we expect that a
transition relation associated to a PTSS P (i) respects the rules of P, that is, whenever
the premises of a closed instance of a rule of P belong to the transition relation, so does
its conclusion; and (ii) it does not include more transitions than those explicitly justi-
fied, i.e., a transition is defined only whenever there is a closed rule whose premises are
in the transition relation. The first notion corresponds to that of model, and the second
one to that of supported transition.

Before formally defining these notions we introduce some notation. Given a transi-

tion relation −→ ⊆ PTr(Σ, A), a positive literal t
a−→ π holds in −→, notation −→ |= t

a−→ π,

if (t, a, π) ∈ −→. A negative literal t
a−→ holds in −→, notation −→ |= t

a−→ , if there is
no π ∈ Δ(T (Σ)) s.t. (t, a, π) ∈ −→. A quantitative literal π(T ) ≷ p holds in −→, notation



Probabilistic TSS: Congruence and Full Abstraction of Bisimulation 457

−→ |= π(T ) ≷ p precisely when π(T ) ≷ p. Notice that the satisfaction of a quantitative
literal does not depend on the transition relation. We nonetheless use this last notation
as it turns out to be convenient. Given a set of literals H, we write −→ |= H if ∀φ ∈ H :
−→ |= φ.

Definition 4. Let P = (Σ, A,R) be a PTSS. Let −→ ⊆ PTr(Σ, A) be a probabilistic tran-
sition system. Then −→ is a supported model of P if it satisfies that: ψ ∈ −→ iff there is a
rule H

χ
∈ R and a proper substitution ρ s.t. ρ(χ) = ψ and −→ |= ρ(H).

Notice that the form of the target of the conclusion of a rule guarantees that if ψ = t
a−→ π

then π is indeed a probability distribution (and hence, π(T (Σ)) = 1).
We have already pointed out that PTSSs with negative premises do not uniquely

define a transition relation. In fact, a PTSS may have more than one supported model.
For instance, the PTSS with the single constant f , set of labels {a, b} and the two rules

f
a−→μ

f
a−→δ f

and f
a−→

f
b−→δ f

, has two supported models: { f a−→ δ f } and { f b−→ δ f }. We will not dwell

on this problem which has been studied at length in [9] and [24] in a non-probabilistic
setting. We will only focus on the stratification method [12] which has been widely
used to give meaning to TSS with negative premises. A stratification defines an order
on closed positive literals that ensures that, in the stratified PTSS, the validity of a
transition does not depend on the negation of the same transition.

Definition 5. Let P = (Σ, A,R) be a PTSS. A function S : PTr(Σ, A) → α, where α is
an ordinal, is called stratification of P (and P is said to be stratified) if for every rule

r =
{tk ak−−→ μk : k ∈ K} ∪ {tl bl−−→ : l ∈ L} ∪ {μ j(W j) ≷ q j : j ∈ J}

t
a−→ ∑i pi(

∏
ni∈Ni

νni ) ◦ g−1
i

and substitution ρ : (V ∪ M) → (T (Σ) ∪ Δ(T (Σ))) it holds that: (i) for all k ∈ K,

S (ρ(tk
ak−−→ μk)) ≤ S (conc(r)), and (ii) for all l ∈ L and μ ∈ M, S (ρ(tl

bl−−→ μ)) <
S (conc(r)). Each set S β = {φ | S (φ) = β}, with β < α, is called stratum. If for all k ∈ K,

S (ρ(tk
ak−−→ μk)) < S (conc(r)), then the stratification is said to be strict.

A transition relation is constructed stratum by stratum in an increasing manner by trans-
finite recursion. If it has been decided whether a transition in a stratum S β′ , with β′ < β,
is valid or not, we already know the validity of the negative premise occurring in the
premises of a transition ϕ in stratum S β (since all positive instances of the negative
premises are in strictly lesser stratums) and hence we can determine the validity of ϕ.

Definition 6. Let P = (Σ, A,R) be a PTSS with stratification S : PTr(Σ, A) → α for
some ordinal α. For all rule r, let D(r) be the smallest regular cardinal greater than
|pprem(r)|, and let D(P) be the smallest regular cardinal such that D(P) ≥ D(r) for all
r ∈ R. The transition relation −→P,S associated with P (and based on S ) is defined by
−→P,S =

⋃
β<α −→Pβ

, where each −→Pβ
=
⋃

j≤D(P) −→Pβ, j and each −→Pβ, j is defined by

−→Pβ, j =
{
ψ
∣∣∣ S (ψ) = β and ∃r ∈ R and proper substitution ρ s.t. ψ = conc(ρ(r)),

(
⋃
γ<β −→Pγ

) ∪ (
⋃

j′< j −→Pβ, j′ ) |= qprem(ρ(r)) ∪ pprem(ρ(r)) and

(
⋃
γ<β −→Pγ

) |= nprem(ρ(r))
}



458 P.R. D’Argenio and M.D. Lee

The PTSS with the only two rules f
a−→μ

f
a−→δ f

and f
a−→

f
b−→δ f

(given before) can be stratified by

a function S such that S ( f
a−→ δ f ) = 0 and S ( f

b−→ δ f ) = 1. Using S , the model

associated with the PTSS is { f b−→ δ f }. More interestingly, a stratification for our run-

ning example is given by S (t
a−→ μ) = ζ(t) where ζ(0) = ζ(ε) = ζ(a.

∑n
i=1[pi]ti) = 0,

ζ(t1 + t2) = ζ(t1; t2) = ζ(t1 ||B t2) = max{ζ(t1), ζ(t2)}, and ζ(U(t)) = ζ(t) + 1. Notice that
this stratification is not strict.

The existence of a stratification guarantees the existence of a supported model. In
fact, such model is the one in Def. 6 (Theorem 7) and it is the only possible one defined
via stratification (Theorem 8). Moreover, if it is defined using a strict stratification, the
supported model is unique (Theorem 9).

The proofs of the following theorems follow closely the proofs of their non-probabi-
listic counterparts in [12] (Theorem 2.15, Lemma 2.16 and Theorem 2.18, respectively).
The only actual difference lies on the quantitative premises, which do not pose any
particular problem since their validity only depends on the substitution. For the next
theorems, let P = (Σ, A,R) be a PTSS with stratification S .

Theorem 7. The transition relation −→P,S is a supported model of P.

Theorem 8. If S ′ is another stratification for P, −→P,S = −→P,S ′ .

Theorem 9. If S is strict, then, −→P,S is the only supported model of P.

4 The ntμfν/ntμxν Format and the Congruence Theorem

In this section we present one of the main results of our paper: we introduce a general
format that ensures that bisimulation equivalence is a congruence for any operator de-
fined in this format. The importance of the theorem is that congruence of bisimilarity is
guaranteed by mere inspection of the rules. We first define the notion of bisimulation on
probabilistic transition system [18]. We use a more modern (but equivalent) definition.

Given a relation R ⊆ T (Σ) × T (Σ), a set Q ⊆ T (Σ) is R-closed if for all t ∈ Q
and t′ ∈ T (Σ), t R t′ implies t′ ∈ Q (i.e. R(Q) ⊆ Q). If a set Q is R-closed we write
R-closed(Q). It is easy to verify that if two relation R,R′ ⊆ T (Σ) × T (Σ) are such that
R′ ⊆ R, then for all set Q ⊆ T (Σ), R-closed(Q) implies R′-closed(Q).

Definition 10. A relation R ⊆ T (Σ) × T (Σ) is a bisimulation if R is symmetric and for
all t, t′ ∈ T (Σ), π ∈ Δ(T (Σ)), a ∈ A,

t R t′ and t
a−→ π imply that there exists π′ ∈ Δ(T (Σ)) s.t. t′

a−→ π′ and π R π′,

where π R π′ if and only if ∀Q ⊆ T (Σ) : R-closed(Q) ⇒ π(Q) = π′(Q). We define the
relation ∼ as the smallest relation that includes all other bisimulation. It is known that
∼ is itself a bisimulation relation and an equivalence relation.

Before introducing the ntμfν/ntμxν format, we give a first approach to extend the
ntyft/ntyxt format with probabilities that considers a very restrictive form of quantita-
tive premise. It can also be seen as a generalization of Segala-GSOS format [7] with



Probabilistic TSS: Congruence and Full Abstraction of Bisimulation 459

terms in the premises as well as lookahead. This first approach considers rules of the
form

{tm am−−→ μm : m ∈ M} ∪ {tn bn−−→ : n ∈ N} ∪ {μl(zl) > 0 : l ∈ L}
f (x1, . . . , xr( f ))

a−→ ∑i∈I pi(
∏

ni∈Ni
νni ) ◦ g−1

i

(F)

where M, N, and L are index sets, μm, zl, xk (1 ≤ k ≤ r( f )) are all different variables, f ∈
F, tm, tn ∈ T(Σ), and pi and gi are like in Def. 2. Notice that all rules in Table 1 respond
to this format except for the last one which has a quantitative premise comparing to
a number different from 0. (It can be proved that bisimilarity is a congruence for any
operator defined in format (F).)

In the following we present several counterexamples justifying the restrictions im-
posed by format in eq. (F). We consider a signature with a unary operator f and three

constants b, c and d, together with a label a. We will also consider axioms c
a−→ δc

and d
a−→ (0.5 · δc + 0.5 · δd), and no rule associated to constant b. (We write πd for

(0.5 · δc + 0.5 · δd)). Notice that c ∼ d. In the following we concentrate in rules for f .
The need that the source of the conclusion of a rule has a particular format has

already been shown by several counterexamples in [12, 13] for the tyft/tyxt format. We

adapt an example form [12] to motivate the need. Consider the axiom f (b)
a−→ δ f (b).

Then f ( f (b)) ∼ b since none of them perform any action. But f ( f ( f (b))) and f (b)
are not bisimilar since f (b) can perform an action but f ( f ( f (b))) cannot. Similarly, the
requirement that all variables μm, zl, xk are different is inherited from the tyft/tyxt format.
Examples from [13] should be easily adaptable to our setting.

The next example shows that the target of a positive premise cannot be a distribution

on a particular (shape of) term. Consider rule x
a−→δc

f (x)
a−→δc

. Then, despite that c ∼ d, f (c) and

f (d) are not bisimilar since d
a−→ δc is not a valid transition in the (unique) supported

model. A similar effect has rule x
a−→μ μ(d)>0

f (x)
a−→δc

, which shows that quantitative literals can-

not enquire over arbitrary terms: note that f (c) and f (d) are not bisimilar since c
a−→ δc

and δc(d) = 0.
Allowing for a quantitative literal that compares with a value different from 0 is

also problematic. Consider rule x
a−→μ y

a−→μ′ μ(y)≥1

f (x)
a−→δc

. Again f (c) and f (d) are not bisimilar

since d
a−→ πd, and there is no single term t in which πd(t) ≥ 1.

This example suggest that quantitative premises should have the form μ(Y) > p
or μ(Y) ≥ p where Y is a set of variables. So the previous rule could be recast as
x

a−→μ y
a−→μ′ μ({y,z})≥1

f (x)
a−→δc

. However, the same problem repeats if we introduce a new constant

e with e
a−→ (0.4 · δc + 0.3 · δd + 0.3 · δe). In fact, it turns out that Y needs to be

infinite (consider the case in which a new infinite set of constants {en}n∈N0 is defined

with en
a−→ (
∑

i∈N0

1
2i+1 · δei )). Moreover, it is necessary that all terms that substitutes

some variable in Y have symmetric behavior. Notice that the term substituting z is not
required to perform action a, which was not the originally intended behavior. Moreover,
symmetry is also necessary for the congruence result as we will see later.



460 P.R. D’Argenio and M.D. Lee

After the previous considerations, we extend format (F) with quantitative premises
of the form μ(Y) > p or μ(Y) ≥ p. We call this format ntμfν/ntμxν following the nomen-
clature of [12, 13]. Later we give more examples justifying our restrictions.

Let {Yl}L be a family of sets of variables with the same cardinality. Given a tuple �y,
the l-th element of �y is denoted by �y(l). Fix a set Diag{Yl}L ⊆∏l∈L Yl so that:

(i) for all l ∈ L, πl(Diag{Yl}L) = Yl (here, πl indicates the l-th projection); and
(ii) for all �y, �y′ ∈ Diag{Yl}L, (∃l ∈ L : �y(l) = �y′(l))⇒ �y = �y′.

Notice that if each set Yl = {y0
l , y

1
l , y

2
l , . . .}, a possible definition for Diag{Yl}L may be

Diag{Yl}L = {(y0
0, y

0
1, . . . , y

0
L), (y1

0, y
1
1, . . . , y

1
L), (y2

0, y
2
1, . . . , y

2
L), . . .}.

Definition 11 (ntμfν/ntμxν). Let P = (Σ, A,R) be a stratifiable PTSS. A rule r ∈ R is
in ntμfν format if it has the form

⋃
m∈M{tm(�z)

am−−→ μ�zm : �z ∈ Z} ∪⋃n∈N {tn(�z)
bn−−→ : �z ∈ Z} ∪ {μ�zl (Yl) �l ql : l ∈ L,�z ∈ Z}

f (x1, . . . , xr( f ))
a−→ ∑i∈I pi(

∏
ni∈Ni

νni ) ◦ g−1
i

with �l ∈ {>,≥}, for all l ∈ L, satisfying the following conditions:

1. Each set Yl should be at least countably infinite, for all l ∈ L, and the cardinality of
L should be strictly smaller than that of the Yl’s.

2. Z = Diag{Yl}L ×∏w∈W {w}, with W ⊆ V\⋃l∈L Yl.
3. All variables μ�zm, with m ∈ M and �z ∈ Z, are different.
4. For all �z, �z′ ∈ Z, m ∈ M, if μ�zm = νni and μ�z

′
m = νnh for some ni ∈ Ni, nh ∈ Nh,

i, h ∈ I, then �z = �z′.
5. For all l ∈ L, Yl ∩ {x1, . . . , xr( f )} = ∅, and Yl ∩ Yl′ = ∅ for all l′ ∈ L, l � l′.
6. All variables x1, . . . , xr( f ) are different.
7. f ∈ F and for all m ∈ M and n ∈ N, tm, tn ∈ T(Σ). In all cases, if t ∈ T(Σ) and

Var(t) ⊆ {w1, . . . ,wH}, t(w′1, . . . ,w
′
H) is the same term as t where each occurrence

of variable wh (if it appears in t) has been replaced by variable w′h, for 1 ≤ h ≤ H.

A rule r ∈ R is in ntμxν format if its form is like before but with the conclusion having

instead the form x
a−→ ∑i∈I pi(

∏
ni∈Ni

νni ) ◦ g−1
i . It satisfies the same conditions as above

only that x � Yl for all l ∈ L instead of Yl ∩ {x1, . . . , xr( f )} = ∅ in item 5.
P is in ntμfν (resp. ntμxν) format if all its rules are in ntμfν (resp. ntμxν) format. P is

in ntμfν/ntμxν format if all its rules are either in ntμfν format or ntμxν format.

We define notation tm(�Zm)
am−−→ μm as an abbreviation for {tm(�z)

am−−→ μ�zm : �z ∈ Z} where
�Zm = Diag{Yl}L′ ×∏w∈W′ {w} with L′ ⊆ L and W′ ⊆ W, where the number of variables
of tm is exactly the dimension of �Zm (i.e. |Var(tm)| = |L′| + |W′|). Similarly, we define

tn(�Zn)
bn−−→ as an abbreviation for {tn(�z)

bn−−→ : �z ∈ Z}, and μl(Yl) �l ql for the set

{μ�zl (Yl) �l ql : �z ∈ Z}. Thus, rule y
a−→μ

x+y
a−→μ is the notational rewriting of rule {y

a−→μi |i≥0}
x+y

a−→μ0

and rule
x

b−→μ μ(Y)≥1 {U(y)
a−→μ′y |y∈Y}

U(x)
a−→δ0

b�a can be rewritten to x
b−→μ μ(Y)≥1 U(Y)

a−→μ′
U(x)

a−→δ0
b�a. In fact,

notice that all rules of our running example (see Table 1) are in ntμfν format.



Probabilistic TSS: Congruence and Full Abstraction of Bisimulation 461

Restrictions 3, 5, 6 and 7 are basically the same requirements present in the format
of eq. (F). Hence, all examples given before also apply to the ntμfν/ntμxν format. Be-

sides, notice that rule x
a−→μ y

a−→μ′ μ(y)≥1

f (x)
a−→δc

given before is not in ntμfν/ntμxν format, but

the intended behavior can be encoded as the ntμfν rule x
a−→μ Y

a−→μ′ μ(Y)≥1

f (x)
a−→δc

.

The next example shows that quantitative literals cannot check for upper bounds (or

equality). Consider the rule x
a−→μ Y

a−→μ′ μ(Y)≤0.5

f (x)
a−→δc

with c and d defined as before. f (c) and

f (d) are not bisimilar because f (d)
a−→ δc by taking the substitution ρ such that ρ(y) = c

for all y ∈ Y, but f (c)
a−→ since there is no set of terms T such that properly substituted

in Y (i.e., such that δc(t) > 0 for all t ∈ T ), δc(T ) ≤ 0.5.
Finally, if symmetry of behavior on variables in Yl were not enforced, it would also

be possible to distinguish distributions that are equivalent. Consider now a signature

with constants c, d, and {n, n′ | n ∈ N0}, unary operator f and rules n
n−→ δn, n′

n−→ δn,

c
a−→ π, and d

a−→ π′with π =
∑

i∈N0

1
2i+1 · δn and π′ =

∑
i∈N0

( 1
2i+2 · δn +

1
2i+2 · δn′ ), and

x
a−→μ {yk

k−→μk |k∈N0} μ({yk}k∈N0 )≥1

f (x)
b−→μ

. Notice that c ∼ d; nonetheless, f (c)
b−→ δc but f (d)

b−→
since d

a−→ π′ but there is no way to match both n and n′ to two different variables yk1

and yk2 (for all n ∈ N0), and hence π′(ρ({yk}k∈N0 )) = 0.5 for any substitution ρ satisfying
the positive premises. We finally mention that conditions 1 and 4 in Def. 11 are more
technical and their justification only becomes apparent in the proof of Theorem 12.

The strategy of proof for the congruence theorem follows the lines of the proof of
Theorem 4.14 in [12] though some considerable rework is needed to manipulate quan-
titative premises. Notice, however that we do not require well-foundedness.

Theorem 12. Let P be a stratifiable PTSS in ntμfν/ntμxν format. Then ∼ is a congru-
ence relation.

5 Modular Properties

Often, one wants to extend a language with new operations and behaviors. This is nat-
urally done by adding new functions and rules to the original PTSS. In other words,
given two PTSSs P0 and P1, one wants to combine them in a new PTSS P0 ⊕ P1, where
we generally assume that P0 is the original PTSS and P1 is the extension. A desired
property is that the extension does not alter the behavior of the terms in the original
language. That is, one expects that for every old term t ∈ T (Σ0), the set of outgoing
transitions defined by P0 is exactly the same that those defined by P0 ⊕ P1. In this case
we say that P0 ⊕ P1 is a conservative extension of P0.

Definition 13. Let Σ0 = (F0, r0) and Σ1 = (F1, r1) be two signatures s.t. f ∈ F0∩F1 ⇒
r0( f ) = r1( f ). The sum of Σ0 and Σ1, notation Σ0 ⊕Σ1, is the new signature (F0 ∪ F1, r)
where r( f ) = if f ∈ F0 then r0( f ) else r1( f ) for all f ∈ F0 ∪ F1.

Given two PTSS P0 = (Σ0, A0,R0) and P1 = (Σ1, A1,R1) s.t. Σ = Σ0 ⊕ Σ1 is defined,
the sum of P0 and P1, notation P0 ⊕ P1, is the PTSS P0 ⊕ P1 = (Σ0 ⊕ Σ1, A0 ∪ A1,R0 ∪
R1). We say that P0 ⊕ P1 is a conservative extension of P0 and that P1 can be added



462 P.R. D’Argenio and M.D. Lee

conservatively to P0 if P0 ⊕ P1 is stratifiable and for all t ∈ T (Σ0), a ∈ A0 ∪ A1 and

μ ∈ Δ(T (Σ0 ∪ Σ1)) it holds t
a−→ μ ∈ −→P0⊕P1 ⇔ t

a−→ μ ∈ −→P0

Basically, a rule is well-founded if there is no circular dependency of variables in its set
of premises. We adapt the definition of well-founded from [13] to our setting. Besides,
we also require that distribution variables in the premises appear always bound.

Let W be a set containing positive and quantitative literals. The variable dependency
graph of W is a directed graph with (i) set of nodes

⋃{Var(ψ) : ψ ∈ W}, and (ii) edges

{〈x, μ〉 : x ∈ Var(t), (t
a−→ μ) ∈ W} ∪ {〈μ, x〉 : x ∈ X, (μ(X) � p) ∈ W}. W is well-founded

if any backward chain of edges in the variable dependency graph is finite and every dis-
tribution variable has a predecessor. A rule is well-founded if the set of all its premises
is well-founded. A PTSS is well-founded if all its rules are well-founded. A rule r is
called pure if it is well-founded and does not contain free variables. A PTSS P is called
pure if all of its rules are pure.

Theorem 14 gives sufficient conditions to ensure that a PTSS can be extended conser-
vatively and its similar to Theorem 4.8 in [10]. Theorem 15 gives sufficient conditions
to ensure that the sum PTSS P0 ⊕ P1 is stratifiable, knowing that the original PTSSs P0

and P1 are also stratifiable. Its proof follows closely that of Theorem 5.8 in [12].

Theorem 14. Let P0 = (Σ0, A0,R0) be a PTSS in pure ntμfν/ntμxν format and let P1 =

(Σ1, A1,R1) be a PTSS such that for all rule r ∈ R1 with conc(r) = t
a−→ μ, t � T(Σ0).

Let P = P0 ⊕P1 be defined and stratifiable. Then P1 can be added conservatively to P0.

Theorem 15. Let Σ0 = (F0, r0) and Σ1 = (F0, r1) be two signatures with constants a0 ∈
F0 and a1 ∈ F1, such that Σ0⊕Σ1 is defined. Let P0 = (Σ0, A0,R0) and P1 = (Σ1, A1,R1)
be two stratifiable PTSS. If for all substitutions ρ0 and ρ1 and rules r0 ∈ R0 and r1 ∈ R1,

it holds that ρ0(ψ) � ρ1(φ) with φ = conc(r1) and ψ ∈ pprem(r0) or ψ = t
a−→ μ with

t
a−→ ∈ nprem(r0), then P0 ⊕ P1 is also stratifiable.

6 Tracing Bisimulation

Two terms are (possibilistic) trace equivalent if they can perform the same sequences of
actions with some positive probability (but not necessarily the same). In this section we
show that the trace congruence induced by the ntμfν/ntμxν format is exactly a “finitary”
version of the bisimulation equivalence. This relation, which we called bounded bisimi-
larity, agrees with ∼ on image finite probabilistic transition systems. (−→P is image-finite

iff for all t ∈ T (Σ) and a ∈ A, the set {μ | t a−→P μ} is finite.)

Definition 16. Let P = (Σ, A,R) be a stratifiable PTSS with associated relation −→P.
Given t ∈ T (Σ), a sequence a1 . . . an ∈ A∗ is a trace from t iff there are terms t0, . . . , tn ∈
T (Σ) and distributions π1, . . . , πn s.t. t0 = t, ti

ai+1−−−→ πi+1 and πi+1(ti+1) > 0 for 0 ≤ i < n.
Let Tr(t) be the set of all traces from t. Two terms t, t′ ∈ T (Σ) are trace equivalent with
respect to P, notation t ≡T

P t′, iff Tr(t) = Tr(t′).

We say that C[x1, . . . , xn] is a context if C[x1, . . . , xn] is an open term in which at most
the distinct variables x1, . . . , xn appear. As usual, C[t1, . . . , tn] denotes the term obtained
by replacing all occurrences of variables xi by ti.



Probabilistic TSS: Congruence and Full Abstraction of Bisimulation 463

Definition 17. Let P = (Σ, A,R) be a stratifiable PTSS in ntμfν/ntμxν format. Two terms
t, t′ ∈ T (Σ) are trace congruent with respect to ntμfν/ntμxν, notation t ≡T

ntμfν/ntμxν t′, iff
for all PTSS P′ = (Σ′, A′,R′) in ntμfν/ntμxν format which can be added conservatively
to P and for every context C[x] it holds that C[t] ≡T

P⊕P′ C[t′].

Let P = (Σ, A,R) be a stratifiable PTSS with associated relation −→P. The relations
�n

P ⊆ T (Σ) × T (Σ) for n ∈ N are inductively defined by:

�0
P = T (Σ) × T (Σ)

�n+1
P = {(t, t′) | (t a−→π⇒ ∃π′ : t′

a−→π′ ∧ π �n
P π
′) ∧ (t′

a−→π′ ⇒ ∃π : t
a−→π ∧ π �n

P π
′)}

Given t, t′ ∈ T (Σ), t and t′ are n-bounded bisimilar iff t �n
P t′. We say that t and t′ are

bounded bisimilar, notation t �P t′, if t �n
P t′ for all n ∈ N.

Bounded bisimilarity and bisimulation equivalence agree on image-finite probabilis-
tic transition systems [5, Lemma 3.5.8]. That is, if −→P is image-finite, then ∼ = �P.

We now define the bisimulation tester, that is, a PTSS PT that can be added con-
servatively to another PTSS and introduce contexts that are able to distinguish non-
bisimilar terms. More precisely, PT introduces two family of functions, binary functions
Bn, (k+1)-ary functions Prk

n (n, k ∈ N), and a trivial constant⊥. Their intended meaning
is as follows. Bn(t, u) can detect whether t and u are n-bounded bisimilar by showing

transition Bn(t, u)
yes−−−→ δ⊥. Otherwise, Bn(t, u)

no−−→ δ⊥. In this way, two non-bisimilar
terms t and u can be distinguished by the context Bn(t, ) for some appropriate n. Prk

n is
used as an auxiliary operator to test the measures of k (not necessarily different) (n−1)-

bounded bisimulation equivalence classes. More precisely, Prk
n(t, u1, · · · , uk)

(a,q1,...,qk)−−−−−−−−→
δ⊥ if there is a transition t

a−→ π such that π([u1]�n−1 ) ≥ q1, . . . , π([uk]�n−1 ) ≥ qk, where
q1, . . . , qk are some rational numbers.

Definition 18. Let P = (Σ, A,R) be a PTSS. The bisimulation tester of P is a PTSS
PT = (ΣT, AT,RT) where Σ ⊆ ΣT and ΣT contains binary functions Bn and functions Prk

n
with arity k + 1, n ∈ N and a constant ⊥, AT = A ∪ (

⋃
i>0(A × Qi)) ∪ {yes, no}, and R

contains the following rules (for all n, k > 0, a ∈ A and q ∈ Q):

(1) B0(x, y)
yes−−−→ δ⊥

Prk
n(x, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−−→ μ Prk
n(y, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−−→
Bn(x, y)

no−−→ δ⊥
(3)

(2)
x

a−→ μ {Bn−1(zi, Zi)
yes−−−→ μi, μ(Zi) ≥ qi}ki=1

Prk
n(x, z1, . . . , zk)

(a,q1,...,qk)−−−−−−−−→ δ⊥

Bn(x, y)
no−−→ Bn(y, x)

no−−→
Bn(x, y)

yes−−−→ δ⊥
(4)

The idea behind functions Prk
n explained above becomes apparent in rule (2). Besides,

notice that distinction between two non n-bounded bisimilar terms is revealed by rule
(3) where the negative premise indicates that it is is not able to find an a-transition for y
that measures more than qi in each equivalence class [zi]�n−1 (in the appropriate instance
of zi) while the positive premise is able to do it for x.

Observe that PT is in ntμfν format but is not pure. Though this is not necessary, it
is quite convenient in our case: the non-pure rule (3) allows for instances of arbitrary
terms (and hence arbitrary (n − 1)-bounded bisimulation equivalence classes) which is



464 P.R. D’Argenio and M.D. Lee

in the core of the definition of the n-bisimulations. Nevertheless, the fact that PT is not
pure is not a problem to ensure that it extends conservatively a given PTSS in a well
behaved manner using Theorems 14 and 15.

It is not too difficult to find a stratification for PT (it can be obtained in a similar
manner to [12, Lemma 6.8]). The following lemma is the core of Theorem 20 below.

Lemma 19. Let P = (Σ, A,R) be a stratifiable PTSS in pure ntμfν/ntμxν format contain-
ing at least one constant in its signature. Moreover, yes, no � A and Σ does not contain

function names Bn and Prk
n for all n, k ∈ N. Then, Bn(t, t′)

yes−−−→ δ⊥ ∈ −→P⊕PT ⇔ t �n
P t′,

for all t, t′ ∈ T (Σ).

Theorem 20 states that bisimulation equivalence is fully abstract with respect to the
ntμfν/ntμxν format and trace equivalence. That is, it states that bisimulation equivalence
is the coarsest congruence with respect to any operator whose semantics is defined
through ntμfν/ntμxν rules and that is included in trace equivalence. Its proof is a direct
consequence of Theorem 12, Lemma 19 and [5, Lemma 3.5.8].

Theorem 20. Let P = (Σ, A,R) be a stratifiable PTSS in pure ntμfν/ntμxν format con-
taining at least one constant in Σ. Moreover, −→P is image-finite, yes, no � A and Σ
does not contain function names Bn and Prk

n for all n, k ∈ N. Then, for all t, t′ ∈ T (Σ),
t ≡T

ntμfν/ntμxν t′ ⇔ t �P t′ ⇔ t ∼ t′

7 Concluding Remarks

Related Work. SOS for probabilistic systems have received relatively little attention. To
our knowledge, only [6, 7, 16, 17] study rule formats to specify probabilistic transition
systems, and in [7, 15] they are embedded in general bialgebraic frameworks.

Both RTSS format [17] and PGSOS format [6, 7] consider transitions with the form

t
a,q−−−→ t′ as already explained in the introduction. They allow for the specification of

only reactive probabilistic systems (i.e. they should satisfy that if t
a−→ π and t

a−→ π′,
then π = π′). Moreover, these formats are very much like GSOS [8] in the sense that

premises are of the form xi
ai ,qi−−−→ yi or xi

bi−−→ where each xi is a variable appearing
on the term f (�x) at the source of the conclusion. Moreover, qi needs to be a variable,
so there is no possibility of testing for a particular probability value. In addition, RTSS
allows for a restricted form of lookahead: only one step ahead from variable yi can be
tested and moreover probabilities should be appropriately combined in the conclusion
of the rule. We remark that both RTSS and PGSOS formats can be encoded in the
ntμfν/ntμxν format. Segala-GSOS format [7] allows for rules like in eq. (F), with the
restriction that terms tm and tn can only be any of the variables xk. Therefore, lookahead
is not permitted. Clearly this format can also be encoded in the ntμfν/ntμxν format.

Bialgebras present an abstract categorical framework to study structured operational
semantics and, in this setting, general congruence theorems have been presented [15, 23].
They introduce the so called abstract GSOS and abstract safe ntree [15, 23]. In fact,
Segala-GSOS is derived as an instance of abstract GSOS [7]. In a recent and yet unpub-
lished work, we showed that the ntμfν/ntμxν format reduces to a form of probabilistic
ntree format, just like the ntyft/ntyxt format reduces to ntree format [11]. As in the



Probabilistic TSS: Congruence and Full Abstraction of Bisimulation 465

non-probabilistic case, negative premises are not reducible to the form x
a−→ and retain

the form t
a−→ with t being an arbitrary term. Precisely because of this, our format (like

the ntyft/ntyxt format) cannot be instanced as an abstract safe ntree. Moreover, it is also
not fully clear to us how to encode quantitative premises in the bialgebraic framework.

Notice that none of the previously mentioned formats can encode the bisimulation

tester of Def. 18 since it needs lookahead, negative premises of the form f (�x)
a−→ ,

and quantitative premises testing against any possible probability value and none of the
previous formats allow for all these simultaneously. In fact, to the authors knowledge no
full abstraction result for rule formats has been presented before for PTSS. However,
related to this result, we should remark that testers for bisimulation of deterministic
probabilistic transition systems were already introduced in [18].

We also remark that the ntμfν/ntμxν format should be considered as a probabilistic
extension of the tyft/tyxt and ntyft/ntyxt formats [12, 13]. These formats can be encoded
in ntμfν/ntμxν format if non-probabilistic transitions t

a−→ t′ are considered as a prob-

abilistic transition in the usual way, i.e., as t
a−→ δt′ . Finally, we observe that there is

a rule format for generative probabilistic systems [16, 17] which is not covered by our
format since it is very different in nature to the model we use.

Conclusion. In this article we have introduced PTSSs and the ntμfν/ntμxν format for
rules that specify probabilistic transition systems. We proved that bisimilarity is a con-
gruence for all operators definable in this format and that it is also the least congruence
relation preserved by all such operators included in possibilistic trace equivalence. We
have also presented several standard theorems that ensure definability and uniqueness
of models and conservative extensions, among others.

We highlight the introduction of our quantitative premises which, in combination
with lookahead, permits the constructions of powerful operators. An example is the
tester of Def. 18. Another one, more interesting, is a deadlock measuring operator dk

where dk(t)
q−→ ν iff t reaches a deadlock state with probability larger or equal to q in

any possible resolution of nondeterminism. The rules are as follows
{
x

a−→ | a ∈ A
}

dk(x)
1−→ δ⊥

{
Bn(x, y)

yes−−→ μn | n ∈ N0

}

B(x, y)
yes−−→ δ⊥

x
a−→ μ

{
dk(zi)

pi−−→ μi, μ(Zi) ≥ qi, B(zi,Zi)
yes−−→ μ′i , B(zi, z j)

yes−−→
}

i, j∈I
i� j

dk(x)
∑

i∈I qi pi−−−−−−→ δ⊥

I is a countable
index set and
∑

i∈I qi ≤ 1

The last rule appropriately collect the probabilities by looking ahead on disjoint (non-
bisimilar) terms (notice the use of the bisimulation tester). Operation dk is somehow
related to the zero process of [3] that allows for detection of inevitable deadlock.

We remark that the congruence theorem also holds for PTSs with subprobability dis-
tributions (i.e. distributions such that π(T (Σ)) < 1). However, we do not know whether
the full abstraction result remains valid in this setting: our tester would fail to distinguish

c from d where c
a−→ (0.5 · δc + 0.5 · δ⊥), c

a−→ (0.5 · δc), and d
a−→ (0.5 · δc + 0.5 · δ⊥).

Acknowledgement. We would like to thank the anonymous referees whose suggestions
let us improve the presentation of our paper.



466 P.R. D’Argenio and M.D. Lee

References

1. Aceto, L., Fokkink, W., Verhoef, C.: Conservative extension in structural operational seman-
tics. In: Current Trends in Theor. Comput. Sci., pp. 504–524. World Scientific (2001)

2. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Handbook of Pro-
cess Algebra, pp. 197–292. Elsevier (2001)

3. Baeten, J.C.M., Bergstra, J.A.: Process Algebra with a Zero Object. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 83–98. Springer, Heidelberg (1990)

4. Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: ACP
with generative probabilities. Inf. Comput. 121(2), 234–255 (1995)

5. Baier, C.: On Algorithmics Verification Methods for Probabilistic Systems. Habilitation the-
sis, University of Mannheim (1999)

6. Bartels, F.: GSOS for probabilistic transition systems. Electr. Notes Theor. Comput.
Sci. 65(1) (2002)

7. Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats. PhD thesis,
Vrije Universiteit (2004)

8. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1), 232–268
(1995)

9. Bol, R., Groote, J.F.: The meaning of negative premises in transition system specifications.
J. ACM 43(5), 863–914 (1996)

10. D’Argenio, P.R., Verhoef, C.: A general conservative extension theorem in process algebras
with inequalities. Theor. Comput. Sci. 177(2), 351–380 (1997)

11. Fokkink, W., van Glabbeek, R.J.: Ntyft/ntyxt rules reduce to ntree rules. Inf. Comput. 126(1)
(1996)

12. Groote, J.F.: Transition system specifications with negative premises. Theor. Comput.
Sci. 118(2), 263–299 (1993)

13. Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congru-
ence. Inf. Comput. 100(2), 202–260 (1992)

14. Jonsson, B., Larsen, K.G., Yi, W.: Probabilistic extensions of process algebras. In: Handbook
of Process Algebra, pp. 685–710. Elsevier (2001)

15. Klin, B.: Bialgebras for structural operational semantics: An introduction. Theor. Comput.
Sci. 412(38), 5043–5069 (2011)

16. Lanotte, R., Tini, S.: Probabilistic Congruence for Semistochastic Generative Processes. In:
Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 63–78. Springer, Heidelberg (2005)

17. Lanotte, R., Tini, S.: Probabilistic bisimulation as a congruence. ACM Trans. Comput.
Log. 10(2) (2009)

18. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28
(1991)

19. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
20. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after.

Theor. Comput. Sci. 373(3), 238–272 (2007)
21. Plotkin, G.: A structural approach to operational semantics. Report DAIMI FN-19, Aarhus

University (1981); reprinted in J. Log. Algebr. Program. 60-61, 17–139 (2004)
22. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD

thesis. MIT (1995)
23. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: LICS, pp. 280–

291 (1997)
24. van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II.

J. Log. Algebr. Program. 60-61, 229–258 (2004)
25. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of

probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)


	Probabilistic Transition System Specification: Congruence and Full Abstraction of Bisimulation
	Introduction
	Preliminaries
	Probabilistic Transition System Specifications
	The $ntf/ntx$ Format and the Congruence Theorem
	Modular Properties
	Tracing Bisimulation
	Concluding Remarks
	References




