Synthesizing Probabilistic Composers*

Sumit Nain and Moshe Y. Vardi

Department of Computer Science,
Rice University, Houston, TX 77005, USA

{nain,vardi}@cs.rice.edu

Abstract. Synthesis from components is the automated construction of
a composite system from a library of reusable components such that the
system satisfies the given specification. This is in contrast to classical
synthesis, where systems are always “constructed from scratch”. In the
control-flow model of composition, exactly one component is in control
at a given time and control is switched to another when the component
reaches an exit state. The composition can then be described implicitly
by a transducer, called a composer, which statically determines how the
system transitions between components.

Recently, Lustig, Nain and Vardi have shown that control-flow syn-
thesis of deterministic composers from libraries of probabilistic compo-
nents is decidable. In this work, we consider the more general case of
probabilistic composers. We show that probabilistic composers are more
expressive than deterministic composers, and that the synthesis problem
still remains decidable.

Keywords: synthesis, temporal logic, probabilistic components.

1 Introduction

Hardware and software systems are rarely built from scratch. Almost every non-
trivial system is based on existing components. A typical component might be
used in the design of multiple systems. Examples of such components include
function libraries, web APIs, and ASICs. The construction of systems from
reusable components is an area of active research. Some examples of important
work on the subject can be found in Sifakis’ work on component-based con-
struction [11], and de Alfaro and Henzinger’s work on “interface-based design”
[7]. Furthermore, other situations, such as web-service orchestration [3], can be
viewed as the construction of systems from libraries of reusable components.
Synthesis is the automated construction of a system from its specification.
In contrast to model checking, which involves verifying that a system satisfies
the given specification, synthesis aims to automatically construct the required
system from its formal specification. The modern approach to temporal syn-
thesis was initiated by Pnueli and Rosner who introduced linear temporal logic

* Work supported in part by NSF grants CCF-0728882 and CNS 1049862, and BSF
grant 9800096. The authors are grateful to Orna Kupferman for suggesting the study
of probabilistic composers.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 421-39, 2012.
© Springer-Verlag Berlin Heidelberg 2012

422 S. Nain and M.Y. Vardi

(LTL) synthesis [1I0]. In LTL synthesis, the specification is given in LTL and the
system constructed is a finite-state transducer modeling a reactive system. In
this setting it is always assumed that the system is “constructed from scratch”
rather than “composed” from existing components. Recently, Lustig and Vardi
[9] introduced the study of synthesis from reusable components. The use of com-
ponents abstracts much of the detailed behavior of a sub-system, and allows one
to write specifications that mention only the aspects of sub-systems relevant for
the synthesis of the system at large.

A major concern in the study of synthesis from reusable components is the
choice of a mathematical model for the components and their composition. The
exact nature of the reusable components in a software library may differ. One
finds in the literature many different types of components; for example, function
libraries (for procedural programming languages) or object libraries (for object-
oriented programming languages). Indeed, there is no single “right” model en-
compassing all possible facets of the problem. The problem of synthesis from
reusable components is a general problem to which there are as many facets as
there are models for components and types of composition [11].

Our model is based on the control-flow composition model of [9]. In this model,
a component is just a transducer, i.e., a finite-state machine with outputs. Trans-
ducers constitute a canonical model for reactive components, abstracting away
internal architecture and focusing on modeling input/output behavior. In con-
trast to [9], we allow components to be probabilistic, i.e., the transducers have a
probabilistic transition function. The use of probabilistic transducers is a com-
mon approach to modeling systems where there is probabilistic uncertainty about
the results of input actions. Intuitively, we aim at constructing a reliable system
from unreliable components. There is a rich literature about verification and
analysis of such systems, cf. [BI6/12/13], as well about synthesis in the face of
probabilistic uncertainty [I]. The introduction of probability requires us to use a
probabilistic notion of correctness; here we choose the qualitative criterion that
the specification be satisfied with probability 1, leaving the study of quantitative
criteria to future work.

In control-flow composition, control is held by a single component at every
point in time. When the current component reaches an exit state, the execution
passes to the start state of another component. The flow of control between
components can itself be modeled by a supervisory transducer called a composer.
Given the name of the current component and exit state, the composer gives the
name of the next component in control. In essence, the composer describes how
the composite system is put together and can be viewed as an implicit description
of the composite system. The goal of the synthesis problem is then to find a
suitable composer such that the resulting system satisfies the specification.

Here we consider two kinds of specification formalism: embedded parity and
deterministic parity automaton (DPW). An embedded parity specification is
given by associating a natural number called a priority to each state of each
component in the given set of components. The specification is satisfied if the
run of the system satisfies the parity condition with probability 1. A DPW

Synthesizing Probabilistic Composers 423

specification is satisfied if the input-output behavior of the system is accepted
by the DPW with probability 1.

In previous work [§], the synthesis problem for probabilistic components was
shown to be decidable for both DPW and embedded parity specifications. How-
ever, while the components there were probabilistic, the composer, and thus the
control-flow of the composite system, was still deterministic. Since the composer
is itself a transducer that describes the flow of control between components in
a composition, it is natural to consider the more general case of allowing the
composer to also be a probabilistic transducer. In this case, not just the behav-
ior of individual components, but also the flow of control between components
is probabilistic. Does this allow the composite system to satisfy more specifica-
tions? That is, we would like to know whether probabilistic composers are more
erpressive than deterministic composers. And if so, how do we synthesize them?
These questions are the focus of this paper.

We have two main goals: to investigate the expressiveness of probabilistic
composers and to solve the synthesis problem for probabilistic composers. We
show that expressive power depends on the type of specification. For embedded
parity specifications, allowing the composer to be probabilistic gives no advan-
tage. In particular, if a suitable probabilistic composer exists then a suitable
deterministic composer also exists. In contrast, for the more general case of a
DPW specification, we find that probabilistic composers are more expressive. We
give an instance of the DPW synthesis problem such that there exists a suitable
probabilistic composer that solves it, but no suitable deterministic composer ex-
ists. We note that expressiveness is not just a theoretical concern. The fact that
probabilistic composers are more expressive means that some systems can only
be constructed using a probabilistic composition. As a result the DPW synthesis
problem for probabilistic composers becomes important in its own right and not
just as an extension of the deterministic case. It is interesting that probabilis-
tic composers only gain expressive power in the presence of specifications with
memory (DPW specifications). We view this as another example of a memory
vs. randomness trade-off that is well-known in the game-theoretic literature [4].

In [8], the DPW synthesis problem for deterministic composers is solved by
reducing it to the embedded parity version. But for probabilistic composers, a
similar approach does not work because their expressive power differs for em-
bedded parity and DPW specifications. Instead, we solve the DPW synthesis
problem for probabilistic composers by a reduction to deterministic composers.
The key insight is that it is possible to equip the library with an additional
component with a specific structure, called M;.nq, such that the probabilistic
choices made by a composer can be simulated by the probabilistic transitions
within M,.nq. The idea is that whenever a probabilistic composer C' makes a
probabilistic transition, the equivalent deterministic composer C’ can instead
call an instance of M;anq to simulate the moves of C. The result is that the
DPW synthesis problem for probabilistic composers is decidable.

Finally, the embedded-parity version of our synthesis problem can also be
viewed as a partial information stochastic game between two players, the

424 S. Nain and M.Y. Vardi

composer C, which chooses components, and the environment E, which chooses
paths through the components chosen by C. The partial information arises be-
cause our model of composition is static, which means the components chosen by
the composer cannot depend on the inputs selected by the environment. In con-
trast to standard parity games, partial information stochastic games are known
to be undecidable even for co-Biichi objectives (and thus for parity objectives)
[2]. Thus, in the framework of games, our result can be viewed as a rare positive
result for partial-information stochastic games. We explain this game-theoretic
view of the problem in more detail in Section [1

This paper is self-contained, except for certain proofs that have been omitted
to save space; a longer version is posted on the authors’ home pages.

2 Preliminaries

A deterministic transducer is a tuple B = (X, Y0, Q, 0,0, L), where: X is a
finite input alphabet, X is a finite output alphabet, @ is a finite set of states,
qo € @ is an initial state, L : Q — X is an output function labeling states with
output letters, and § : Q x X7 — @ is a transition function.

A strongly connected component of a directed graph G = (V, E) is a subset
U of V, such that for all u,v € U, u is reachable from v. We can define a
natural partial order on the set of maximal strongly connected components of G
as follows: Uy < U, if there exists u; € Uy and ug € Us such that u; is reachable
from ug. An ergodic set of G is a minimal element of this partial order.

A probability distribution on a finite set X is a function p : X — [0,1] such
that) .y u(x) = 1. The support of p, denoted supp(p), is the set {z € X :
p(z) > 0}. Dist(X) denotes the set of all probability distributions on set X.
A probabilistic transducer, is a tuple 7 = (X1, X0, Q, qo,0, F, L), where: X is a
finite input alphabet, X is a finite output alphabet, @ is a finite set of states,
go € Q is an initial state, § : (Q—F) x X1 — Dist(Q) is a probabilistic transition
function, F' C () is a set of exit states, and L : Q — Yo is an output function
labeling states with output letters. Note that there are no transitions out of an
exit state. If F' is empty, we say 7 is a probabilistic transducer without exits.

Given a probabilistic transducer M = (X7, X,, @, qo, 0, F, L), a strategy for M
is a function f : @* — Dist(Xr) that probabilistically chooses an input for each
sequence of states. A strategy is memoryless if the choice depends only on the
last state in the sequence. A memoryless strategy is a function g : Q@ — Dist(X).
A strategy is pure if the choice is deterministic. A pure strategy is a function
h:Q* — Xy, and a memoryless and pure strategy is a function h: Q — X7y.

A strategy f along with a probabilistic transducer M, with set of states Q,
induces a probability distribution on @“, denoted py. By standard measure
theoretic arguments, it suffices to define py for the cylinders of @, which are
sets of the form 3-Q%, where 8 € Q*. First we extend J to exit states as follows:
fora € X1, q € F,q¢ € Q, 6(q,a)(¢) = 1 and d(q,a)(¢’) = 0 when ¢ # q.
Then we define ji(qo - Q¥) = 1, and for 8 € Q*, ¢,¢' € Q, py(Bgq’ - Q) =
1y (B9) (X ues, F(Bg)(a)xd(q,a)(q")). These conditions say that there is a unique

Synthesizing Probabilistic Composers 425

start state, and the probability of visiting a state ¢’, after visiting 3¢, is the same
as the probability of the strategy picking a particular letter multiplied by the
probability that the transducer transitions from ¢ to ¢’ on that input letter,
summed over all input letters.

Let M be a probabilistic transducer, () be its set of states, and f be a memory-
less strategy for M. We define the graph induced by f on @, denoted by Gy, f, as
the directed graph (@, E), where (q1,q2) € Eif), 5 f(q1)(a)d(q1,a)(g2) > 0.
That is, there is an edge from ¢; to ¢ if the transducer can transition from the
state g1 to the state g2 on an input letter that the strategy chooses with positive
probability. Given q1,q2 € @, we say that ¢o is reachable from ¢; if there is a
path from ¢; to g2 in G, r. We say a state is ergodic if it belongs to some ergodic
set of G, r. An ergodic set is reachable if there is a path from the start state to
some state in the ergodic set. A state ¢ of M is reachable under f, if there is a
path in Gz, from gp to g.

A library is a set of probabilistic transducers that share the same input and
output alphabets. Each transducer in the library is called a component. Given a
finite set of directions D, we say a library £ has width D, if each component in the
library has exactly | D] exit states. Since we can always add dummy unreachable
exit states to any component, we assume, w.l.o.g., that all libraries have an
associated width, usually denoted D. In the context of a particular component,
we often refer to elements of D as exits, and subsets of D as sets of exits.

An index function for a transducer is a function that assigns a natural number,
called a priority index, to each state of the transducer. An index function for a
library is a function that assigns a priority to every state of every component
in the library. Given an index function «, and a set of states X, we denote by
a(X) the highest priority assigned by a in X.

3 Control-Flow Composition

Let £ be a library with width D. We first informally describe our notion of proba-
bilistic control-flow composition of components from £. Each library component
can be used multiple times in a composition, and we treat these occurrences as
distinct component instances. Thus, the size of a composition, a priori, is not
bounded. The component instances in a composition take turns interacting with
the environment, and at each point in time, exactly one component instance
is active. When the active component instance reaches an exit state, control is
transferred probabilistically to the start state of some other component instance.

Given a set of component instances to be composed, a control flow composi-
tion can be defined by giving, for each exit state of each component instance,
the probability distribution that determines the probability of transitioning from
that exit state to another component instance. This information can be repre-
sented naturally by a probabilistic transducer, called a (probabilistic) composer,
whose set of states corresponds to the set of component instances and whose
input alphabet corresponds to the set of exits D. Then, for each component

426 S. Nain and M.Y. Vardi

instance and exit, the transition function of the composer gives the probability
distribution that determines which component instance will be in control next.

Formally, a composer over a library £ with width D is a probabilistic tran-
ducer C = (D, L, M, Mg, A, \). Here M is an arbitrary finite set of states. In
particular, there is no a priori bound on the size of M. Each M; € M is the
name of an instance of a component from £ and A(M;) € L is the type of M.
The transition function A : M x D — Dist(M) gives a distribution on the set of
instance names. We say a composer is a deterministic composer if its transition
function is deterministic.

Note that while each component name M; is distinct, the corresponding com-
ponent instances A(M;) need not be distinct. Each composer defines a unique
composition over components from £. The current state of the composer corre-
sponds to the component that is in control. The transition function A describes
how to transfer control between components: A(M,7)(M’) = p denotes that when
the composition is in the ith exit state of component instance A(M) it moves to
the start state of component instance A\(M’) with probability p. A composer can
be viewed as an implicit representation of a composition. We give the explicit
definition of composition below.

Definition 1 (Control-flow Composition). Let C' = (D, L, M, Mg, A, \) be
a composer over library L with width D, such that M = {Mo,...,M,}, A\(M;) =
(X1,%0,Qi,q5,0i, Fi, L;) and F; = {q. : x € D}. The composition defined by
C, denoted ¢, is a probabilistic transducer (X1, X0, Q, qo, 9,0, L), where Q =
U™ (Qi x {i}), g0 = (45,0), L({g,i)) = Li(q), and the transition function ¢ is
defined as follows: For o € Xy, (q,i) € Q and {¢',j) € Q,

1. If g € Q; \ F;, then

0i(g,0)(q") ifi=]
0 otherwise

0({q i), 0)((d',) = {

2. If q=q; € Fi, then 6((g,7),0)((¢',§)) = A(M;, z)(My).

When the composition is in a state (g,) corresponding to a non-exit state ¢ of
component instance A(M;), it behaves like A(M;). When the composition is in
a state (gr,4) corresponding to an exit state ¢y of component instance A(M,),
the control is transferred to the start state of another component instance as
determined by the transition function of the composer. Thus, at each point
in time, only one component is active and interacting with the environment.
Note that our notion of composition is static, where the components called are
determined before run time, rather than dynamic, where the components called
are determined during run time.

Definition 2. Given a library £ with width D, an exit control relation is a
set R C D x L. We say that a composer C = (D, L, M, Mgy, A, X) over L is
compatible with R, if the following holds: for all M|M" € M and i € D, if
A(M,i) = M’ then (i,M’") € R. Thus, each element of R can be viewed as a
constraint on how the composer is allowed to connect components.

Synthesizing Probabilistic Composers 427

4 Defining the Synthesis and Realizability Problems

The goal of synthesis from components is to find a composer C over library £
such that 7¢, the composition defined by C, satisfies the given specification,
which is typically some w-regular property. In general, a specification property
is usually defined as a subset of (X x @Q)¥ where X' is the input alphabet and
Q is the set of states of the system. However, here we assume, without loss
of generalization, that the states of the transducers ‘remember’ the input, so
defining a property as a subset of Q“ is sufficient. In this paper, we focus on two
different but related formalisms for describing w-regular properties:

— embedded parity specification: This is a simple specification given by an in-
dex function «, which assigns a priority to each state of the system. We
say a run of the system satisfies the parity condition if the highest priority
visited infinitely often is even. Then the w-regular property defined by the
specification is just the set of all runs that satisfies the parity condition.

— deterministic parity word automata (DPW): This is a more powerful for-
malism that can express all w-regular specifications. Given a DPW A, the
w-regular property defined by A is simply the language of A.

While the two formalisms differ in power, they ultimately both use the parity
condition to check whether a run of the system is accepting or not. As we see
in Section [l the contrast between the relatively weak embedded parity speci-
fication and the more general DPW specification is a useful tool to study the
expressiveness of probabilistic composers. In particular, we note that a DPW
specification has memory while an embedded parity specification is memoryless.
As we see in the next section, this difference illuminates the issue of expressive-
ness of probabilistic composers.

Now, in order to formalize the synthesis problem, we need to define an ap-
propriate notion of correctness for a reactive probabilistic system w.r.t. a given
specification. We assume the presence of an adversarial environment that con-
trols the input, while the system, a probabilistic transducer, controls the output.
We require that the executions of the system satisfy the specification with prob-
ability 1 irrespective of the inputs selected by the environment. Our notion of
correctness is qualitative [12].

Definition 3. Let M be a probabilistic transducer, @ be the state space of M,
and P C Q% be an w-regular property. Let f be a strategy for M. Then f is
winning for the environment if puy(P) < 1. We say that M satisfies P if there
exists no winning strategy for the environment. If M satisfies P, and the property
P is given by index function a or DPW A, we say M satisfies a or, respectively,
M satisfies A.

Let L be a library, a be an index function, and A be a DPW. Let C be a
composer over L. We say C satisfies o or C satisfies A, if Tc satisfies a or,
respectively, Tc satisfies A.

The two types of specifications give rise to two related synthesis problems.

Definition 4. The embedded parity realizability problem for probabilistic com-
posers is: Given a library L with width D, an exit control relation R for L, and

428 S. Nain and M.Y. Vardi

an index function « for L, decide whether there exists a probabilistic composer C'
over L, such that Tc satisfies a and C' is compatible with R. If such a composer
exists we say L realizes a under R. The embedded parity synthesis problem for
probabilistic composers is to find such a composer C if it exists.

Definition 5. The DPW realizability problem for probabilistic composers is:
Given a library L and a DPW specification A, decide whether there exists a
probabilistic composer C' over L, such that 1o satisfies A. If such a composer
exists, we say that L realizes A. The DPW synthesis problem for probabilistic
composers is to find such a composer C if it exists.

We can obtain weaker versions of these problems by restricting ourselves to
deterministic composers. The resulting problems are then known to be decidable:

Theorem 1. [§] The embedded parity realizability and synthesis problems for
deterministic composers are decidable. O

Theorem 2. [§] The DPW realizability and synthesis problems for deterministic
composers are decidable. O

We observe that while one might hope to solve the more general case of prob-
abilistic composers by using the methods of [§], there are two main difficulties
with that approach. First, in [8], the DPW version of the problem is solved by
reducing it to the embedded parity version. However, as we show in the next sec-
tion, while deterministic and probabilistic composers have the same expressive
power for embedded parity specifications, probabilistic composers are strictly
more expressive than deterministic composers for DPW specifications. Thus it
is not possible to reduce the DPW realizability of probabilistic composers to the
embedded parity version. Second, the automata theoretic techniques used in [§]
crucially depend on the fact that every deterministic composer can be repre-
sented as a regular D-tree (a tree with constant branching degree D) where D is
the width of the library. This is because when the control-flow is deterministic,
there is exactly one successor component for each exit of a component, and so
the number of outgoing edges from each component is always the same as the
number of exits. When the composer is probabilistic, the branching degree of
its unfolding can be as large as the number of its states, which is not a priori
bounded.

5 The Expressive Power of Probabilistic Composers

Given a specification formalism, it is natural to ask the following question: Do
we gain any additional power for solving the synthesis problem by allowing com-
posers to be probabilistic? That is, are there instances of the synthesis problem
(i.e. a library and a specification) such that some probabilistic composer satis-
fies the specification, but no deterministic composer does? If the answer is yes,
then we say that probabilistic composers are more expressive than deterministic
composers for that class of specifications. Otherwise, we say they are equally
expressive.

Synthesizing Probabilistic Composers 429

5.1 Embedded Parity Specifications

We first consider the issue of expressiveness for embedded parity specifications.
Our main result here is that deterministic and probabilistic composers are both
equally expressive for embedded parity specifications. To prove this, we need to
show that, for every library £, exit control relation R and index function «, if
there is a probabilistic composer over £ that satisfies a under R, then we can
also find a deterministic composer over £ that satisfies o under R. We first recall
the following useful characterization of winning strategies.

Theorem 3. [8] Let M be a probabilistic transducer and o be an index function.

1. If there exists a winning strategy for the environment then there exists a pure
and memoryless winning strategy.

2. Let f be a memoryless strategy for M. Then f is winning for the environment

iff Ga,r has a reachable ergodic set whose highest priority is odd. O

The key idea behind our approach is that instead of directly comparing prob-
abilistic composers to deterministic composers, we should instead compare a
probabilistic composer C' to a composer C’ which is ‘less probabilistic’ than it.
We formalize what it means for one composer to be less probabilistic then an-
other, by introducing a partial order, denoted <,,op, on the set of all composers.

Definition 6. Let COMP(L) be the set of all probabilistic composers over L. We
define the partial order <o, on COMP(L): for Cy = (D, L, M1, M}, A1, A1) and
CQ = (D,ﬁ,./\/lg, M%, AQ,)\2), we have Cl Spmb Cg Zf

- Ml :MQ, M1 = M%, and)\1 =)\2

—Vie D,M e My, supp(A1(M, 1)) C supp(Az(M, 7))
If C1 <prob C2 and Cy <ppp C1, we say that Cy and Cy are qualitatively
equivalent. We denote by <, the strict partial order corresponding to <prp.

Thus C1 <prob C2 if they have the same set of states and output functions
and the set of possible transitions of C is a proper subset of the set of possible
transitions of C>. We note that <;op is a well-founded relation, and deterministic
composers are the minimal elements of the relation. The well-foundedness of
<prob is crucial because it allows the use of induction.

Next we show that if all the composers obtained by removing transitions from
a composer C| fail to satisfy a under R, then C itself also fails to satisfy o under
R. The intuition here is that the behavior of C' can be determined by looking
at the behavior of composers that make fewer probabilistic choices than C' but
have the same underlying structure.

Lemma 1. Let L be a library with width D, R be an exit control relation and
a be an index function for L, and let C € COMP(L) be such that C is not
deterministic. Suppose that for all C' € COMP(L) and C" <,rop C, we have that
C" does not satisfy o under R. Then C also does not satisfy o under R.

Proof. Let C = (D, L, M,Mg, A, \) € COMP(L). If C is not compatible with
R, then C trivially does not satisfy a under R. So we assume that C is com-
patible with R. We first arbitrarily choose M, € M and iy € D such that

430 S. Nain and M.Y. Vardi

|supp(A(Mq,i0))| > 1. That is, we require that the transition out of state M,
on input ig is not deterministic. Since it is given that C' is not a deterministic
composer, there is at least one such state and input pair. Consider M, and i to
be fixed for the rest of this proof.

Let supp(A(Mg,ig)) = {M1,.., M} C M. For 1 < j < k, we define prob-
abilistic composers C; = (D, £, M, Mo, A;,), where A;(Mg,49) = M; and for
al M e M, ie D, Aj(M,i) = A(M, i) when ¢ # ig or M, # M. Thus each C is
deterministic at state M, and behaves exactly like C' at other states. Further, for
each possible choice of next state available to C' at state M, on input ig, there is
exactly one of the C;’s that makes that choice deterministically. By construction,
for all 1 < j < k, we have C; € COMP(L), C; < C, and C; is compatible with
R. So, by the assumption in the theorem statement, C; does not satisfy o for
all 1 < j < k. Then, by Definition [3] and Theorem [3] for each 1 < j < k, there
exists memoryless strategy f; for 7¢, that is winning for the environment. Note
that each f; is also a memoryless strategy for 7¢.

Let @ be the set of states of 7¢, g be the start state of A(Mg) and ¢ be the exit
state of A\(Mg) in direction ig. For 1 < j <k, let G; = G 5, and G; = Gch’fj.
Now, by construction, we have A;(M, i) = A(M, i) for i # ig or M # M,. That
is, C' and C} differ in their choices only when the composition is in exit state g
of component A(M,). Further, G, and G; have the same set of vertices () and
G'; is a subgraph of G;. Thus all edges that lie in G; but not in G; must have g
as their source. Let X; be a reachable ergodic set of G} such that a(X;) is odd.
Such an X; must exist because f; is winning for the environment for 7¢,. Then,
since G; is a subgraph of G, Xj is also reachable and strongly connected in G;.
Also ¢ is the source of all the edges that lie in G; but not in G;. So if ¢ does not
lie in X, then no edges can leave X; in G; and X is also a reachable ergodic
set of G;. In this case, f; is also a winning strategy for the environment for 7¢.
Note that this argument does not depend on the particular value of j. For the
rest of the proof we can assume that ¢ € X; forall 1 < j <k.

Let X = Ule X; and z € X be such that a(z) = a(X). Since, by definition,
a(X;) is odd for all 1 < j <k, therefore o) is also odd. We assume, without
loss of generalization, that € X; and define a memoryless strategy f for 7¢ such
that: f(z) = fi(z) for z € (Q —X)UXq, and f(z) = fj(z) for xz € Xj—Ug;ll X;.
Let G = G'7,,,f. Since f takes the same values as f; on X, then X; must be
strongly connected in G. We first show that no edges in G leave X . Since X3 is an
ergodic set of G1, therefore ¢ is the source of all the edges that leave X7 in G. By
construction of the C}, each of these edges goes to some X;. Thus no edges from
X1 leave X in G. Similarly, any edge leaving a vertex z € X; — Ui;ll X; must
stay in X, because f and f; agree on those vertices and ¢ ¢ X,; — UZ;II X;. Thus
there are no edges leaving X in GG. Thus X must contain at least one ergodic set
of G. Let Y be this ergodic set of G.

We next show that X; is reachable in G from every vertex in X. Clearly X;
is reachable in G from X;. Assume that X; is reachable in G from every vertex
in X,,, — UZZII X;, for all 1 <m < j, for some j < k. Let X' = X;11 — UL, Xi
and let x € X’. We claim that there is a path in G that starts from z and leaves

Synthesizing Probabilistic Composers 431

X'. If there is no such path, then some Y’ C X’ must be an ergodic set of G.
Since f and fj+1 agree on vertices in X', if Y’ is an ergodic set of G, then Y is
also an ergodic set of G;41. But this contradicts the fact that X, is an ergodic
set of G;-H, and so is strongly connected in Gj41. Thus there is a path in G
that starts from x and leaves X’. Further, any outgoing edge from a vertex in X’
cannot leave X1, because f and f;j;1 agree on X'. Thus there is a path from
z to some vertex y in X;41 — X’ = (JI_, X;. Now, by the inductive hypothesis,
X1 is reachable in G from y. Thus X; is also reachable in G from z. Since x was
chosen arbitrarily, X; is reachable in G from every vertex in X;11 — JJ_, X;.
By induction, X; is reachable in G from every vertex in X. In particular, X; is
reachable in G from the ergodic set Y C X of G. Thus, X must be contained in
Y. Then we have a(z) < a(X1) < a(Y) < a(X) = a(z). Thus a(Y") is also odd.

Finally, all that remains is to show that Y is reachable from the start state qq.
Since f; is winning for the environment for 7¢,, we know that X; is reachable
in G from the start state gg. Since X7 C X, X is also reachable in G from ¢q.
Consider the shortest path in G; that starts from gg and reaches X. Then all
vertices, except the last one, in this path are in Q — X. Since f and f; agree on
vertices in () — X, this path is also present in G. Then X is reachable from ¢ in
G and so Y is reachable from ¢qg in G. Thus f is a pure and memoryless winning
strategy for the environment. O

Finally, we show that, for embedded parity specifications, probabilistic com-
posers are not more expressive than deterministic composers.

Theorem 4. Let L be a library with width D and « be an index function for L.
There is a probabilistic composer C € COMP(L) that satisfies v if and only if
there is a deterministic composer C' € COMP(L) that satisfies a.

Proof. Follows immediately from Lemma [using transfinite induction on the
well-founded strict partial order <;yop. O

As a consequence of Theorem [, together with Theorem [, we obtain:

Theorem 5. The embedded parity synthesis problem for probabilistic composers
1s decidable. O

5.2 DPW Specifications

While embedded parity specifications are memoryless, DPW specifications have
an associated memory (the state of the DPW). This difference turns out to be
crucial in determining the expressive power of probabilistic composers. As we see
below, the ability to make random transitions allows a probabilistic composer to
successfully deal with memoryful specifications where deterministic composers
fail. We find that, in contrast to the embedded parity case, there are instances
of the DPW realizability problem where a suitable probabilistic composer exists
but no suitable deterministic composer exists. Thus, probabilistic composers are
strictly more expressive than deterministic composers for DPW specifications.

432 S. Nain and M.Y. Vardi

We describe a suitable problem instance, consisting of a library £ and DPW A.
Let ¥ = {a,b,¢,b',c'} and A be a DPW that accepts a word over X iff it contains
at least one occurrence of bab’ or cac’. The language of A is X*(bad’ + cac’) X¥.
Consider the library £ = {M7, M2, M3} consisting of the three components M,
M5 and M3, which are shown in Fig. [(the figure depicts a composition built
using a single instance of each component). Each component in the library has
a single exit state. The input alphabet of each component is {0,1} and the
output alphabet is Y. The components My and Mj3 each consist of a single
state, which serves as both the start and exit state. As a result, they have no
internal transitions. They are only distinguished by the output in their single
state. My outputs b’ and M3 outputs ¢’. The component M; has four states
and its transition function is such that every run from its start state to its exit
state always deterministically produces an output of either aba or aca, depending
solely on the input selected by the environment in the start state.

Fig. 1. A composition with probabilistic control-flow that satifies X* (bab’ + cac’)X¥

Now consider a composition built from components in £ that is defined by
a deterministic composer. Since each component in £ has exactly one exit, if
the composer is deterministic, then the composition can be viewed as a linear
sequence of components, i.e., a pipeline. We claim that in this situation, the envi-
ronment can always prevent bab’ or cac’ from occurring anywhere in the output.
This is because bab’ can only be output if an instance of My occurs immediately
after an instance of M7 in the pipeline, but in any such case, the environment
can always force that particular instance of M; to output aca instead of aba.
Similarly, the environment can always prevent cac’ from being output. The result
is that no deterministic composer over £ can satisfy A.

Theorem 6. Let L and A be as defined above. Then there does not exist a
deterministic composer over L that satisfies A. O

In contrast to the deterministic case, there is a probabilistic composer over £
that satisfies A. Intuitively, the composer needs to overcome the fact that the

Synthesizing Probabilistic Composers 433

environment has complete control over the output of M;. It can do this by
probabilistically connecting each instance of M; to instances of both M, and
M3. Then the control that the environment has over the output of M7 becomes
irrelevant. One such composition is shown in Fig. [[l where control is transfered
from the single exit state of M to either My or M3 with equal probability.

Theorem 7. Let £ and A be as defined above. Then there exists a probabilistic
composer over L that satisfies A. O

6 Synthesizing Probabilistic Composers

In the previous section, we saw that probabilistic composers are more expressive
than deterministic composers for DPW specifications, but both have the same
expressive power for embedded parity specifications. This unfortunately rules out
following the approach of [] to solve the DPW synthesis problem for probabilistic
composers by reducing it to the embedded parity version. Instead, we show that
the DPW synthesis problem for probabilistic composers can be reduced to the
DPW synthesis problem for deterministic composers. Since, by Theorem 2] the
latter problem is decidable, this suffices to solve the probabilistic version too.

The key idea behind our reduction is that probabilistic choices made by a
composer can be simulated with the help of a component with a specific struc-
ture. Consider a component, called M,,,q, which ignores the environment’s input
and transitions uniformly at random from its start state to each of its two exit
states. Now suppose that a composer C' over L probabilistically calls two dif-
ferent components, say M; and Ms>. Then this behavior can be simulated by a
deterministic composer, say C’, that first calls M,,nq, and then calls M; and My
from the two exits of M;anq. In this way, we can replace a probabilistic composer
over L by a deterministic composer over the larger library £U{M;anq}. We first
formally define the special component M;anq.

Definition 7. Let X; and Yo be the input and output alphabets of every com-
ponent in L. Let b be a fresh output symbol not contained in Xo. We de-
fine the probabilistic transducer Myona = {X1,{b}, Q,qo,d, F, L}, where F =

{ar, 02, qp)}, Q ={q} UF, L(g) = b for all ¢ € Q, and 6(qo,a)(q) = 1/|D|
foralla € ¥y and g € F.

S0 Miyang has |D| final states and |D|+ 1 total states, it outputs b in every state,
and it transitions with uniform probability from the start state to a final state
irrespective of the input. Note that M;,,q is not a component in £ since b € Yo
by construction. If we add M;anq to £ to obtain a larger library, we also have to
translate DPW specifications for £ into specifications for the larger library. The
idea is to modify the DPW to ignore the output of M;anq.

Definition 8. Let A = (X0,Qa4, S0,04,24) be a DPW specification for L. We
define the DPW A’ = (X0 U {b},Qa x {0, 1}, (s0,0), 0%, a%), where a%(q,0) =
aa(q) and % (q,1) = 1, and &% is defined as follows:

434 S. Nain and M.Y. Vardi

— Forae Xo,i€{0,1} and s € Qa, 6%((s,),a) = (64(s),0)
— Fori € {0,1} and s € Qa, 6%((s,i),b) = (s,1)

Thus A’ ignores b and behaves like A on other inputs. A accepts a word w iff
A accepts w’ where w’ is the result of removing all occurences of b in w. Note
that A® is a DPW specification for the library £’ = £ U {Mana}-

We now reduce the problem of finding a probabilistic composer over £ that
satisfies A to the problem of finding a deterministic composer over £’ that satis-
fies A®. We give a mapping that transforms a deterministic composer C over £’
to a probabilistic composer prob(C') over L. The intuition behind the mapping
is that C uses multiple instances of M,.nq to simulate the probabilistic choices
made by prob(C), such that C' and prob(C) have the same behaviour.

Definition 9. Let L' = LU {M,qna} and C = (D, L', M, M1, A/ X) be a deter-
ministic composer over L'. Let M = Mgy U Mgng where for all M € My,
AM) # Myana and for all M € Mgna, AM) = Myana. Then prob(C) =
(D, L, Mo, My, A’ X) is the probabilistic composer over L, whose probabilistic
transition function A’ is defined as follows: For all M € My and i € D,

— A'(M, 1) is a uniform distribution on its support
— For all M € My, A'(M,i)(M") > 0 if there is a finite run of C that starts
in M, ends in M’, and visits only states in M qnq.

Note that the mapping prob is not reversible, and given a probabilistic composer
C over L, there might not be a deterministic composer C’ over £’ such that
C = prob(C"). However, if we partition the set of all composers over £ by
qualitative equivalence (see Defn. [f]), then we obtain a reversible mapping. We
use this reversible mapping to show that the synthesis of probabilistic composers
is reducible to the synthesis of deterministic composers over a larger library.

Lemma 2. Let C' be a deterministic composer over LU{Mana} and let C be a
probabilistic composer over L such that C is qualitatively equivalent to prob(C").
Then C satisfies A iff C' satisfies AY. O

Theorem 8. The DPW synthesis problem for probabilistic composers s
decidable. O

7 Discussion

In the framework of parity games, the embedded parity version of our synthesis
problem can be viewed as a 2-player stochastic game with partial information;
that is, one player cannot see the moves of the other player in full. Informally,
the game is the following: We are given a library £ of n components each with
D exits with index function a. The two players are the composer C and the en-
vironment E. Player C chooses components and player E chooses paths through
the components chosen by C. However, C cannot see the moves E makes inside
a component. At the start C chooses a component M from £. The turn passes

Synthesizing Probabilistic Composers 435

to E, who chooses a sequence of inputs, inducing a path in M from its start
state to some exit z of M. The turn then passes to C, which must choose some
component M’ in £ and pass the turn to E. As C cannot see the moves made
by E inside M, C cannot base its choice on the run of E in M, but only on the
exit induced by the inputs selected by E and previous moves made by C. So
C must choose the same next component M’ for different runs that reach exit
x of M. In general, different runs will visit different priorities inside M. This
is a two-player stochastic parity game where one of the players does not have
full information. If C has a winning strategy that requires a finite amount of
memory, then we can use such a strategy to obtain a suitable finite composer
that satisfies the index function «, thus solving the embedded parity problem. If
C has no winning strategy or if every winning strategy requires infinite memory,
then « is not realizable from the library L.

In contrast to standard parity games, partial information 2-player stochastic
parity games are known to be undecidable in general [2]. Thus, when viewed in
the framework of games, our result is a rare positive result for partial-information
stochastic games. Since the general problem is undecidable, the best result one
can hope for is to show that some restricted but useful class of partial information
parity games is decidable. Our result on the embedded parity synthesis problem
can be viewed as just such a result.

References

1. Baier, C., Grofler, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis
for probabilistic systems. In: Proc. TCS 2004, pp. 493-506. Kluwer (2004)

2. Baier, C., Bertrand, N., Grofler, M.: On Decision Problems for Probabilistic Biichi
Automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287-301.
Springer, Heidelberg (2008)

3. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
Composition of E-services That Export Their Behavior. In: Orlowska, M.E., Weer-
awarana, S., Papazoglou, M.P.; Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp.
43-58. Springer, Heidelberg (2003)

4. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Trading memory for randomness.
In: QEST 2004, pp. 206-217. IEEE Computer Society (2004)

5. Courcoubetis, C., Yannakakis, M.: Markov Decision Processes and Regular Events.
In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 336-349. Springer, Hei-
delberg (1990)

6. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42, 857-907 (1995)

7. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theories of
Software-Intensive Systems, pp. 83-104. Springer, Heidelberg (2005)

8. Lustig, Y., Nain, S., Vardi, M.Y.: Synthesis from probabilistic components. In:
Proc. CSL 2011. LIPICS, vol. 12, pp. 412-427 (2011)

9. Lustig, Y., Vardi, M.Y.: Synthesis from Component Libraries. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 395-409. Springer, Heidelberg (2009)

10. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. POPL
1989, pp. 179-190 (1989)

436

11.

12.

13.

S. Nain and M.Y. Vardi

Sifakis, J.: A framework for component-based construction extended abstract. In:
Proc. SEFM 2005, pp. 293-300. IEEE Computer Society (2005)

Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proc. 26th FOCS 1985, pp. 327-338 (1985)

Vardi, M.Y.: Probabilistic Linear-Time Model Checking: An Overview of the
Automata-Theoretic Approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS
1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265-276. Springer, Heidelberg
(1999)

	Synthesizing Probabilistic Composers
	Introduction
	Preliminaries
	Control-Flow Composition
	Defining the Synthesis and Realizability Problems
	The Expressive Power of Probabilistic Composers
	Embedded Parity Specifications
	DPW Specifications

	Synthesizing Probabilistic Composers
	Discussion
	References

