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Abstract. In SAC 2010, Sepehrdad, Vaudenay and Vuagnoux have re-
ported some empirical biases between the secret key, the internal state
variables and the keystream bytes of RC4, by searching over a space of
all linear correlations between the quantities involved. In this paper, for
the first time, we give theoretical proofs for all such significant empirical
biases. Our analysis not only builds a framework to justify the origin
of these biases, it also brings out several new conditional biases of high
order. We establish that certain conditional biases reported earlier are
correlated with a third event with much higher probability. This gives
rise to the discovery of new keylength-dependent biases of RC4, some
as high as 50/N , where N is the size of the RC4 permutation. The new
biases in turn result in successful keylength prediction from the initial
keystream bytes of the cipher.

Keywords: Conditional Bias, Key Correlation, Keylength Prediction,
RC4.

1 Introduction

RC4 is one of the most popular stream ciphers for software applications. Designed
by Ron Rivest in 1987, the algorithm of RC4 has two parts; Key Scheduling
(KSA) and Pseudo-Random Generation (PRGA), presented in Table 1.

Given a secret key k of length l bytes, an array K of size N bytes is created
to hold the key such that K[y] = k[y mod l] for all y ∈ [0, N−1]. Generally, N is
chosen to be 256. The first part of the cipher, KSA, uses this K to scramble an
initial identity permutation {0, 1, . . . , N − 1} to obtain a ‘secret’ state S. Then
the PRGA generates keystream bytes from this initial state S, which are used for
encrypting the plaintext. Two indices i (deterministic) and j (pseudo-random)
are used in KSA as well as PRGA to point to the locations of S. All additions
in the RC4 algorithm are performed modulo N .

After r (≥ 1) rounds of RC4 PRGA, we denote the variables by Sr, ir, jr, zr
and the output index Sr[ir]+Sr[jr] by tr. After r rounds of KSA, we denote the
same by adding a superscript K to each variable. By SK

0 and S0, we denote the
initial permutations before KSA and PRGA respectively. Note that SK

0 is the
identity permutation and S0 = SK

N .
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Table 1. The RC4 Algorithm: KSA and PRGA

Key Scheduling (KSA) Pseudo-Random Generation (PRGA)

Input: Secret Key K.
Output: S-Box S generated by K.

Initialize S = {0, 1, 2, . . . , N − 1};
Initialize counter: j = 0;

for i = 0, . . . , N − 1 do
j = j + S[i] +K[i];
Swap S[i] ↔ S[j];

end

Input: S-Box S, output of KSA.
Output: Random stream Z.

Initialize the counters: i = j = 0;

while TRUE do
i = i+ 1, j = j + S[i];
Swap S[i] ↔ S[j];
Output Z = S[S[i] + S[j]];

end

Existing Results. In SAC 2010, Sepehrdad, Vaudenay and Vuagnoux [12] have
reported experimental results of an exhaustive search for biases in all possible
linear combinations of the state variables and the keystream bytes of RC4. In
the process, they have discovered many new biases that are significantly high
compared to random association. Some of these biases were further shown to be
useful for key recovery in WEP [3] mode. In a recent work [13] at Eurocrypt 2011,
the same authors have utilized the pool of all existing biases of RC4, including
a few reported in [12], to mount a distinguishing attack on WPA [4].

In the above approach, RC4 is treated as a black box, where the secret key
bytes are the inputs, the permutation and the index j are internal state vari-
ables and the keystream bytes are the outputs. The goal of [12] was to find out
empirical correlations between the inputs, internal state and the outputs and no
attempt was made to theoretically prove these biases. Finding empirical biases
without any justification or proof may be useful from application point of view.
However, cryptanalysis is a disciplined branch of science and a natural quest in
RC4 cryptanalysis should be: Where do all these biases come from?

Motivation. We felt three primary reasons behind a theoretical investigation
into the source and nature of these biases.

– We attempt to build a framework to analyze the biases and their origin.
– In the process of proving the existing biases, one may need to consider some

additional events and thus may end up discovering new biases, leading to
further insight into the cipher. We have observed some interesting events
with strong biases, which have not yet been reported in the literature.

– When there is a conditional bias in the event ‘A given B’, there may be
three reasons behind it: either some subset of A directly causes B or some
subset of B directly causes A or another set C of different events cause
both A and B. Just from empirical observation, it is impossible to infer
what is the actual reason behind the bias. Only a theoretical study can shed
light upon the interplay between the events. Our observations and analysis
suggest that some conditional biases reported in [12] are possibly of the third
kind discussed above and this provides us with some interesting new results
depending on the length of the RC4 secret key.
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Contribution. Our main contribution in this paper is summarized as follows.

1. In Section 2, we provide theoretical proofs for some significant empirical bi-
ases of RC4 reported in SAC 2010 [12]. In particular, we justify the reported
biases of order approximately 2/N , summarized in Table 2. Note that the
authors of [12] denote the PRGA variables by primed indices. Moreover, the
probabilities mentioned in the table are the ones observed in [12], and the
values for ‘biases at all rounds (round-dependent)’ are the ones for r = 3.
We provide general proofs and formulas for all of these biases.

Table 2. Significant biases observed in [12] and proved in this paper

Type of Bias Label as in [12] Event Probability

New 004 j2 + S2[j2] = S2[i2] + z2 2/N
Bias at Specific New noz 007 j2 + S2[j2] = 6 2.37/N
Initial Rounds New noz 009 j2 + S2[j2] = S2[i2] 2/N

New noz 014 j1 + S1[i1] = 2 1.94/N

Bias at All Rounds New noz 001 jr + Sr[ir ] = ir + Sr[jr] 2/N
(round-independent) New noz 002 jr + Sr[jr ] = ir + Sr[ir] 2/N

Bias at All Rounds New 000 Sr[tr] = tr 1.9/N at r = 3
(round-dependent) New noz 004 Sr[ir] = jr 1.9/N at r = 3

New noz 006 Sr[jr] = ir 2.34/N at r = 3

2. In Section 3, we try to justify the bias Pr[S16[j16] = 0 | z16 = −16] =
0.038488 observed in [12], for which the authors have commented:

“So far, we have no explanation about this new bias.” [12, Section 3]

We have observed that the implied correlation arises because both the events
depend on some other event based on the length of RC4 secret key. We also
prove some related correlations in this direction, in full generality for any
keylength l.

3. In Section 3, we also prove an array of new keylength-dependent conditional
biases of RC4 that are of the same or even higher magnitude. To the best of
our knowledge, these are not reported in the literature [1, 2, 6, 9–15].

4. In Section 3.3, we prove a strong correlation between the length l of the secret
key and the l-th output byte (typically for 5 ≤ l ≤ 30), and thus propose a
method to predict the keylength of the cipher by observing the keystream.
As far as we know, no such significant keylength related bias exists in the
RC4 literature [1, 2, 6, 9–15].

2 Proofs of Recent Empirical Observations

In this section, we investigate some significant empirical biases discovered and
reported in [12]. We provide theoretical justification only for the new biases
which are of the approximate order of 2/N or more, summarized in Table 2. In
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this target list, general biases refer to the ones occurring in all initial rounds
of PRGA (1 ≤ r ≤ N − 1), whereas the specific ones have been reported only
for rounds 1 and 2 of PRGA. We do not consider the biases reported for rounds
0 mod 16 in this section, as they are of order 1/N2 or less.

For the proofs and numeric probability calculations in this paper, we re-
quire [6, Theorem 6.3.1], restated as Proposition 1 below.

Proposition 1. At the end of RC4 KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1,

Pr(S0[u] = v) =

⎧
⎨

⎩

1
N

[(
N−1
N

)v
+
(
1− (

N−1
N

)v
) (

N−1
N

)N−u−1
]

if v ≤ u;

1
N

[(
N−1
N

)N−u−1
+
(
N−1
N

)v
]

if v > u.

If a pseudorandom permutation is taken as the initial state S0 of RC4 PRGA,
then we would have Pr(S0[u] = v) = 1

N for all 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1.

2.1 Bias at Specific Initial Rounds of PRGA

In this part of the paper, we prove the biases labeled New noz 014, New noz 007,
New noz 009 and New 004, as in [12, Fig. 3 and Fig. 4] and Table 2.

Theorem 1. After the first round (r = 1) of RC4 PRGA,

Pr(j1 + S1[i1] = 2) = Pr(S0[1] = 1) +
∑

X �=1

Pr(S0[X ] = 2−X) · Pr(S0[1] = X)

Proof. Note that j1 = S0[1] and S1[i1] = S0[j1]. So, in the case j1 = S0[1] = 1,
we will have j1 + S0[j1] = S0[1] + S0[1] = 2 with probability 1. Otherwise, the
probability turns out to be Pr(j1+S0[j1] = 2 & j1 = S0[1] �= 1) =

∑
X �=1 Pr(X+

S0[X ] = 2 & S0[1] = X). Thus, the probability Pr(j1+S1[i1] = 2) can be written
as Pr(j1+S1[i1] = 2) = Pr(S0[1] = 1)+

∑
X �=1 Pr(S0[X ] = 2−X)·Pr(S0[1] = X),

as desired. Hence the claimed result. ��
Numerical Values. If we consider the practical RC4 scheme, the probabilities
involving S0 in the expression for Pr(j1 + S1[i1] = 2) should be evaluated using
Proposition 1, giving a total probability of approximately 1.937/N for N = 256.
This closely matches the observed value 1.94/N . If we assume that RC4 PRGA
starts with a truly pseudorandom initial state S0, the probability turns out to
be approximately 2/N − 1/N2 ≈ 1.996/N for N = 256, i.e., almost twice that
of a random occurrence.

Theorem 2. After the second round (r = 2) of RC4 PRGA, the following prob-
ability relations hold between the index j2 and the state variables S2[i2], S2[j2].

Pr (j2 + S2[j2] = 6) ≈ Pr(S0[1] = 2) +
∑

X even, X �=2

(2/N) · Pr(S0[1] = X) (1)

Pr (j2 + S2[j2] = S2[i2]) ≈ 2/N − 1/N2 (2)

Pr (j2 + S2[j2] = S2[i2] + z2) ≈ 2/N − 1/N2 (3)
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Proof. In Equation (1), we have j2+S2[j2] = (j1+S1[2])+S1[i2] = S0[1]+2·S1[2].
In this expression, note that if S0[1] = 2, then one must have the positions 1
and 2 swapped in the first round of PRGA, and thus S1[2] = S0[1] = 2 as well.
This provides one path for j2 + S2[j2] = S0[1] + 2 · S1[2] = 2 + 2 × 2 = 6, with
probability Pr(S0[1] = 2) · 1 ≈ 1

N . If on the other hand, S0[1] = X �= 2, we have
Pr(j2 + S2[j2] = 6 & S0[1] �= 2) =

∑
X �=2 Pr(X + 2 · S1[2] = 6 & S0[1] = X).

Note that the value of X is bound to be even and for each such value of X , the
variable S1[2] can take 2 different values to satisfy the equation 2 ·S1[2] = 6−X .
Thus, we have

∑
X �=2 Pr(2 · S1[2] = 6 − X & S0[1] = X) ≈ ∑

X even, X �=2
2
N ·

Pr(S0[1] = X). Combining the two disjoint cases S0[1] = 2 and S0[1] �= 2, we get
Equation (1).

In case of Equation (2), we have a slightly different condition S0[1]+2 ·S1[2] =
S2[i2] = S1[j2] = S1[S0[1] + S1[2]]. In this expression, if we have S1[2] = 0, then
the left hand side reduces to S0[1] and the right hand side becomes S1[S0[1] +
S1[2]] = S1[S0[1]] = S1[j1] = S0[i1] = S0[1] as well. This provides a probability
1
N path for the condition to be true. In all other cases with S1[2] �= 0, we can
approximate the probability for the condition as 1

N , and hence approximate the
total probability Pr(j2 + S2[j2] = S2[i2]) as Pr(j2 + S2[j2] = S2[i2] & S1[2] =
0) + Pr(j2 + S2[j2] = S2[i2] & S1[2] �= 0) ≈ 1

N +
(
1− 1

N

) · 1
N = 2

N − 1
N2 .

Finally, for Equation (3), the main observation is that this is almost iden-
tical to the condition of Equation (2) apart from the inclusion of z2. But our
first path of S1[2] = 0 in the previous case also provides us with z2 = 0 with
probability 1 (this path was first observed by Mantin and Shamir [7]). Thus,
we have Pr(j2 + S2[j2] = S2[i2] + z2 & S1[2] = 1) ≈ 1

N · 1. In all other cases
with S1[2] �= 0, we assume the conditions to match uniformly at random, and
therefore have Pr(j2 + S2[j2] = S2[i2] + z2) ≈ 1

N · 1 +
(
1− 1

N

) · 1
N = 2

N − 1
N2 .

Hence the desired results of Equations (1), (2) and (3). ��

Numerical Values. In case of Equation (1), if we assume S0 to be the practical
initial state for RC4 PRGA, and substitute all probabilities involving S0 using
Proposition 1, we get the total probability equal to 2.36/N for N = 256. This
value closely match the observed probability 2.37/N . If we suppose that S0 is
pseudorandom, we will get probability 2/N − 2/N2 ≈ 1.992/N for Equation (1).
The theoretical results are summarized in Table 3 along with the experimentally
observed probabilities of [12].

Table 3. Theoretical and observed biases at specific initial rounds of RC4 PRGA

Label [12] Event Observed Theoretical Probability
Probability [12] S0 of RC4 Random S0

New noz 014 j1 + S1[i1] = 2 1.94/N 1.937/N 1.996/N

New noz 007 j2 + S2[j2] = 6 2.37/N 2.363/N 1.992/N

New noz 009 j2 + S2[j2] = S2[i2] 2/N 1.996/N 1.996/N

New noz 004 j2 + S2[j2] = S2[i2] + z2 2/N 1.996/N 1.996/N
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2.2 Biases at All Initial Rounds of PRGA (Round-Independent)

In this section, we turn our attention to the biases labeled New noz 001 and
New noz 002 in [12], both of which continue to persist in all initial rounds (1 ≤
r ≤ N − 1) of RC4 PRGA.

Theorem 3. At any initial round 1 ≤ r ≤ N − 1 of RC4 PRGA, the following
two relations hold between the indices ir, jr and the state variables Sr[ir], Sr[jr].

Pr(jr + Sr[jr] = ir + Sr[ir]) ≈ 2/N (4)

Pr(jr + Sr[ir] = ir + Sr[jr]) ≈ 2/N (5)

Proof. For both the events mentioned above, we shall take the path ir = jr.
Notice that ir = jr occurs with probability 1

N and in that case both the events
mentioned above hold with probability 1. In the case where ir �= jr, we rewrite
the events as Sr[jr] = (ir − jr) + Sr[ir] and Sr[jr] = (jr − ir) + Sr[ir]. Here
we already know that Sr[jr] �= Sr[ir], as jr �= ir and Sr is a permutation. Thus
in case ir �= jr, the values of Sr[ir] and Sr[jr] can be chosen in N(N − 1)
ways (drawing from a permutation without replacement) to satisfy the relations
stated above. This gives the total probability for each event approximately as
Pr(jr = ir) ·1+

∑
jr �=ir

1
N(N−1) =

1
N +(N−1) · 1

N(N−1) =
2
N . Hence the claimed

result for Equations (4) and (5). ��
The probabilities for New noz 001 and New noz 002 proved in Theorem 3 do
not vary with change in r (i.e., they continue to persist at the same order of
2/N at any arbitrary round of PRGA), and our theoretical results match the
probabilities reported in [12, Fig. 2].

2.3 Biases at All Initial Rounds of PRGA (Round-Dependent)

Next, we consider the biases that are labeled as New 000, New noz 004 and
New noz 006 in [12, Fig. 2]. We prove the biases for rounds 3 to 255 in RC4
PRGA, and we show that all of these decrease in magnitude with increase in r,
as observed experimentally in the original paper.

Let us first prove observation New noz 006 of [12]. This proof was also at-
tempted in [5, Lemma 1], where the event was equivalently stated as Sr−1[r] = r.
But that proof used a crude approximation which resulted in a slight mismatch
of the theoretical and practical patterns in the main result of the paper [5, Fig.
2]. Our proof of Theorem 4, as follows, corrects the proof of [5, Lemma 1], and
removes the mismatch in [5, Fig. 2].

Theorem 4. For PRGA rounds r ≥ 3, value of Pr(Sr[jr] = ir) is approximately

Pr(S1[r] = r)

[

1− 1

N

]r−2

+

r−1∑

t=2

r−t∑

k=0

Pr(S1[t] = r)

k! ·N
[
r − t− 1

N

]k [

1− 1

N

]r−3−k

Before proving Theorem 4, let us first prove a necessary technical result.



Proof of Empirical RC4 Biases and New Key Correlations 157

Lemma 1. After the first round of RC4 PRGA, the probability Pr(S1[t] = r) is

Pr(S1[t] = r) =

⎧
⎨

⎩

∑N−1
X=0 Pr(S0[1] = X) · Pr(S0[X ] = r), t = 1;

Pr(S0[1] = r) + (1− Pr(S0[1] = r)) · Pr(S0[r] = r), t = r;
(1− Pr(S0[1] = t)) · Pr(S0[t] = r), t �= 1, r.

Proof. After the first round of RC4 PRGA, we obtain the state S1 from the
initial state S0 through a single swap operation between the positions i1 = 1
and j1 = S0[i1] = S0[1]. Thus, all other positions of S0 remain the same apart
from these two. This gives us the value of S1[t] as follows: S1[t] = S0[S0[1]] if
t = 1, S1[t] = S0[1] if t = S0[1], and S1[t] = S0[t] in all other cases. Now, we can
compute the probabilities Pr(S1[t] = r) based on the probabilities for S0, which
are in turn derived from Proposition 1. We have three cases:

– Case t = 1. In this case, using the recurrence relation S1[1] = S0[S0[1]], we

can write Pr(S1[1] = r) =
∑N−1

X=0 Pr(S0[1] = X) · Pr(S0[X ] = r).
– Case t = r. In this situation, if S0[1] = r, we will surely have S1[r] = r

as these are the positions swapped in the first round, and if S0[1] �= r, the
position t = r remains untouched and S1[r] = r is only possible if S0[r] = r.
Thus, Pr(S1[r] = r) = Pr(S0[1] = r) + (1 − Pr(S0[1] = r)) · Pr(S0[r] = r).

– Case t �= 1, r. In all other cases where t �= 1, r, it can either take the value
S0[1] with probability Pr(S0[1] = t), or not. If t = S0[1], the value S0[t] will
get swapped with S0[1] = t itself, i.e., we will get S1[t] = t �= r for sure.
Otherwise, the value S1[t] remains the same as S0[t]. Hence, Pr(S1[t] = r) =
(1− Pr(S0[1] = t)) · Pr(S0[t] = r).

Combining all the above cases together, we obtain the desired result. ��
Proof of Theorem 4. Let us start from the PRGA state S1, that is, the state
that has been updated once in the PRGA (we refer to the state after KSA by
S0). We know that the event Pr(S1[r] = r) is positively biased for all r, and
hence the natural path for investigation is the effect of the event (S1[r] = r) on
(Sr−1[r] = r), i.e, on (Sr[jr] = ir). Notice that there can be two cases, as follows.

Case I. In the first case, suppose that (S1[r] = r) after the first round, and the
r-th index is not disturbed for the next r − 2 state updates. Notice that index
i varies from 2 to r − 1 during these period, and hence never touches the r-th
index. Thus, the index r will retain its state value r if index j does not touch

it. The probability of this event is
(
1− 1

N

)r−2
over all the intermediate rounds.

Hence the first part of the probability is Pr(S1[r] = r)
(
1− 1

N

)r−2
.

Case II. In the second case, suppose that S1[r] �= r and S1[t] = r for some
t �= r. In such a case, only a swap between the positions r and t during rounds
2 to r − 1 of PRGA can make the event (Sr−1[r] = r) possible. Notice that if
t does not fall in the path of i, that is, if the index i does not touch the t-th
location, then the value at S1[t] can only go to some position behind i, and this
can never reach Sr−1[r], as i can only go up to (r − 1) during this period. Thus
we must have 2 ≤ t ≤ r − 1 for S1[t] to reach Sr−1[r]. Note that the way S1[t]
can move to the r-th position may be either a one hop or a multi-hop route.



158 S. Sen Gupta et al.

– In the easiest case of single hop, we require j not to touch t until i touches t,
and j = r when i = t, and j not to touch r for the next r−t−1 state updates.

Total probability comes to be Pr(S1[t] = r)
(
1− 1

N

)t−2 · 1
N · (1− 1

N

)r−t−1
=

Pr(S1[t] = r) · 1
N

(
1− 1

N

)r−3
.

– Suppose that it requires (k + 1) hops to reach from S1[t] to Sr−1[r]. Then
the main issue to note is that the transfer will never happen if the position t
swaps with any index which does not lie in the future path of i. Again, this
path of i starts from r−t−1

N for the first hop and decreases approximately to
r−t−1
lN at the l-th hop. We would also require j not to touch the position r

for the remaining (r − 3 − k) number of rounds. Combining all, we get the

second part of the probability as Pr(S1[t] = r)
[∏k

l=1
r−t−1
lN

] [
1− 1

N

]r−3−k
=

Pr(S1[t]=r)
k!·N

[
r−t−1

N

]k [
1− 1

N

]r−3−k
.

Finally, note that the number of hops (k+1) is bounded from below by 1 and from
above by (r − t + 1), depending on the initial gap between t and r positions.
Considering the sum over t and k with this consideration, we get the desired
expression for Pr(Sr−1[r] = r). ��
Remark 1. In proving Theorem 4, we use the initial condition S1[r] = r to branch
out the probability paths, and not S0[r] = r as in [5, Lemma 1]. This is because
the probability of S[r] = r takes a leap from around 1/N in S0 to about 2/N in
S1, and this turns out to be the actual cause behind the bias in Sr−1[r] = r.

Fig. 1 illustrates the experimental observations (averages taken over 100 mil-
lion runs with 16-byte key) and the theoretical values for the distribution of
Pr(Sr[jr] = ir) over the initial rounds 3 ≤ r ≤ 255 of RC4 PRGA. It is evident
that our theoretical formula matches the experimental observations in this case.

Experimental (16 byte key)

Theoretical

Fig. 1. Distribution of Pr(Sr[jr] = ir) for initial rounds 3 ≤ r ≤ 255 of RC4 PRGA

Now let us take a look at the other two round-dependent biases of RC4,
observed in [12]. We can state the related result in Theorem 5 (corresponding
to observations New noz 004 and New 000).



Proof of Empirical RC4 Biases and New Key Correlations 159

Theorem 5. For PRGA rounds r ≥ 3, the probabilities Pr(Sr[ir] = jr) and
Pr(Sr[tr] = tr) are approximately

r

N2
+

N−1∑

X=r

1
N

[

Pr(S1[X ] = X)

[

1− 1

N

]r−2

+
r−1∑

t=2

r−t∑

k=0

Pr(S1[t] = r)

k! ·N
[
r − t− 1

N

]k [

1− 1

N

]r−3−k
]

The proof of this result is omitted for brevity, as it follows the same logic as in
the proof of Theorem 4. A brief proof sketch is presented as follows. For this
proof sketch, we consider the variables jr and tr to be pseudorandom variables
that can take any value between 0 to 255 with probability 1/N . The reader may
note that this is a crude approximation, especially for small values of r, and
causes minor mismatch with the experimental observations in the final result.

Proof-sketch for Pr(Sr[ir] = jr). For this probability computation, we first
rewrite the event as (Sr−1[jr ] = jr) to make it look similar to Sr−1[r] = r,
as in Theorem 4. The only difference is that we were concentrating on a fixed
index r in Theorem 4 instead of a variable index jr. This produces two cases.

Case I. First, suppose that jr assumes a value X ≥ r. In this case, the proba-
bility calculation can be split in two paths, one in which S1[X ] = X is assumed,
and the other in which S1[X ] �= X . If we assume S1[X ] = X , the probability

of (Sr−1[X ] = X) becomes Pr(S1[X ] = X)
[
1− 1

N

]r−2
, similar to the logic in

Theorem 4. If we suppose that S1[t] = X was the initial state, then one may
notice the following two sub-cases:

– The probability for this path is identical to that in Theorem 4 if 2 ≤ t ≤ r−1.
– The probability is 0 in case t ≥ r, as in this case the value X will always be

behind the position of ir = r, whereas X > r as per assumption. That is,
the value X can never reach index X from t.

Assuming Pr(jr = X) = 1/N , this gives
∑N−1

X=r
1
N

[
Pr(S1[X ] = X)

[
1− 1

N

]r−2

+
∑r−1

t=2

∑r−t
k=0

Pr(S1[t]=r)
k!·N

[
r−t−1

N

]k [
1− 1

N

]r−3−k
]
.

Case II. In the second case, we assume that jr takes a valueX between 0 to r−1.
Approximately this complete range is touched by index i for sure, and may also
be touched by index j. Thus, with probability approximately 1, the index jr = X
is touched by either of the indices. Simplifying all complicated computations
involving the initial position of value X and the exact location of index X in
this case, we shall assume that the approximate value of Pr(Sr−1[X ] = X) is
1/N . Thus, the total contribution of Case II, assuming Pr(jr = X) = 1/N , is

given by
∑r−1

X=0 Pr(jr = X) · Pr(Sr−1[X ] = X) ≈ ∑r−1
X=0

1
N · 1

N = r
N2 .

Adding the contributions of the two disjoint cases I and II, we obtain the
total probability for (Sr[ir] = jr) as desired. One may investigate Case II in
more details to incorporate all intertwined sub-cases, and obtain a better closed
form expression for the probability.



160 S. Sen Gupta et al.

Proof-sketch for Pr(Sr[tr] = tr). In this case, notice that tr is just another
random variable like jr, and may assume all values from 0 to 255 with approxi-
mately the same probability 1/N . Thus we can approximate Pr(Sr[tr] = tr) by
Pr(Sr−1[jr] = jr) with a high confidence margin to obtain the desired expression.

This approximation is particularly close for higher values of r because the
effect of a single state change Sr−1 → Sr is low in such a case. For smaller values
of r, one may approximate Pr(Sr−1[tr] = tr) by Pr(Sr−1[jr] = jr) and critically
analyze the effect of the r-th round of PRGA thereafter. However, in spite of
the approximations we made, one may note that the theoretical values closely
match the experimental observations (averages taken over 100 million runs of
RC4 with 16-byte key), as shown in Fig. 2.

Fig. 2 illustrates the experimental observations (averages taken over 100 mil-
lion runs with 16-byte key) and the theoretical values for the distributions of
Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) over the initial rounds 3 ≤ r ≤ 255 of RC4
PRGA. It is evident that our theoretical formulas approximately match the ex-
perimental observations in both the cases; the cause of the little deviation is
explained in the proof sketch above.

Experimental (16 byte key)

Theoretical

Experimental (16 byte key)

Theoretical

Fig. 2. Distributions of Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) for initial rounds 3 ≤ r ≤
255 of RC4 PRGA

Apart from the biases proved so far, all other unconditional biases reported
in [12] are of order 1/N2 or less, and we omit their analysis in this paper. The
next most significant bias reported in [12] was a new conditional bias arising
from a set of correlations in RC4 PRGA. A careful study of this new bias gives
rise to several related observations and results related to the KSA as well, as
presented in the next section.

3 Biases Based on Keylength

In SAC 2010, Sepehrdad, Vaudenay and Vuagnoux [12] discovered several corre-
lations in PRGA using DFT based approach. A list of such biases was presented
in [12, Fig. 10], and the authors commented that:

“After investigation, it seems that all the listed biases are artifact of a
new conditional bias which is Pr[S′

16[j
′
16] = 0 | z16 = −16] = 0.038488.”

However, the authors also admitted that

“So far, we have no explanation about this new bias.”
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In our notation, the above event is denoted as Pr(S16[j16] = 0 | z16 = −16).
While exploring this conditional bias and related parameters of RC4 PRGA, we
could immediately observe two things:

1. The number 16 in the result comes from the keylength that is consistently
chosen to be 16 in [12] for most of the experimentation. In its general form,
the conditional bias should be stated as (crude approximation):

Pr (Sl[jl] = 0 | zl = −l) ≈ 10

N
. (6)

It is surprising why this natural observation could not be identified earlier.
2. Along the same line of investigation, we could find a family of related condi-

tional biases, stated in their general form as follows (crude approximations):

Pr(zl = −l | Sl[jl] = 0) ≈ 10/N (7)

Pr(Sl[l] = −l | Sl[jl] = 0) ≈ 30/N (8)

Pr(tl = −l | Sl[jl] = 0) ≈ 30/N (9)

Pr(Sl[jl] = 0 | tl = −l) ≈ 30/N (10)

Note that bias (7) follows almost immediately from bias (6), and biases (10)
and (9) are related in a similar fashion. Moreover, bias (8) implies bias (9) as
tl = Sl[l] + Sl[jl] = −l under the given condition. However, we investigate even
further to study the bias caused in zl due to the state variables.

3.1 Dependence of Conditional Biases on RC4 Secret Key

We found that all of the aforementioned conditional biases between the two
events under consideration are related to the following third event that is de-
pendent on the values and the length of the RC4 secret key.

l−1∑

i=0

K[i] +
l(l− 1)

2
≡ −l (mod N)

We shall henceforth denote the above event by (fl−1 = −l), following the no-
tation of Paul and Maitra [9], and this event is going to constitute the base
for most of the conditional probabilities we consider hereafter. We consider
Pr(fl−1 = −l) ≈ 1

N , assuming that fl−1 can take any value modulo N uni-
formly at random.

Extensive experimentation with different keylengths (100 million runs for each
keylength 1 ≤ l ≤ 256) revealed strong bias in all of the following events:

Pr(Sl[jl] = 0 | fl−1 = −l), Pr(Sl[l] = −l | fl−1 = −l),

Pr(tl = −l | fl−1 = −l), Pr(zl = −l | fl−1 = −l).

Each of the correlations (6), (7), (8), (9), and (10) is an artifact of these com-
mon keylength-based correlations in RC4 PRGA. In this section, we discuss and
justify all these conditional biases.



162 S. Sen Gupta et al.

To prove our observations in this paper, we shall require the following existing
results from the literature of key-correlation in RC4. These are the correlations
observed by Roos [11] in 1995, which were later proved by Paul and Maitra [9].

Proposition 2. [9, Lemma 1] If index j is pseudorandom at each KSA round,

we have Pr
(
jKy+1 = fy

) ≈ (
1− 1

N

)1+ y(y+1)
2 + 1

N .

Proposition 3. [9, Corollary 1] On completion of KSA in the RC4 algorithm,

Pr(S0[y] = fy) = Pr(SK
N [y] = fy) ≈

(
1− y

N

) · (1− 1
N

) y(y+1)
2 +N

+ 1
N .

Proposition 4. [9, Corollary 1] On completion of KSA, Pr(S0[S0[y]] = fy) ≈
[

y
N + 1

N

[
1− 1

N

]2−y
+
[
1− y

N

]2 [
1− 1

N

]] [
1− 1

N

] y(y+1)
2 +2N−4

for 0 ≤ y ≤ 31.

Note that in each of the above statements,

fy = SK
0

[
y∑

x=0

SK
0 [x] +

y∑

x=0

K[x]

]

=

y∑

x=0

x+

y∑

x=0

K[x] =

y∑

x=0

K[x] +
y(y + 1)

2
.

3.2 Proof of Keylength-Dependent Conditional Biases

In this section, we will prove the four main conditional biases that we have
observed. Each depends on the event (fl−1 = −l), and can be justified as follows.

In each of the following theorems, the notation ‘x : A
α−→ B’ denotes that the

value x transits from position A to position B with probability α.

Theorem 6. Suppose that l is the length of the secret key used in the RC4
algorithm. Given fl−1 =

∑l−1
i=0 K[i] + l(l− 1)/2 = −l, we have

Pr(Sl[jl] = 0) ≈ 1

N
+

[

1− l

N

] [

1− 1

N

]N+l−2
⎡

⎣

[

1− 1

N

]1+ l(l+1)
2

+
1

N

⎤

⎦

Pr(Sl−2[l − 1] = −l) ≈ 1

N
+

[

1− 1

N

]l−1
⎡

⎣

[

1− l − 1

N

] [

1− 1

N

]N+ l(l−1)
2

+
1

N

⎤

⎦

Proof. For proving the first conditional bias, we need to trace the value 0 over
KSA and the first l rounds of PRGA. We start from SK

0 [0] = 0, as the initial
state SK

0 of KSA is the identity permutation in RC4. The following gives the
trace pattern for 0 through the complete KSA and l initial rounds of PRGA. We
shall discuss some of the transitions in details.

0 : SK
0 [0]

1−→ SK
1 [K[0]]

p1−→ SK
l [K[0]]

p2−→ SK
l+1[l]

p3−→ Sl−1[l]
1−→ Sl[jl]

Here p1 =
(
1− l

N

) (
1− 1

N

)l−1
denotes the probability that index K[0] is not

touched by iK and jK in the first l rounds of KSA, p2 =
(
1− 1

N

)1+ l(l+1)
2 + 1

N
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denotes the probability Pr(jKl+1 = fl = K[0]) (using Proposition 2) such that 0 is

swapped from SK
l [K[0]] to SK

l+1[l], and p3 =
(
1− 1

N

)N−2
denotes the probability

that the location SK
l+1[l] containing 0 is not touched by iK , jK in the remaining

N − l − 1 rounds of KSA or by i, j in the first l − 1 rounds of PRGA. So, this
path gives a total probability of p1p2p3. If this path does not hold, we assume
that the event (Sl[jl] = 0) still holds at random, with probability 1/N . Thus,
the total probability is obtained as

Pr(Sl[jl] = 0) = p1p2p3 + (1− p1p2p3) · 1

N
=

1

N
+

(

1− 1

N

)

p1p2p3.

We do a similar propagation tracking for the value fl−1 = −l to prove the second
result, and the main path for this tracking looks as follows.

−l : SK
0 [−l]

p4−→ S0[l − 1]
p5−→ Sl−2[l − 1]

Here we get p4 = Pr(S0[l − 1] = fl−1) =
(
1− l−1

N

) (
1− 1

N

)N+ l(l−1)
2 + 1

N using

Proposition 3 directly, and p5 =
(
1− 1

N

)l−2
denotes the probability that the

index (l − 1), containing −l, is not touched by i, j in the first l − 2 rounds of
PRGA. Similar to the previous proof, the total probability can be calculated as

Pr(Sl−2[l − 1] = −l) = p4p5 + (1− p4p5) · 1

N
=

1

N
+

(

1− 1

N

)

p4p5.

We get the claimed results by substituting p1, p2, p3 and p4, p5 appropriately. ��
Numerical Values. If we substitute l = 16, the most common keylength for
RC4, and N = 256, we get the probabilities of Theorem 6 of magnitude

Pr(Sl[jl] = 0 | fl−1 = −l) ≈ Pr(Sl−2[l − 1] = −l | fl−1 = −l) ≈ 50/N.

These are, to the best of our knowledge, the best known key-dependent conditional
biases in RC4 PRGA till date. The estimates closely match the experiments we
performed over 100 million runs with 16-byte keys. In the next theorem, we look
at a few natural consequences of these biases.

Theorem 7. Suppose that l is the length of the RC4 secret key. Given that
fl−1 =

∑l−1
i=0 K[i] + l(l − 1)/2 = −l, the probabilities Pr(Sl[l] = −l | fl−1 = −l)

and Pr(tl = −l | fl−1 = −l) are approximately

1

N
+

(

1− 1

N

)

·
⎡

⎣
1

N
+

[

1− l

N

] [

1− 1

N

]N+l−2
⎡

⎣

[

1− 1

N

]1+ l(l+1)
2

+
1

N

⎤

⎦

⎤

⎦

·
[
1

N
+

[

1− 1

N

]l−1
[[

1− 1

N

]N−l

+
1

N

]]

Proof. Before proving the path for the target events, let us take a look at rounds
l−1 and l of RC4 PRGA when Sl−2[l−1] = −l and Sl−1[l] = 0. In this situation,
we have the following propagation for the value −l.

−l : Sl−2[l − 1]
1−→ Sl−1[jl−1] = Sl−1[jl]

1−→ Sl[l]
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In the above path, the equality holds because jl = jl−1+Sl−1[l] = jl−1+0 as per
the conditions. Again, we have Sl[jl] = Sl−1[l] = 0, implying tl = Sl[l] +Sl[jl] =
−l + 0 = −l as well. This explains the same expression for the probabilities of
the two events in the statement.

Note that we require both the events (Sl[jl] = 0 | fl−1 = −l) and (Sl−2[l −
1] = −l | fl−1 = −l) to occur simultaneously, and need to calculate the joint
probability. Also note that there is a significant overlap between the tracking
paths of these two events, as they both assume that the first l positions of
the state SK

0 are not touched by jK in the first l rounds of KSA (refer to
the proof of Theorem 6 of this paper and proofs of [9, Theorem 1, Corollary
1] for details). In other words, if we assume the occurrence of event (Sl[jl] =
0 | fl−1 = −l) (with probability p6, as derived in Theorem 6, say), then the
precondition for (Sl−2[l − 1] = −l | fl−1 = −l) will be satisfied, and thus the
modified conditional probability is Pr(Sl−2[l − 1] = −l | Sl[jl] = 0 & fl−1 =

−l) = 1
N +

[
1− 1

N

]l−1
[[
1− 1

N

]N−l
+ 1

N

]
= p7, say. Now, we can compute the

joint probability of the two events as

Pr(Sl[l] = −l | fl−1 = −l) = p6p7 + (1− p6p7) · 1

N
=

1

N
+

(

1− 1

N

)

· p6p7.

Substituting the values of p6 and p7, we obtain the desired result. Event (tl = −l)
follows immediately from (Sl[l] = −l), with the same conditional probability. ��
Numerical Values. Substituting l = 16 and N = 256, we get the probabilities
of Theorem 7 of the magnitude Pr(Sl[l] = −l | fl−1 = −l) = Pr(tl = −l | fl−1 =
−l) ≈ 20/N . These estimates closely match our experimental results taken over
100 million runs of RC4 with 16-byte keys.

Conditional Bias in Output. We could also find that the bias in (zl = −l)
is caused due to the event fl−1[l], but in a different path than the one we have
discussed so far. We prove the formal statement next as Theorem 8.

Theorem 8. Suppose that l is the length of the secret key of RC4. Given that
fl−1 =

∑l−1
i=0 K[i] + l(l− 1)/2 = −l, the probability Pr(zl = −l) is approximately

1

N
+

[

1− 1

N

]

·
[
1

N
+

[

1− l

N

] [

1− 1

N

]N+l−2
[[

1− 1

N

]1+l

+
1

N

]]

·
[
1

N
+

[

1− 1

N

]l+1

Pr(S0[S0[l − 1]] = fl−1)

]

Proof. The proof is similar to that of Theorem 7 as both require Sl[jl] = Sl−1[l] =
0 to occur first. Note that if Sl[jl] = Sl−1[l] = 0, we will always have

zl = Sl[Sl[l] + Sl[jl]] = Sl[Sl−2[l − 1] + 0] = Sl[Sl−2[l − 1]].
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Thus the basic intuition is to use the path S0[S0[l − 1]] = fl−1 = −l to get

−l : S0[S0[l− 1]]
p8−→ Sl−2[Sl−2[l − 1]]

p9−→ Sl[Sl−2[l − 1]]

In the above expression, p8 =
(
1− 1

N

)l−2
and p9 =

(
1− 1

N

)2
denote the proba-

bilities of j not touching the state index that stores the value −l. This introduces

a probability
(
1− 1

N

)l
. Thus Pr(Sl[Sl−2[l−1]] = −l | fl−1 = −l) is cumulatively

given by 1
N +

[
1− 1

N

]l+1
Pr(S0[S0[l−1]] = fl−1) = p10, say. Note that one of the

preconditions to prove [9, Theorem 4] is that the first (l− 1) places of state SK
0

remain untouched by jK for the first l−1 rounds of KSA. This partially matches
with the precondition to prove Pr(Sl[jl] = 0 | fl−1 = −l) (see Theorem 6), where
we require the same for first l places over the first l rounds of KSA. Thus we de-
rive the formula for Pr(Sl[jl] = 0 | S0[S0[l− 1]] = −l & fl−1 = −l) by modifying

the result of Theorem 6 as 1
N +

[
1− l

N

] [
1− 1

N

]N+l−2
[[
1− 1

N

]1+l
+ 1

N

]
= p11,

say. The final probability for (zl = −l | fl−1 = −l) can now be computed as

Pr(zl = −l | fl−1 = −l) = p10p11 + (1− p10p11) · 1

N
=

1

N
+

(

1− 1

N

)

· p10p11.

Substituting appropriate values for p10 and p11, we get the desired result. ��
Let us consider Pr(zl = −l | Sl[jl] = 0) = Pr(Sl[Sl−2[l − 1]] = −l | Sl[jl] = 0).
From the proof of Theorem 8, it is evident that the events (Sl[Sl−2[l− 1]] = −l)
and (Sl[jl] = 0) have no obvious connection. Yet, there exists a strong correlation
between them, possibly due to some hidden events that cause them to co-occur
with a high probability. We found that one of these hidden events is (fl−1 = −l).

From the proofs of Theorems 6 and 8, we know that both the aforementioned
events depend strongly on (fl−1 = −l), but along two different paths, as follows.

0 : SK
0 [0]

1−→ SK
1 [K[0]]

p1−→ SK
l [K[0]]

p2−→ SK
l+1[l]

p3−→ Sl−1[l]
1−→ Sl[jl]

−l : SK
0 [SK

0 [l − 1]]
p12−→ S0[S0[l − 1]]

p8−→ Sl−2[Sl−2[l − 1]]
p9−→ Sl[Sl−2[l − 1]]

Here p12 depends on the probability Pr(S0[S0[l−1]] = fl−1) from Proposition 4.
Using these two paths, one may obtain the value of Pr(zl = −l & Sl[jl] = 0) as

Pr(zl = −l & Sl[jl] = 0)

= Pr(fl−1 = −l) · Pr(Sl[Sl−2[l− 1]] = −l & Sl[jl] = 0 | fl−1 = −l)

+Pr(fl−1 �= −l) · Pr(Sl[Sl−2[l − 1]] = −l & Sl[jl] = 0 | fl−1 �= −l).

As before, Pr(fl−1 = −l) can be taken as 1/N . If one assumes that the aforemen-
tioned two paths are independent, the probabilities from Theorems 6 and 8 can
be substituted in the above expression. If one further assumes that the events
occur uniformly at random if fl−1 �= −l, the values of Pr(Sl[jl] = 0 | zl = −l)
and Pr(zl = −l | Sl[jl] = 0) turn out to be approximately 5/N each (for l = 16).



166 S. Sen Gupta et al.

However, our experiments show that the two paths mentioned earlier are not
entirely independent, and we obtain Pr(zl = −l & Sl[jl] = 0 | fl−1 = −l) ≈ 5/N .
Moreover, the events are not uniformly random if fl−1 �= −l; rather they are
considerably biased for a range of values of fl−1 around −l (e.g., for values like
−l + 1, −l + 2 etc.). These hidden paths contribute towards the probability
Pr(fl−1 �= −l) Pr(zl = −l & Sl[jl] = 0 | fl−1 �= −l) ≈ 5/N2. Through a careful
treatment of the dependences and all the hidden paths, one would be able to
justify the above observations, and obtain

Pr(Sl[jl] = 0 | zl = −l) ≈ Pr(zl = −l | Sl[jl] = 0) ≈ 10/N.
Similar techniques for analyzing dependences and hidden paths would work for
all correlations reported in Equations 6, 7, 8, 9 and, 10.

We now shift our focus to Pr(zl = −l | fl−1 = −l) and its implications.

Numerical Values. First of all, notice that the value of Pr(zl = −l | fl−1 = −l)
depends on the value of Pr(S0[S0[l− 1]] = fl−1). Proposition 4 gives an explicit
formula for Pr(zl = −l | fl−1 = −l) for l up to 32. As l increases beyond 32, one
may check by experimentation that this probability converges approximately to
1/N . Thus, for 1 ≤ l ≤ 32, one can use the formula from Proposition 4, and
for l > 32, one may replace Pr(S0[S0[l − 1]] = fl−1) by 1/N to approximately
compute the distribution of (zl = −l | fl−1 = −l) completely. In fact, after
the state recovery attack by Maximov and Khovratovich [8], that is of time
complexity around 2241, choosing a secret key of length l > 30 is not meaningful.
The value of Pr(zl = −l | fl−1 = −l) for some typical values of l are

12/N for l = 5 11/N for l = 8 7/N for l = 16 2/N for l = 30.

In the list above, each conditional probability is quite high in magnitude com-
pared to the natural probability of random occurrence. We try to exploit this
bias in the next section to predict the length of RC4 secret key.

3.3 Keylength Prediction from Keystream

The huge conditional bias proved in Theorem 8 hints that there may be a related
unconditional bias present in the event zl = −l as well. In fact, New 007 in [12,
Fig. 5] reports a bias in (zi = −i) for i = 0 mod 16. The reported bias for i = 16
is 1.0411/N . Notice that almost all experiments of [12] used the keylength l = 16,
which encourages our speculation for an unconditional bias in (zl = −l) for any
general keylength l of RC4 secret key. Systematic investigation in this direction
reveals the following result.
Theorem 9. Suppose that l is the length of the secret key of RC4. The proba-
bility Pr(zl = −l) is given by

Pr(zl = −l) ≈ 1

N
+ [N · Pr(zl = −l | fl−1 = −l)− 1] · 1

N2
.

Proof. We provide a quick sketch of the proof to obtain a crude approximation
of this bias in zl. Notice that we already have a path (zl = −l | fl−1 = −l) with
probability calculated in Theorem 8. If we assume that for all other values of
fl−1 �= −l, the output zl can take the value −l uniformly at random, we have
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Pr(zl = −l) ≈ Pr(fl−1 = −l) · Pr(zl = −l | fl−1 = −l)

+Pr(fl−1 �= −l) · Pr(zl = −l | fl−1 �= −l)

=
1

N
· Pr(zl = −l | fl−1 = −l) +

(

1− 1

N

)

· 1

N

=
1

N
+ [N · Pr(zl = −l | fl−1 = −l)− 1] · 1

N2
.

Thus we obtain the desired result. ��
Numerical Values. We have a closed form expression for Pr(zl = −l | fl−1 =
−l) from Theorem 8 in cases where 1 ≤ l ≤ 32 (using Proposition 4). We have
also calculated some numerical values of this probability for l = 5, 8, 16, 30 and
N = 256. Using those numeric approximations, the value of Pr(zl = −l) is

1/N + 11/N2 for l = 5 1/N + 10/N2 for l = 8

1/N + 6/N2 for l = 16 1/N + 2/N2 for l = 30

Predicting the Keylength. The lower bound for Pr(zl = −l) within the
typical range of keylength (5 ≤ l ≤ 30) is approximately 1/N + 1/N2, which
is quite high and easily detectable. In experiments with 100 million runs and
different keylengths, we have found that the probabilities are even higher than
those mentioned above. This helps us in predicting the length of the secret key
from the output, as follows.

1. Find the output byte zx biased towards −x. This requires O(N3) many
samples as the bias is O(1/N2). A ‘sample’ in this case means the observation
of keystream bytes zx for all 5 ≤ x ≤ 30 for a specific key. The bias is
computed by examining these keystream bytes with different keys, which
are all of the same length l, say.

2. Check if the probability Pr(zx = −x) is equal or greater than the value
proved in Theorem 9.

3. If the above statements hold for some 5 ≤ x ≤ 30, the keylength can be
accurately predicted as l = x.

Although the bias in zl = −l has been noticed earlier in the literature for specific
keylengths, no attempts have been made for its generalization. Moreover, to
the best of our knowledge, the prediction of keylength from the keystream has
never been attempted. We have performed extensive experiments with varying
keylengths to verify the practical feasibility of the prediction technique. This
prediction technique proves to be successful for all keylengths within the typical
usage range 5 ≤ l ≤ 30. As already pointed out in Section 3.2, choosing a secret
key of length l > 30 is not recommended. So, our keylength prediction effectively
works for all practical values of the keylength.

4 Conclusion

In the paper [12] of SAC 2010, several empirical observations relating a few RC4
variables have been reported, and here we prove all the significant ones. In the
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process, we provide a framework for justifying such non-random events in their
full generality. Our study identifies and proves a family of new key correlations
beyond those observed in [12]. These, in turn, result in keylength dependent
biases in initial keystream bytes of RC4, enabling effective keylength prediction.
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