On Distributability of Petri Nets
(Extended Abstract)*

Rob van Glabbeek!-2, Ursula Goltz® and Jens-Wolfhard Schicke-Uffmann?®

1 NICTA, Sydney, Australia
2 School of Computer Sc. and Engineering, University of New South Wales, Sydney, Australia
3 Institute for Programming and Reactive Systems, TU Braunschweig, Germany
rvg@cs.stanford.edu
goltz@ips.cs.tu-bs.de, drahflow@gmx.de

Abstract. We formalise a general concept of distributed systems as sequential
components interacting asynchronously. We define a corresponding class of Petri
nets, called LSGA nets, and precisely characterise those system specifications
which can be implemented as LSGA nets up to branching ST-bisimilarity with
explicit divergence.

1 Introduction

The aim of this paper is to contribute to a fundamental understanding of the concept of
a distributed reactive system and the paradigms of synchronous and asynchronous inter-
action. We start by giving an intuitive characterisation of the basic features
of distributed systems. In particular we assume that distributed systems consist of com-
ponents that reside on different locations, and that any signal from one component to
another takes time to travel. Hence the only interaction mechanism between compo-
nents is asynchronous communication.

Our aim is to characterise which system specifications may be implemented as dis-
tributed systems. In many formalisms for system specification or design, synchronous
communication is provided as a basic notion; this happens for example in process alge-
bras. Hence a particular challenge is that it may be necessary to simulate synchronous
communication by asynchronous communication.

Trivially, any system specification may be implemented distributedly by locating the
whole system on one single component. Hence we need to pose some additional re-
quirements. One option would be to specify locations for system activities and then to
ask for implementations satisfying this distribution and still preserving the behaviour of
the original specification. This is done in [[L]. Here we pursue a different approach. We
add another requirement to our notion of a distributed system, namely that its compo-
nents only allow sequential behaviour. We then ask whether an arbitrary system specifi-
cation may be implemented as a distributed system consisting of sequential components
in an optimal way, that is without restricting the concurrency of the original specifica-
tion. This is a particular challenge when synchronous communication interacts with
concurrency in the specification of the original system. We will give a precise charac-
terisation of the class of distributable systems, which answers in particular under which
conditions synchronous communication may be implemented in a distributed setting.

* This work was partially supported by the DFG (German Research Foundation).

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 331-B43, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

332 R. van Glabbeek, U. Goltz, and J.-W. Schicke-Uffmann

For our investigations we need a model which is expressive enough to represent con-
currency. It is also useful to have an explicit representation of the distributed state space
of a distributed system, showing in particular the local control states of components.
We choose Petri nets, which offer these possibilities and additionally allow finite repre-
sentations of infinite behaviours. We work within the class of structural conflict nets [4]
—a proper generalisation of the class of one-safe place/transition systems, where con-
flict and concurrency are clearly separated.

For comparing the behaviour of systems with their distributed implementation we
need a suitable equivalence notion. Since we think of open systems interacting with
an environment, and since we do not want to restrict concurrency in applications, we
need an equivalence that respects branching time and concurrency to some degree.
Our implementations use transitions which are invisible to the environment, and this
should be reflected in the equivalence by abstracting from such transitions. However,
we do not want implementations to introduce divergence. In the light of these require-
ments we work with two semantic equivalences. Step readiness equivalence is one of
the weakest equivalences that captures branching time, concurrency and divergence to
some degree; whereas branching ST-bisimilarity with explicit divergence fully captures
branching time, divergence, and those aspects of concurrency that can be represented
by concurrent actions overlapping in time. We obtain the same characterisation for both
notions of equivalence, and thus implicitly for all notions in between these extremes.

We model distributed systems consisting of sequential components as an appropri-
ate class of Petri nets, called LSGA nets. These are obtained by composing nets with
sequential behaviour by means of an asynchronous parallel composition. We show that
this class corresponds exactly to a more abstract notion of distributed systems, for-
malised as distributed nets [3]].

We then consider distributability of system specifications which are represented as
structural conflict nets. A net N is distributable if there exists a distributed implementa-
tion of N, that is a distributed net which is semantically equivalent to N. In the imple-
mentation we allow unobservable transitions, and labellings of transitions, so that single
actions of the original system may be implemented by multiple transitions. However,
the system specifications for which we search distributed implementations are plain
nets without these features.

We give a precise characterisation of distributable nets in terms of a semi-structural
property. This characterisation provides a formal proof that the interplay between choice
and synchronous communication is a key issue for distributability.

2 Basic Notions

We consider here general labelled place/transition nets with arc weights. Arc weights
are not necessary for the results of the paper, but are included for the sake of generality.
We will employ the following notations for multisets.

Definition 1. Let X be a set.

— A multiset over X is a function A: X — IN,ie. A € IN¥.
— = € X is an element of a multiset A € INX, notation = € A, iff A(z) > 0.
— For multisets A and B over X we write A < B iff A(z) < B(x) forall z € X;

On Distributability of Petri Nets 333

A + B denotes the multiset over X with (4 + B)(z) := A(z) + B(z),
A\ B denotes the multiset over X with (A — B)(z) := max(A(z) — B(z),0), and
for k € IN the multiset k - A is given by (k - A)(x) := k - A(z).
— The function §: X — IN, given by () := 0 for all x € X, is the empry multiset.
— If A is a multiset over X and Y C X then A Y denotes the multiset over Y
defined by (A[Y)(z) := A(z) forallz € Y.
— The cardinality | A| of a multiset A over X is given by |A| := > _ A(x).
— A multiset A over X is finite iff {x | x € A} is finite, i.e., iff |A] < oco.

Two multisets A: X —IN and B:Y —IN are extensionally equivalent iff A [(X\Y)=0,
B(Y\X)=0,and A [(XNY)=B [(XNY). In this paper we often do not distinguish
extensionally equivalent multisets. This enables us, for instance, to use A+ B even when
A and B have different underlying domains.

A multiset A with A(x) € {0, 1} for all z is identified with the set {x | A(z) = 1}.

Definition 2. Let Act be a set of visible actions and T ¢ Act be an invisible action.
A (labelled) Petri net (over Act U {7})isatuple N = (S, T, F, My, ¢) where

— Sand T are disjoint sets (of places and transitions),

- F:(SxTUT x S) — N (the flow relation including arc weights),
— My : S — NN (the initial marking), and

- 0:T — Act U {7} (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as boxes,
containing their label. Identities of places and transitions are displayed next to the net
element. When F'(z,y) > 0 for z,y € S U T there is an arrow (arc) from z to y,
labelled with the arc weight F(x,y). Weights 1 are elided. When a Petri net represents
a concurrent system, a global state of this system is given as a marking, a multiset M of
places, depicted by placing M (s) dots (tokens) in each place s. The initial state is M.

To compress the graphical notation, we also allow universal quantifiers of the form
Vz.¢(x) to appear in the drawing (cf. Fig. B). A quantifier replaces occurrences of x
in element identities with all concrete values for which ¢(x) holds, possibly creating
a set of elements instead of the depicted single one. An arc of which only one end is
replicated by a given quantifier results in a fan of arcs, one for each replicated element.
If both ends of an arc are affected by the same quantifier, an arc is created between
pairs of elements corresponding to the same x, but not between elements created due to
differing values of z.

The behaviour of a Petri net is defined by the possible moves between markings M
and M’, which take place when a finite multiset G of transitions fires. In that case, each
occurrence of a transition ¢ in G consumes F'(s, t) tokens from each place s. Naturally,
this can happen only if M makes all these tokens available in the first place. Next, each
t produces F'(t, s) tokens in each s. Definition] formalises this notion of behaviour.

Definition 3. Let N = (S, T, F, My,{) be aPetrinetandz € SUT.

The multisets *z, 2* : SUT — IN are given by *z(y) = F(y,«) and z*(y) = F(z,y)
forally € SUT.If x € T, the elements of ®*x and x® are called pre- and postplaces
of x, respectively. These functions extend to multisets X : S U T — IN as usual, by

‘X = erSUTX(x) ~*rand X* := ZxESUTX(x) -t

334 R. van Glabbeek, U. Goltz, and J.-W. Schicke-Uffmann

Definition 4. Let N = (S, T, F, My, £) be a Petri net, G € IN”, G non-empty and finite,
and M, M’ € IN®. G is a step from M to M’, written M [G)y M',iff *G C M (G is
enabled)yand M’ = (M \ *G) + G°*.

Note that steps are (finite) multisets, thus allowing self-concurrency, i.e. the same tran-
sition can occur multiple times in a single step.

In our nets transitions are labelled with actions drawn from a set Act U {7}. A transi-
tion ¢ can be thought of as the occurrence of the action £(¢). If £(t) € Act, this occurrence
can be observed and influenced by the environment, but if £(¢) = 7, it cannot and ¢ is
an internal or silent transition. Transitions whose occurrences cannot be distinguished
by the environment carry the same label. In particular, since the environment cannot
observe the occurrence of internal transitions at all, they are all labelled 7.

To simplify statements about behaviours of nets, we use some abbreviations.

Definition 5. Let N = (S, T, F, My, K) be a Petri net.
We write My —=5n Moy, for o € Act U {7}, when 3t € T. oo = £(t) A M [{t})n Mo.

a1a2---Gn

Furthermore, for ajas - - - a, € Act® we write M| =—=—=>y M, when
al az an

where = v denotes the reflexive and transitive closure of —s .

For o € Act U {7}, we write M D v Mo for My 258 My V (o =7 ANM; = My),
meaning that in case o = 7 performing a 7-transition is optional. We write M; —
for IMy. My —*5>n Ma, and My >y for AMo. M, 55 M. Likewise M;[G)y
abbreviates M. M1[G) y M2. We omit the subscript N if clear from context.

Definition 6. Let N = (S, T, F, My, £) be a Petri net.
— A marking M € IN® is said to be reachable in N iff there is a ¢ € Act* such that
My =% M. The set of all reachable markings of N is denoted by [Mj) .
- N is one-safeiff M € [My)ny = Vo € S. M (z) < 1.
— The concurrency relation — C T? is given by t — u < IM € [My). M [{t, u}).
— N is a structural conflict net iff for all t,u € T with t — u we have *t N *u = .

We use the term plain nets for Petri nets where /£ is injective and no transition has the
label 7, i.e. essentially unlabelled nets.

This paper first of all aims at studying finite Petri nets: nets with finitely many places
and transitions. However, our work also applies to infinite nets with the properties that
*t # () for all transitions ¢ € T, and any reachable marking (a) is finite, and (b) enables
only finitely many transitions. Henceforth, we call such nets finitary. Finitariness can
be ensured by requiring |[Mo| < co AVt € T.*t AP AVz € SUT.|z*| < cc.

We use the following variant of readiness semantics [[11] to compare behaviour.

Definition 7. Let N = (S, T, F, My, {) be a Petri net, o € Act* and X C INA!,
(0, X)) is a step ready pair of N iff
IM.My == M AM 5 ANX = {{(G) | M[G)}.
Here we extend the labelling function ¢ to finite multisets of transitions elementwise.

We write Z () for the set of all step ready pairs of N.

Two Petri nets N7 and N» are step readiness equivalent, N1 ~g No, iff Z(N1) =
H#(N2).

On Distributability of Petri Nets 335

ST-bisimilarity was proposed in [7]] as a non-interleaved version of bisimilarity that
respects causality to the extent that it can be expressed in terms of the possibility of
durational actions to overlap in time. It was extended to a setting with internal actions
in [[15], based on the notion of weak bisimilarity of [10]. Here we apply the same idea,
but based on branching bisimilarity [8], which unlike weak bisimilarity fully respects
the branching structure of related systems.

An ST-marking of anet N = (S, T, F, My, ¢) is a pair (M, U) € IN® xT* of a normal
marking, together with a sequence of transitions currently firing. The initial ST-marking
is M, := (M, ¢). The elements of Act™ := {a*, a=™ | a € Act, n > 0} are called
visible action phases, and Actf_E = ActT U {r}.ForU € T*, we write t e Uiftis
the n'" element of U. Furthermore U ~" denotes U after removal of the n'" transition.

Definition 8. Let N = (S, T, F, My, £) be a Petri net, labelled over Act U {r}.
The ST-transition relations —- for 1 € Actf between ST-markings are given by
(M,U) a—)ﬂ(MﬂU') iff el lt)=aNM[{t}Hh) NA\M' =M -t \NU' = Ut.
(M,U) L— (M",U")iff 3t €™ U L(t) =a AU =U"AM' =M +t°.
(M,U) T (M, U")iff M T M' AU =U.

Now branching ST-bisimilarity is branching bisimilarity [8], applied to the labelled
transition system made up of ST-markings of nets and the ST-transitions between them.

Definition 9. Two Petri nets N1 and N» are branching ST-bisimilar iff there exists a
relation R between the ST-markings of N; and N5 such that, for all n € Actf:
L. 91 RM,0;
2. if M RN, and My —L MY, then azm;, MY, such that
My = ML -2 MG, 9, RS and 9, RO
3. if 9 RO, and My —Ls MY, then IMT, 9, such that
My = ML 25 o), MIRM, and O RN,

If a system has the potential to engage in an infinite sequence of internal actions, one
speaks of divergence. Branching bisimilarity with explicit divergence [8], is a variant
of branching bisimilarity that fully respects the diverging behaviour of related systems.
Since here we only compare systems of which one admits no divergence at all, the
definition simplifies to the requirement that the other system may not diverge either. We
write Ny %%Tb Ny iff N7 and N, are branching ST-bisimilar with explicit divergence.

3 Distributed Systems

In this section, we stipulate what we understand by a distributed system, and subse-
quently formalise a model of distributed systems in terms of Petri nets.

A distributed system consists of components residing on different locations.
Components work concurrently.

Interactions between components are only possible by explicit communications.
Communication between components is time consuming and asynchronous.

Asynchronous communication is the only interaction mechanism in a distributed system
for exchanging signals or information.

336 R. van Glabbeek, U. Goltz, and J.-W. Schicke-Uffmann

— The sending of a message happens always strictly before its receipt (there is a causal
relation between sending and receiving a message).

— A sending component sends without regarding the state of the receiver; in particu-
lar there is no need to synchronise with a receiving component. After sending the
sender continues its behaviour independently of receipt of the message.

As explained in the introduction, we will add another requirement to our notion of a
distributed system, namely that its components only allow sequential behaviour.

Formally, we model distributed systems as nets consisting of component nets with
sequential behaviour and interfaces in terms of input and output places.

Definition 10. Let N=(S, T, F, My, {) be a Petrinet, [,OC S, INO=(and O® = ().
1. (N,1,0) is a component with interface (I,0O).
2. (N, 1,0) is a sequential component with interface (I, O) iff 3Q C S\ (I UO) with
VieT.|*tIQ=1At*1Q|=1and |My | Q| =1.

An input place ¢ € I of a component C can be regarded as a mailbox of C for a specific
type of messages. An output place o € O, on the other hand, is an address outside C to
which C can send messages. Moving a token into o is like posting a letter. The condition
0® = () says that a message, once posted, cannot be retrieved by the component.

A set of places like () above is called an S-invariant. The requirements guarantee
that the number of tokens in these places remains constant, in this case 1. It follows that
no two transitions can ever fire concurrently (in one step). Conversely, whenever a net is
sequential, in the sense that no two transitions can fire in one step, it is easily converted
into a behaviourally equivalent net with the required S-invariant, namely by adding
a single marked place with a self-loop to all transitions. This modification preserves
virtually all semantic equivalences on Petri nets from the literature, including ’fszSTb.

Next we define an operator for combining components with asynchronous commu-
nication by fusing input and output places.

Definition 11. Let £ be an index set.
Let ((Sk, Tk, Fi:, Moy, L), I, Ox) with k € R be components with interface such that
(SrUT) N (S UTy) =[x UOK)N(L; UO;) forall k,l € K with k # [(components
are disjoint except for interface places) and moreover I, N I; = () for all k,l € & with
k # | (mailboxes cannot be shared; the recipient of a message is always unique).

Then the asynchronous parallel composition of these components is defined by

HEﬁ((Sk.,Tk,Fk,MOk,Ek),Ik,Ok) — ((S.T, F, My, (), 1,0)

(2

with S= Uk'eﬁ Sk, T= UkERTkV F= UkERFk’ My= ZkERMUk7 {= Ukeﬁgk (com-
ponentwise union of all nets), I=J wes Ik (we accept additional inputs from outside),
and O= ¢ 5 Ok \ Ucx I (once fused with an input, o € Oy is no longer an output).

Observation 1. || is associative.

This follows directly from the associativity of the (multi)set union operator. O

We are now ready to define the class of nets representing systems of asynchronously
communicating sequential components.

Definition 12. A Petrinet N is an LSGA net (a locally sequential globally asynchronous
net) iff there exists an index set K and sequential components with interface Cx, k € R,
such that (N, I, O) = ||xesCy for some I and O.

On Distributability of Petri Nets 337

Up to %%Tb—or any reasonable equivalence preserving causality and branching time
but abstracting from internal activity—the same class of LSGA systems would have
been obtained if we had imposed, in Def.[10] that I, O and) form a partition of S and
that *7 = (). However, it is essential that our definition allows multiple transitions of a
component to read from the same input place.

In the remainder of this section we give a more abstract characterisation of Petri nets
representing distributed systems, namely as distributed Petri nets, which we introduced
in [3]]. This will be useful in Sectiond] where we investigate distributability using this
more semantic characterisation. We show below that the concrete characterisation of
distributed systems as LSGA nets and this abstract characterisation agree.

Following [1]], to arrive at a class of nets representing distributed systems, we as-
sociate localities to the elements of a net N = (S, T, F, My, ¢). We model this by a
function D : SUT — Loc, with Loc a set of possible locations. We refer to such a
function as a distribution of N. Since the identity of the locations is irrelevant for our
purposes, we can just as well abstract from Loc and represent D by the equivalence
relation =p on S U T given by x =p y iff D(x) = D(y).

Following [5], we impose a fundamental restriction on distributions, namely that
when two transitions can occur in one step, they cannot be co-located. This reflects our
assumption that at a given location actions can only occur sequentially.

In [5] we observed that Petri nets incorporate a notion of synchronous interaction,
in that a transition can fire only by synchronously taking the tokens from all of its
preplaces. In general the behaviour of a net would change radically if a transition would
take its input tokens one by one—in particular deadlocks may be introduced. Therefore
we insist that in a distributed Petri net, a transition and all its input places reside on
the same location. There is no reason to require the same for the output places of a
transition, for the behaviour of a net would not change significantly if transitions were
to deposit their output tokens one by one [5]].

This leads to the following definition of a distributed Petri net.

Definition 13 ([5]). A Petri net N = (S, T, F, My, £) is distributed iff there exists a
distribution D such that

(HVseS, teT. se®t=t=ps,

2) Vt,ueT. t —u=1t=#pu.
N is essentially distributed if (2) is weakened to Vi, u€T. t — uAl(t) # T = t #p u.

A typical example of a net which is not distributed is shown in Fig. [l on Page
Transitions ¢ and v are concurrently executable and hence should be placed on differ-
ent locations. However, both have preplaces in common with « which would enforce
putting all three transitions on the same location. In fact, distributed nets can be charac-
terised in the following semi-structural way.

Observation 2. A Petri net is distributed iff there is no sequence iy, . .. ,t, of transi-
tions with tg — t, and *t;_1 N°t; W fori=1,...,n. O

It turns out that the classes of LSGA nets and distributable nets essentially coincide.
Moreover, up to %bASTb these classes also coincide with the more liberal notion of es-
sentially distributed nets, permitting concurrency of internal transitions at the same lo-
cation. We will make use of that in proving our main theorem.

338 R. van Glabbeek, U. Goltz, and J.-W. Schicke-Uffmann

Theorem 1. Any LSGA net is distributed, and for any essentially distributed net N
there is an LSGA net N' with N’ ~fgp, N.

Proof. In the full version of this paper [6]. g
Observation 3. Every distributed Petri net is a structural conflict net. a
Corollary 1. Every LSGA net is a structural conflict net. a

4 Distributable Systems

We now consider Petri nets as specifications of concurrent systems and ask the question
which of those specifications can be implemented as distributed systems. This question
can be formalised as

Which Petri nets are semantically equivalent to distributed nets?

Of course the answer depends on the choice of a suitable semantic equivalence. Here
we will answer this question using the two equivalences introduced in Section [2l We
will give a precise characterisation of those nets for which we can find semantically
equivalent distributed nets. For the negative part of this characterisation, stating that
certain nets are not distributable, we will use step readiness equivalence, which is one
of the simplest and least discriminating equivalences imaginable that abstracts from
internal actions, but preserves branching time, concurrency and divergence to some
small degree. As explained in [5], giving up on any of these latter three properties
would make any Petri net distributable, but in a rather trivial and unsatisfactory way.
For the positive part, namely that all other nets are indeed distributable, we will use the
most discriminating equivalence for which our implementation works, namely branch-
ing ST-bisimilarity with explicit divergence, which is finer than step readiness equiv-
alence. Hence we will obtain the strongest possible results for both directions and it
turns out that the concept of distributability is fairly robust w.r.t. the choice of a suitable
equivalence: any equivalence notion between step readiness equivalence and branching
ST-bisimilarity with explicit divergence will yield the same characterisation.

Definition 14. A Petri net N is distributable up to an equivalence ~ iff there exists a
distributed net N’ with N/ ~ N.

Formally we give our characterisation of distributability by classifying which finitary
plain structural conflict nets can be implemented as distributed nets, and hence as LSGA
nets. In such implementations, we use invisible transitions. We study the concept “dis-
tributable” for plain nets only, but in order to get the largest class possible we allow
non-plain implementations, where a given transition may be split into multiple transi-
tions carrying the same label.

It is well known that sometimes a global protocol is necessary to implement syn-
chronous interaction present in system specifications. In particular, this may be needed
for deciding choices in a coherent way, when these choices require agreement of multi-
ple components. The simple net in Fig. [l shows a typical situation of this kind.

On Distributability of Petri Nets 339

Independent decisions of the two choices might

lead to a deadlock. As remarked in [3]], for this o P o q
particular net there exists no satisfactory dis-

tributed implementation that fully respects the

reactive behaviour of the original system. In- n . n u v
deed such M-structures, representing interfer-

ence between concurrency and choice, turn out

to play a crucial rdle for characterising dis- Fig. 1. A fully marked M
tributability.

Definition 15. Let N = (S, T, F, My, {) be a Petri net. N has a fully reachable pure M
iff 3, u,v € T2 tN%u # DA uN®v £ OAtN*v = ODATM € [Myp).*tUulU®v C M.

Note that Definition[13]implies that ¢ # u, u # v and t # v.

We now give an upper bound on the class of distributable nets by adopting a result
from [5]].

Theorem 2. Let N be a plain structural conflict Petri net. If N has a fully reachable
pure M, then N is not distributable up to step readiness equivalence.

Proof. In [3] this theorem was obtained for plain one-safe nets[] The proof applies
verbatim to plain structural conflict nets as well. O

Since A%y, is finer than A2z, this result holds also for distributability up to A%, (and
any equivalence between ~¢ and %bASTb).

In the following, we establish that this upper bound is tight, and hence a finitary plain
structural conflict net is distributable iff it has no fully reachable pure M. For this, it is
helpful to first introduce macros in Petri nets for reversibility of transitions.

4.1 Petri Nets with Reversible Transitions

A Petri net with reversible transitions generalises the notion of a Petri net; its se-
mantics is given by a translation to an ordinary Petri net, thereby interpreting the re-
versible transitions as syntactic sugar for certain net fragments. It is defined as a tuple
(S, T, 2,1, F, My, £) with S a set of places, T a set of (reversible) transitions, labelled
by £ : T — Act U {7}, 22 a set of undo interfaces with the relation 1 C £2 x T linking
interfaces to transitions, M, € IN? an initial marking, and

F: (S x T x {in, early, late, out, far} — IN)

the flow relation. For ¢ € T and type € {in, early, late, out, far }, the multiset of places
ttwre ¢ IN® is given by t%P¢(s) = F(s, t, type). When s €t1P° for type € {in, carly, late},
the place s is called a preplace of t of type npe; when s € t%P¢ for type € {out, far},
s is called a postplace of t of type spe. For each undo interface w € {2 and transition ¢
with 1(w, t) there must be places undo,,(t), reset,(¢) and ack,,(t) in S. A transition
with a nonempty set of interfaces is called reversible; the other (standard) transitions
may have pre- and postplaces of types i» and our only—for these transitions ¢t = *¢ and
to%t = ¢* In case {2 = (), the net is just a normal Petri net.

"In 5] the theorem was claimed and proven only for plain nets with a fully reachable visible
pure M; however, for plain nets the requirement of visibility is irrelevant.

340 R. van Glabbeek, U. Goltz, and J.-W. Schicke-Uffmann

A global state of a Petri net with reversible transitions is given by a marking M eN?
together with the state of each reversible transition “currently in progress”. Each tran-
sition in the net can fire as usual. A reversible transition can moreover take back (some
of) its output tokens, and be undone and reset. When a transition ¢ fires, it consumes
D typec{in, early, late} £ (S: 1, type) tokens from each of its preplaces s and produces
> typee{out, fary E' (8,1, type) tokens in each of its postplaces s. A reversible transition
t that has fired can start its reversal by consuming a token from undo,,(¢) for one of its
interfaces w. Subsequently, it can take back one by one a token from its postplaces of
type far. After it has retrieved all its output of type fur, the transition is undone, thereby
returning F'(s, ¢, early) tokens in each of its preplaces s of type eariy. Afterwards, by con-
suming a token from reset,, (¢), for the same interface w that started the undo-process,
the transition terminates its chain of activities by returning F(s, t, late) tokens in each
of its iare preplaces s. At that occasion it also produces a token in ack,, (¢). Alternatively,
two tokens in undo,,(t) and reset,, () can annihilate each other without involving the
transition ¢; this also produces a token in ack,, (¢). The latter mechanism comes in action
when trying to undo a transition that has not yet fired.

Fig.Rlshows the translation of a reversible transition ¢ with ¢(¢)=a into a ordinary net
fragment. The arc weights on the green (or grey) arcs are inherited from the untranslated
net; the other arcs have weight 1.

(late) (in) (early)

Q\Ci\ /8 undo, ()

a reset,, ()
w
(far) t (O ack. (1)
(out)
Vietn Vi € tlate | e Vee ety
t - fire t - reset,
0 a

ack,,(t)

out
Voet Vw.1(w, 7‘)

t - elide,, <—
f C) fired(t undo,,(t reset. () p(t) C)
Vf e ther
/wa)

T | t-undone
- undo,,

take(f,t) 4. undo(f) took(f,)

Fig. 2. A reversible transition and its macro expansion

On Distributability of Petri Nets 341

4.2 The Conflict Replicating Implementation

Now we establish that a finitary plain structural conflict net that has no fully reachable
pure M is distributable. We do this by proposing the conflict replicating implementation
of any such net, and show that this implementation is always (a) essentially distributed,
and (b) equivalent to the original net. In order to get the strongest possible result, for
(b) we use branching ST-bisimilarity with explicit divergence.

To define the conflict replicating implementation of a net N = (S, T, F, My, () we
fix an arbitrary well-ordering < on its transitions. We let b, ¢, h, ¢, j, k, [range over these
ordered transitions, and write

— i#jiff i£j A®iN®j#((transitions ¢ and j are in conflict), and iﬁj iff i#jVi=j,

—i<#jiff i<jANi#j, andi <FFiff i <FjVi=j.
Fig. 3] shows the conflict replicating implementation V. It is presented as a Petri net
I(N) = (ST, F', 2,1, M}, ') with reversible transitions. The set {2 of undo inter-
faces (not drawn)is T', and for i€ {2 we have 1(4, t) iff t€£2;, where the sets of transitions
2; € N™" are specified in Fig. Bl The implementation Z(N) inherits the places of N
(i.e. S’ 2 5), and we postulate that M|[S = M. Given this, Fig. 3 is not merely
an illustration of Z(N)—it provides a complete and accurate description of it, thereby
defining the conflict replicating implementation of any net. In interpreting this figure
it is important to realise that net elements are completely determined by their name
(identity), and exist only once, even if they show up multiple times in the figure. For
instance, the place 7,4 ; with h=2 and j=>5 (when using natural numbers for the transi-
tions in T') is the same as the place m;; with j=2 and [=5; it is a standard preplace of
execute, (for all i <# 2), a standard postplace of fetchedz, as well as a late preplace
of transfer?.

The réle of the transitions distribute,, for p € S is to distribute a token in p to copies
p; of p in the localities of all transitions j € T with p € ®j. In case j is enabled in N,
the transition initialise; will become enabled in Z(NV). These transitions put tokens in
the places prej , which are preconditions for all transitions execute’ ., which model the
execution of j at the location of k. When two conflicting transitions /& and j are both
enabled in N, the first steps initialise, and initialise; towards their execution in Z(N)
can happen in parallel. To prevent them from executing both, executej (of j atits own
location) is only possible after transfer which disables executeh

The main idea behind the conflict rephcatmg implementation is that a transition €T’
is primarily executed by a sequential component of its own, but when a conflicting
transition j gets enabled, the sequential component implementing j may “steal” the
possibility to execute i from the home component of &, and keep the options to do
h and j open until one of them occurs. To prevent i and j from stealing each other’s
initiative, which would result in deadlock, a global asymmetry is built in by ordering
the transitions. Transition j can steal the initiative from h only when h < j.

In case j is also in conflict with a transition /, with j < [, the initiative to perform
J may subsequently be stolen by /. In that case either i and [are in conflict too—then
| takes responsibility for the execution of h as well—or A and [are concurrent—in
that case h will not be enabled, due to the absence of fully reachable pure Ms in N.
The absence of fully reachable pure Ms also guarantees that it cannot happen that two
concurrent transitions j and k both steal the initiative from an enabled transition h.

342 R. van Glabbeek, U. Goltz, and J.-W. Schicke-Uffmann

rO
distribute,, I:T:I

pj<>

F(p.j) T

initialise; I:T

M)
/
et
=
o
=1
[
It

5

Thatj @—<—>|:T transfer!

trans”-out

Ti#l

reset;(t) () acki(t)

vjeT

Vpe*®j

Vh <# j

Vi <* j

Vk ># j

VIl ># j

Yq € %

Ve e ¢°

Vredi®

Vt € 2, = {initialise. | ¢ Z i} +

{transfer’ | b <# ¢ £ i}

Fig. 3. The conflict replicating implementation

On Distributability of Petri Nets 343

After the firing of execute;'- all tokens that were left behind in the process of carefully
orchestrating this firing will have to be cleaned up, to prepare the net for the next activity
in the same neighbourhood. This is the reason for the reversibility of the transitions
preparing the firing of execute Hence there is an undo interface for each transition
i € T’, cleaning up the mess made in preparation of firing execute for some j. (2;
is the multiset of all transitions ¢ that could possibly have contrlbuted to this. For each
of them its interface ¢ is activated, by execute;'- depositing a token in undo;(¢). When
all preparatory transitions that have fired are undone, tokens appear in the places p.
for all p€ *i and ¢ € p®. These are collected by fetch?"’ ;- after which all ¢ € £2; get
a reset signal. Those that have fired and were undone are reset, and those that never
fired perform elide;(t). In either case a token appears in ack;(t). These are collected
by finalise’, which finishes the execution of i by depositing tokens in its postplaces.

Proposition 1. Z(N) is essentially distributed for every Petri net N.

Proof sketch. We take the canonical distribution D of N, in which =p is the equiva-
lence relation on places and transitions generated by Condition (1) of Definition[T3] We
need to show that D satisfies the weakened Condition 2. Any location that harbours an
external transmon executeJ for some i < j € T”, also harbours initialise ; undo(pre),
transfer -undo(trans/}-out) for all h<#] execute’, forall i <# j, and, for all] S# 7
transferj fire and |n|t|al|sel undo(transj-ln) In [6] we show that none of these tran-
sitions can happen concurrently with executej.

Theorem 3. Let N be a finitary plain structural conflict net net without a fully reach-
able pure M. Then N is distributable up to %bASTb.

Proof. In the full version of this paper [6]. There we show that Z(N) %ﬁS‘Tb N. Hence
Z(N) is a essentially distributed implementation of N. Now apply Theorem/[il O

Given the complexity of our construction, no techniques known to us were adequate
for performing this proof. We therefore had to develop an entirely new method for
rigorously proving the equivalence of two Petri nets up to ’fzﬁgTb, one of which known
to be plain. This method is presented in [6].

Corollary 2. Let N be a finitary plain structural conflict net. Then N is distributable
iff it has no fully reachable pure M. a

5 Conclusion

In this paper, we have given a precise characterisation of distributable Petri nets in terms
of a semi-structural property. Moreover, we have shown that our notion of distributabil-
ity corresponds to an intuitive notion of a distributed system by establishing that any
distributable net may be implemented as a network of asynchronously communicating
components.

In order to formalise what qualifies as a valid implementation, we needed a suitable
equivalence relation. We have chosen step readiness equivalence for showing the impos-
sibility part of our characterisation, since it is one of the simplest and least discriminat-
ing semantic equivalences imaginable that abstracts from internal actions but preserves

344 R. van Glabbeek, U. Goltz, and J.-W. Schicke-Uffmann

branching time, concurrency and divergence to some small degree. For the positive
part, stating that all other nets are implementable, we have introduced a combination of
several well known rather discriminating equivalences, namely a divergence sensitive
version of branching bisimulation adapted to ST-semantics. Hence our characterisation
is rather robust against the chosen equivalence; it holds in fact for all equivalences be-
tween these two notions. However, ST-equivalence (and our version of it) preserves the
causal structure between action occurrences only as far as it can be expressed in terms
of the possibility of durational actions to overlap in time. Hence a natural question
is whether we could have chosen an even stronger causality sensitive equivalence for
our implementability result, respecting e.g. pomset equivalence or history preserving
bisimulation. Our conflict replicating implementation does not fully preserve the causal
behaviour of nets; we are convinced we have chosen the strongest possible equiva-
lence for which our implementation works. It is an open problem to find a class of nets
that can be implemented distributedly while preserving divergence, branching time and
causality in full. Another line of research is to investigate which Petri nets can be imple-
mented as distributed nets when relaxing the requirement of preserving the branching
structure. If we allow linear time correct implementations (using a step trace equiva-
lence), we conjecture that all Petri nets become distributable. However, also in this case
it is problematic, in fact even impossible in our setting, to preserve the causal structure,
as has been shown in [[14]]. A similar impossibility result has been obtained in the world
of the 7-calculus in [12].

The interplay between choice and synchronous communication has already been in-
vestigated in quite a number of approaches in different frameworks. We refer to [3]
for a rather comprehensive overview and concentrate here on recent and closely related
work.

The idea of modelling asynchronously communicating sequential components by
sequential Petri nets interacting though buffer places has already been considered in
[L3]. There Wolfgang Reisig introduces a class of systems, represented as Petri nets,
where the relative speeds of different components are guaranteed to be irrelevant. His
class is a strict subset of our LSGA nets, requiring additionally, amongst others, that
all choices in sequential components are free, i.e. do not depend upon the existence of
buffer tokens, and that places are output buffers of only one component. Another quite
similar approach was taken in [3]], where transition labels are classified as being either
input or output. There, asynchrony is introduced by adding new buffer places during net
composition. This framework does not allow multiple senders for a single receiver.

Other notions of distributed and distributable Petri nets are proposed in [9/1/2]. In
these works, given a distribution of the transitions of a net, the net is distributable iff it
can be implemented by a net that is distributed w.r.t. that distribution. The requirement
that concurrent transitions may not be co-located is absent; given the fixed distribution,
there is no need for such a requirement. These papers differ from each other, and from
ours, in what counts as a valid implementation. A comparison of our criterion with that
of Hopkins [9] is provided in [J5]].

In [3] we have obtained a characterisation similar to Corollary 2 but for a much
more restricted notion of distributed implementation (plain distributability), disallow-
ing nontrivial transition labellings in distributed implementations. We also proved that
fully reachable pure Ms are not implementable in a distributed way, even when using

On Distributability of Petri Nets 345

transition labels (Theorem[2). However, we were not able to show that this upper bound
on the class of distributable systems was tight. Our current work implies the validity of
Conjecture 1 of [5]. While in [S]] we considered only one-safe place/transition systems,
the present paper employs a more general class of place/transition systems, namely
structural conflict nets. This enables us to give a concrete characterisation of distributed
nets as systems of sequential components interacting via non-safe buffer places.

References

1.

2.

10.
11.

12.

13.

14.

15.

Badouel, E., Caillaud, B., Darondeau, P.: Distributing Finite Automata Through Petri Net
Synthesis. Formal Aspects of Computing 13(6), 447-470 (2002)

Best, E., Darondeau, P.: Petri Net Distributability. In: Voronkov, A. (ed.) PSI 2011. LNCS,
vol. 7162, pp. 1-18. Springer, Heidelberg (2012)

El Hog Benzina, D., Haddad, S., Hennicker, R.: Process Refinement and Asynchronous Com-
position with Modalities. In: Sidorova, N., Serebrenik, A. (eds.) Proceedings of the 2nd In-
ternational Workshop on Abstractions for Petri Nets and Other Models of Concurrency (AP-
NOC 2010), Braga, Portugal (2010), http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PDF/EHH-apnocl0.pdf

van Glabbeek, R.J., Goltz, U., Schicke, J.-W.: Abstract Processes of
Place/Transition Systems. Information Processing Letters 111(13), 626-633 (2011),
doi:10.1016/j.ipl.2011.03.013

van Glabbeek, R.J., Goltz, U., Schicke, J.-W.: On Synchronous and Asynchronous Interac-
tion in Distributed Systems. In: Ochmarski, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS,
vol. 5162, pp. 16-35. Springer, Heidelberg (2008)

van Glabbeek, R.J.: Goltz U J.-W. Schicke-Uffmann On Distributability of Petri Nets. Tech-
nical Report 2011-10, TU Braunschweig (2011) Full version of this paper (to appear),
http://theory.stanford.edu/~rvg/abstracts.html#95

van Glabbeek, R.J., Vaandrager, EW.: Petri Net Models for Algebraic Theories of Concur-
rency (Extended Abstract). In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE
1987. LNCS, vol. 259, pp. 224-242. Springer, Heidelberg (1987)

van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimulation Se-
mantics. Journal of the ACM 43(3), 555-600 (1996), doi:10.1145/233551.233556

Hopkins, R.P.: Distributable Nets. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp.
161-187. Springer, Heidelberg (1991), doi:10.1007/BFb0019974

Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)
Olderog, E.-R., Hoare, C.A.R.: Specification-oriented semantics for communicating pro-
cesses. Acta Informatica 23, 9-66 (1986), doi:10.1007/BF00268075

Peters, K., Schicke, J.-W., Nestmann, U.: Synchrony vs Causality in the Asynchronous Pi-
Calculus. In: Luttik, B., Valencia, F. (eds.) Proceedings 18th International Workshop on
Expressiveness in Concurrency, Aachen, Germany, September 5. Electronic Proceedings in
Theoretical Computer Science, vol. 64, pp. 89-103 (2011), doi:10.4204/EPTCS.64.7
Reisig, W.: Deterministic Buffer Synchronization of Sequential Processes. Acta Informat-
ica 18, 115-134 (1982), doi:10.1007/BF00264434

Schicke, J.-W., Peters, K., Goltz, U.: Synchrony vs. Causality in Asynchronous Petri Nets.
In: Luttik, B., Valencia, F. (eds.) Proceedings 18th International Workshop on Expressive-
ness in Concurrency, Aachen, Germany, September 5. Electronic Proceedings in Theoretical
Computer Science, vol. 64, pp. 119-131 (2011), doi:10.4204/EPTCS.64.9

Vogler, W.: Bisimulation and Action Refinement. Theor. Comput. Sci. 114(1), 173-200
(1993), doi:10.1016/0304-3975(93)90157-O

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://theory.stanford.edu/~rvg/abstracts.html#95

	On Distributability of Petri Nets
(Extended Abstract)
	Introduction
	Basic Notions
	Distributed Systems
	Distributable Systems
	Petri Nets with Reversible Transitions
	The Conflict Replicating Implementation

	Conclusion
	References

