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Abstract. Modular Multiplication based Block Cipher (MMB) is a block
cipher designed by Daemen et al. as an alternative to the IDEA block
cipher. In this paper, we give a practical sandwich attack on MMB with
adaptively chosen plaintexts and ciphertexts. By constructing a 5-round
sandwich distinguisher of the full 6-round MMB with probability 1, we
recover the main key of MMB with text complexity 240 and time com-
plexity 240 MMB encryptions. We also present a chosen plaintexts attack
on the full MMB by employing the rectangle-like sandwich attack, which
the complexity is 266.5 texts, 266.5 MMB encryptions and 270.5 bytes
of memory. In addition, we introduce an improved differential attack
on MMB with 296 chosen plaintexts, 296 encryptions and 266 bytes of
memory. Especially, even if MMB is extended to 7 rounds, the improved
differential attack is applicable with the same complexity as that of the
full MMB.

Keywords: MMB block cipher, sandwich distinguisher, practical
attack, differential attack.

1 Introduction

Modular Multiplication based Block Cipher (MMB) [7] was designed as an al-
ternative to the IDEA block cipher [9] by Daemen, Govaerts and Vandewalle in
1993. It has 6 rounds, and both of the block size and key size are 128 bits. In
[13], Wang et al. proposed a differential attack on the full 6-round MMB with
2118 chosen plaintexts, 295.61 encryptions and 266 bytes of memory. They also
presented linear and square attacks on the reduced-round MMB.

Our main contribution to this paper is to introduce a fast sandwich attack
on MMB. Sandwich attack was recently formalized by Dunkelman et al. [11], is

� Supported by 973 Project (No.2007CB807902), the National Natural Science
Foundation of China (Grant No.60931160442), Tsinghua University Initiative Scien-
tific Research Program (2009THZ01002) and China Postdoctoral Science Founda-
tion(20110490442).

�� Corresponding author.

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 185–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



186 K. Jia et al.

aimed to improve the former theoretic related-key rectangle attack on the full
KASUMI block cipher [3] into a fast attack. Sandwich attack is an extension
of the boomerang attack, which was introduced by Wagner [14]. Similar crypt-
analysis techniques with sandwich attack were also used in [4,5,14]. Usually,
boomerang attack is an adaptively chosen plaintexts and ciphertexts attack. It
was further developed by Kelsey et al. [6] into a chosen plaintexts attack called
the amplified boomerang attack, which was independently introduced by Biham
et al. with the name of the rectangle attack [2]. In [10], sandwich attack is also
converted into a chosen plaintexts attack, called rectangle-like sandwich attack.

In this paper, we construct an interesting sandwich distinguisher of 5-round
MMB with probability 1. Using the distinguisher, we present an adaptively cho-
sen texts attack on MMB, which the complexity is 240 texts and 240 MMB
encryptions. We also give a rectangle-like sandwich attack on MMB with 266.5

chosen plaintexts, 266.5 encryptions and 270.5 bytes of memory.
Furthermore, we introduce a 6-round differential with probability 2−94. Uti-

lizing a 5-round differential by truncating the given 6-round differential, we show
an improved differential attack on MMB with 296 chosen plaintexts, 296 MMB
encryptions and 266 bytes of memory. It is interesting that, even if MMB block
cipher is increased to 7 rounds, it is still vulnerable to the differential attack
with the same complexity.

The rest of this paper is organized as follows. A brief description of MMB is
given in Sect. 2. We recall the sandwich attack in Sect. 3. The fast sandwich
attack on MMB is introduced in Sect. 4. Section 5 describes the rectangle-like
attack on MMB. And Section 6 shows the improved differential attack. Finally,
we conclude the paper in Sect. 7.

2 Description of the Block Cipher MMB

MMB is a block cipher with 128-bit block and 128-bit key. It has a Substitution-
Permutation Network (SPN) structure and 6-round iterations. It has two ver-
sions, called MMB 1.0 and MMB 2.0. Compared to MMB 1.0, the key schedule
of MMB 2.0 is tweaked against the related-key attack [8]. In this paper, we only
focus on MMB 2.0 which is simplified as MMB.

We give a brief description of MMB in the following.

Key Schedule. Let the 128-bit key of MMB be K = (k0, k1, k2, k3), the subkey
can be computed as:

kji = k(i+j) mod 4 ⊕ (B ≪ j),

where B = 0x0dae, kj is the (j + 1)-th round subkey, kj = (kj0, k
j
1, k

j
2, k

j
3),

kji (i = 0, . . . , 3) are 32-bit words, and j = 0, . . . , 6.

MMB Encryption. MMB includes the following 6 round-transformations:

Xj+1 = ρ[kj](Xj) = θ ◦ η ◦ γ ◦ σ[kj ](Xj)
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where Xj is the 128-bit input to the (j + 1)-th round, and X0 is the plaintext.
The ciphertext is denoted as C = σ[k6](X6).

The details of the four functions σ, γ, η, θ are given as follows.

1. σ[kj ] is a bitwise XOR operation with the round subkey.

σ[kj ](a0, a1, a2, a3) = (a0 ⊕ kj0, a1 ⊕ kj1, a2 ⊕ kj2, a3 ⊕ kj3),

where (a0, a1, a2, a3) is the 128-bit intermediate value, and ai(i = 0, 1, 2, 3)
are 32-bit words.

2. The nonlinear transformation γ is a cyclic multiplication of the four 32-bit
words respectively by factors G0, G1, G2 and G3.

γ(a0, a1, a2, a3) = (a0 ⊗G0, a1 ⊗G1, a2 ⊗G2, a3 ⊗G3).

The cyclic multiplication ⊗ is defined as:

x⊗ y =

{
x× y mod 232 − 1 if x < 232 − 1,
232 − 1 if x = 232 − 1.

Gi, G
−1
i = (Gi)

−1 mod 232 − 1, i = 0, 1, 2, 3 are listed.

G0 = 0x025f1cdb, G−1
0 = 0x0dad4694,

G1 = 2⊗G0 = 0x04be39b6, G−1
1 = 0x06d6a34a,

G2 = 23 ⊗G0 = 0x12f8e6d8, G−1
2 = 0x81b5a8d2,

G3 = 27 ⊗G0 = 0x2f8e6d81, G−1
3 = 0x281b5a8d.

There are two differential characteristics with probability 1 for Gi (i =
0, 1, 2, 3) [7],

0
Gi−→
1

0, 0̄
Gi−→
1

0̄.

The two differential characteristics result in a 2-round differential with
probability 1.

3. The asymmetrical transformation η is defined as:

η(a0, a1, a2, a3) = (a0 ⊕ (lsb(a0)× δ), a1, a2, a3 ⊕ ((1 ⊕ lsb(a3))× δ)),

where ‘lsb’ means the least significant bit and δ = 0x2aaaaaaa.
4. The linear transformation θ is a diffusion operation:

θ(a0, a1, a2, a3) = (a3 ⊕ a0 ⊕ a1, a0 ⊕ a1 ⊕ a2, a1 ⊕ a2 ⊕ a3, a2 ⊕ a3 ⊕ a0).

3 Sandwich Attack

Sandwich attack dates from boomerang attack, and was utilized to break effi-
ciently the block cipher KASUMI in the related-key setting [10]. We give a brief
description of the boomerang attack and the sandwich attack.
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3.1 Boomerang Attack

The boomerang attack belongs to differential attack [1]. The purpose is to con-
struct a quartet structure to achieve a distinguisher with more rounds by utilizing
and connecting two short differential. Let E be a block cipher with block size
n, that is considered as a cascade of two sub-ciphers: E = E1 ◦ E0. For the

sub-cipher E0, there is a differential α
E0−→ β with high probability p, and for

E1, there is a differential γ
E1−→ ζ with high probability q. E−1, E0

−1 and E1
−1

stand for the inverse of E,E0, E1 respectively. The boomerang distinguisher (see
Fig.1) can be constructed as follows:

– Randomly choose a pair of plaintexts (P, P ′) such that P ′ ⊕ P = α.
– Ask for the encryption, and get the corresponding ciphertexts C = E(P ),

C′ = E(P ′).
– Compute C̃ = C ⊕ ζ, C̃′ = C′ ⊕ ζ.
– Ask for the decryption, and obtain P̃ = E−1(C̃), P̃ ′ = E−1(C̃′).
– Check whether P̃ ′ ⊕ P̃ = α.

For the distinguisher (see Fig. 1), P̃ ′⊕ P̃ = α holds with probability p2q2. That
is to say, a quarter satisfies the following conditions besides P ′ ⊕ P = α and
P̃ ′ ⊕ P̃ = α,

E0(P
′)⊕ E0(P ) = β,

E1
−1(C̃)⊕ E1

−1(C) = E−1
1 (C̃′)⊕ E1

−1(C′) = γ.

It is clear that, the boomerang distinguisher is available to cryptanalyze a cipher
if pq > 2−n/2.

The rectangle (amplified boomerang) attack is a chosen plaintext attack in-
stead of adaptive chosen plaintext and ciphertext attack by involving a birthday
attack to guarantee the collision of two middle values E0(P ) and E0(P̃ ) ⊕ γ.

A right quarter (P, P ′, P̃ , P̃ ′) can be distinguished with probability p2q22−n,

which should satisfy the following conditions besides P ⊕ P ′ = α, P̃ ⊕ P̃ ′ = α,
C ⊕ C̃ = ζ, C′ ⊕ C̃′ = ζ,

E0(P
′)⊕ E0(P ) = β , E0(P̃

′)⊕ E0(P̃ ) = β,

E0(P )⊕ E0(P̃ ) = γ .

3.2 Sandwich Attack

The sandwich attack is obtained by pushing a middle layer in the quartet struc-
ture of the boomerang attack. So, in the sandwich attack, the block cipher should
be divided into three sub-ciphers: E = E1 ◦ EM ◦ E0, see Fig. 2. We denote

X = E0(P ), Y = EM (X), C = E1(Y ). Let α
E0→ β be a differential with proba-

bility p on the top layer, and γ
E1→ ζ be a differential with probability q on the

bottom layer, where

α = P ⊕ P ′ = P̃ ⊕ P̃ ′ , β = X ⊕X ′ = X̃ ⊕ X̃ ′

γ = Y ⊕ Ỹ = Y ′ ⊕ Ỹ ′ , ζ = C ⊕ C̃ = C′ ⊕ C̃′.
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Fig. 1. Boomerange distinguisher
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Fig. 2. Sandwich distinguisher

The middle layer is a transition differential connecting the top and bottom
differentials. The probability of the transition differential is computed as follows.

r = Pr((X̃ ⊕ X̃ ′ = β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)).

Thus the sandwich distinguisher holds with probability p2q2r.
The rectangle-like sandwich attack is the combination of sandwich attack and

rectangle attack, and it is a chosen plaintexts attack (see Fig. 4). The probability
of the rectangle-like sandwich distinguisher is p2q2r′2−n,

r′ = Pr((Y ′ ⊕ Ỹ ′ = γ)|(X̃ ⊕ X̃ ′ = β) ∧ (X ⊕X ′ = β) ∧ (Y ⊕ Ỹ = γ)).

4 Practical Sandwich Attack on the Full MMB

In this section, we first construct a sandwich distinguisher for 5-round MMB
with probability 1 without related key, then give a practical key recovery attack
on MMB.

4.1 5-Round Sandwich Distinguisher with Probability 1

We decompose 5-round MMB into E = E1 ◦ EM ◦ E0. E0 contains the first 2
rounds, EM consists of the third round, and E1 includes the last 2 rounds. See
Fig. 2.

We use the following 2-round differential characteristic with probability 1 in
E0 and E1 [13].

(0, 0̄, 0̄, 0)
σ[ki]−→ (0, 0̄, 0̄, 0)

γ−→ (0, 0̄, 0̄, 0)
η−→ (0, 0̄, 0̄, 0)

θ−→ (0̄, 0, 0, 0̄)
σ[ki+1]−→ (0̄, 0, 0, 0̄)

γ−→ (0̄, 0, 0, 0̄)
η−→ (0̄⊕ δ, 0, 0, 0̄⊕ δ)

θ−→ (0, 0̄⊕ δ, 0̄⊕ δ, 0),
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where ‘0’ denotes a 32-bit zero difference word, and 0̄ = 232−1 = 0xffffffff .

So α = γ = (0, 0̄, 0̄, 0), β = ζ = (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), and Pr(α
E0−→ β) = 1,

Pr(γ
E1−→ ζ) = 1.

The remaining is to prove that the probability of the transition differential
keeps 1, i.e.,

Pr((X̃ ⊕ X̃ ′ = β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)) = 1.

X ′
i, X̃i, X̃

′
i and Xi denote the i-th words of X,X ′, X̃, X̃ ′, i = 0, 1, 2, 3. The

subkey of the third round is denoted as k̄ = (k̄0, k̄1, k̄2, k̄3).
Since θ and η are linear, by

Y ⊕ Ỹ = (0, 0̄, 0̄, 0),

Y ′ ⊕ Ỹ ′ = (0, 0̄, 0̄, 0),

X ⊕X ′ = (0, 0̄⊕ δ, 0̄⊕ δ, 0), (1)

we get

(η−1 ◦ θ−1(Y ))⊕ (η−1 ◦ θ−1(Ỹ )) = (0̄⊕ δ, 0, 0, 0̄⊕ δ), (2)

(η−1 ◦ θ−1(Y ′))⊕ (η−1 ◦ θ−1(Ỹ ′)) = (0̄⊕ δ, 0, 0, 0̄⊕ δ). (3)

From the round transformation, we know that,

Y = θ ◦ η ◦ γ ◦ σ[k](X),

Y ′ = θ ◦ η ◦ γ ◦ σ[k](X ′),

Ỹ = θ ◦ η ◦ γ ◦ σ[k](X̃),

Ỹ ′ = θ ◦ η ◦ γ ◦ σ[k](X̃ ′). (4)

Using (2), (3) and (4), we deduce the equations

((X1 ⊕ k̄1)⊗G1)⊕ ((X̃1 ⊕ k̄1)⊗G1) = 0, (5)

((X2 ⊕ k̄2)⊗G2)⊕ ((X̃2 ⊕ k̄2)⊗G2) = 0, (6)

((X ′
1 ⊕ k̄1)⊗G1)⊕ ((X̃ ′

1 ⊕ k̄1)⊗G1) = 0, (7)

((X ′
2 ⊕ k̄2)⊗G2)⊕ ((X̃ ′

2 ⊕ k̄2)⊗G2) = 0. (8)

((X0 ⊕ k̄0)⊗G0)⊕ ((X̃0 ⊕ k̄0)⊗G0) = 0̄⊕ δ, (9)

((X3 ⊕ k̄3)⊗G3)⊕ ((X̃3 ⊕ k̄3)⊗G3) = 0̄⊕ δ, (10)

((X ′
0 ⊕ k̄0)⊗G0)⊕ ((X̃ ′

0 ⊕ k̄0)⊗G0) = 0̄⊕ δ, (11)

((X ′
3 ⊕ k̄3)⊗G3)⊕ ((X̃ ′

3 ⊕ k̄3)⊗G3) = 0̄⊕ δ. (12)

From (5), (6), (7) and (8), it is clear that,

X1 = X̃1, X2 = X̃2, X ′
1 = X̃ ′

1, X ′
2 = X̃ ′

2.
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Therefore, we deduce the conditions

X̃1 ⊕ X̃ ′
1 = X1 ⊕X ′

1 = 0̄⊕ δ,

X̃2 ⊕ X̃ ′
2 = X2 ⊕X ′

2 = 0̄⊕ δ. (13)

From (9), (10), (11) and (12), we obtain

((X0⊕k̄0)⊗G0)⊕(( ˜X0⊕k̄0)⊗G0) = ((X′
0⊕k̄0)⊗G0)⊕(( ˜X′

0⊕k̄0)⊗G0), (14)

((X3⊕k̄3)⊗G3)⊕(( ˜X3⊕k̄3)⊗G3) = ((X′
3⊕k̄3)⊗G3)⊕(( ˜X′

3⊕k̄3)⊗G3). (15)

Combining with (1), the following two equations hold.

((X̃0 ⊕ k̄0)⊗G0) = ((X̃ ′
0 ⊕ k̄0)⊗G0),

((X̃3 ⊕ k̄3)⊗G3) = ((X̃ ′
3 ⊕ k̄3)⊗G3).

Then,

X̃0 ⊕ X̃ ′
0 = 0,

X̃3 ⊕ X̃ ′
3 = 0. (16)

Combining (13) and (16), we have

X̃ ⊕ X̃ ′ = (0, 0̄⊕ δ, 0̄⊕ δ, 0) = β.

Therefore,

r = Pr((X̃ ⊕ X̃ ′ = β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)) = 1.

This proves that we get a 5-round sandwich distinguisher with probability 1.

4.2 The Key Recovery Attack

In this subsection, if we apply the 5-round sandwich distinguisher described in
Subsect. 4.1 to rounds 2-6, we can recover 64 bits of the subkey in the first
round. When we locate the distinguisher at rounds 1-5, 64 bits of the equivalent
subkey in the final can be easily captured. The total key can be deduced from
the recovered subkey bits by the key schedule.

Recovering 64 Bits of the First Round Subkey

Collecting Right Quartets. The sandwich distinguisher is from round 2 to
round 6. In order to easily produce the sandwich distinguisher, we select the 1-st
round differential as:

(0xfdff77ef, 0, 0, 0xdffbfeef)
σ[ki]−→ (0xfdff77ef, 0, 0, 0xdffbfeef)

γ−→
(0̄⊕ δ, 0, 0, 0̄⊕ δ)

η−→ (0̄, 0, 0, 0̄)
θ−→ (0, 0̄, 0̄, 0).
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By computer searching, both 0xfdff77ef
G0−→ 0̄ ⊕ δ and 0xdffbfeef

G3−→ 0̄ ⊕ δ
occur with probability about 2−18, so the probability of the differential is about
2−36.

We collect 238 plaintext pairs (P, P ′) and their corresponding ciphertext pairs
(C,C′), where P and P ′ satisfy

P ′ = P ⊕ (0xfdff77ef, 0, 0, 0xdffbfeef).

For each pair, we construct the quartet, and detect whether the quartet satisfies
the differentials. The details are as follows.

– For the collected plaintext-ciphertext pair ((P,C), (P ′, C′)), calculate

C̃ = C ⊕ (0, 0̄⊕ δ, 0̄⊕ δ, 0),

C̃′ = C′ ⊕ (0, 0̄⊕ δ, 0̄⊕ δ, 0).

– Query the decryption to obtain P̃ = E−1(C̃), P̃ ′ = E−1(C̃′), and get the

quartet (P, P ′, P̃ , P̃ ′).
– For the constructed quartet (P, P ′, P̃ , P̃ ′), check whether P̃⊕P̃ ′ = (∗, 0, 0, ∗)

holds, where ‘*’ stands for any non-zero 32-bit value. If P̃ ⊕ P̃ equals to
(∗, 0, 0, ∗), output the quartet.

It is clear that, if the 1-st round differential holds, P̃ ⊕ P̃ ′ always equals to
(∗, 0, 0, ∗), so among 238 plaintext-ciphertext pairs ((P,C), (P ′, C′)), there are

about 4 quartets (P, P ′, P̃ , P̃ ′) are left, and each sieved quartet is right with
probability 1− 238−64 = 1− 2−26.

Partial Key Recovery. For the right quartet (P, P ′, P̃ , P̃ ′), we search the right
subkey k00 among 232 candidates by the following equations:

((P0 ⊕ k00)⊗G0)⊕ ((P ′
0 ⊕ k00)⊗G0) = 0̄⊕ δ,

((P̃0 ⊕ k00)⊗G0)⊕ ((P̃ ′
0 ⊕ k00)⊗G0) = 0̄⊕ δ.

Similarly, the subkey k03 is derived from the equations

((P3 ⊕ k03)⊗G3)⊕ ((P ′
3 ⊕ k03)⊗G3) = 0̄⊕ δ,

((P̃3 ⊕ k03)⊗G3)⊕ ((P̃ ′
3 ⊕ k03)⊗G3) = 0̄⊕ δ.

Because 0̄
Gi−→
1

0̄, there are two k00 can be obtained, i.e. the right subkey k00 and

its complement k00 ⊕ 0̄. It is the same for k03 .

Recovering 64 Bits of the Last Subkey

Collecting Right Quartets. We apply the distinguisher to rounds 1-5, and
calculate 64 bits of the last subkey.
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Select the final round differential

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
σ−1[k5]←− (0, 0̄⊕ δ, 0̄⊕ δ, 0)

γ−1

←−
(0, 0xfcfbdfff, 0xf3ef7fff, 0)

η−1

←− (0, 0xfcfbdfff, 0xf3ef7fff, 0)
θ−1←−

(0xfcfbdfff, 0x0f14a000, 0x0f14a000, 0xf3ef7fff).

The probability of 0xfcfbdfff
G−1

1−→ 0̄ ⊕ δ and 0xf3ef7fff
G−1

2−→ 0̄ ⊕ δ are both
2−18, so the total probability of the final round differential is 2−36.

We collect 238 ciphertext pairs (C, C̃) and their corresponding plaintext pairs

(P, P̃ ) such that,

C̃ = C ⊕ (0xfcfbdfff, 0x0f14a000, 0x0f14a000, 0xf3ef7fff).

For each pair, we build the framework of the quartet, and test whether the
quartet satisfies the differential.

– For the collected plaintext-ciphertext pair ((P,C), (P̃ , C̃)), calculate

P ′ = P ⊕ (0, 0̄, 0̄, 0),

P̃ ′ = P ′ ⊕ (0, 0̄, 0̄, 0).

– Ask for the ciphertexts C′, C̃′ of P ′, P̃ ′ respectively. We obtain the quartet
(C,C′, C̃, C̃′).

– For the collected quartet (C,C′, C̃, C̃′), check whether C′ and C̃′ satisfy the
following equation.

C′ ⊕ C̃′ = (V1, V1 ⊕ V2, V1 ⊕ V2, V2),

where V1, V2 are non-zero 32-bit words. If the equation holds, output the
quartet.

Partial Key Recovery. We firstly recover 64 bits of the equivalent key k6
′
of

k6, i.e.,
k6

′
1 = k60 ⊕ k61 ⊕ k62 ,

k6
′

2 = k61 ⊕ k62 ⊕ k63 .

We find the right subkey k6
′

1 by searching 232 candidates with the verification of
the equations

(G−1
1 ⊗ (C0 ⊕ C1 ⊕ C2 ⊕ k6

′
1 ))⊕ (G−1

1 ⊗ (C′
0 ⊕ C′

1 ⊕ C′
2 ⊕ k6

′
1 )) = 0̄⊕ δ,

(G−1
1 ⊗ (C̃0 ⊕ C̃1 ⊕ C̃2 ⊕ k6

′
1 ))⊕ (G−1

1 ⊗ (C̃′
0 ⊕ C̃′

1 ⊕ C̃′
2 ⊕ k6

′
1 )) = 0̄⊕ δ.

In the similar way, we search the right subkey k6
′

2 among 232 candidates by the
following equations.

(G−1
2 ⊗ (C1 ⊕ C2 ⊕ C3 ⊕ k6

′
2 ))⊕ (G−1

2 ⊗ (C′
1 ⊕ C′

2 ⊕ C′
3 ⊕ k6

′
2 )) = 0̄⊕ δ,

(G−1
2 ⊗ (C̃1 ⊕ C̃2 ⊕ C̃3 ⊕ k6

′
2 ))⊕ (G−1

2 ⊗ (C̃′
1 ⊕ C̃′

2 ⊕ C̃′
3 ⊕ k6

′
2 )) = 0̄⊕ δ.
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From the key schedule algorithm, we know that, k00=k0 ⊕ B, k03 = k3 ⊕ B,
k6

′
1 = k0 ⊕ k2 ⊕ k3 ⊕ (B ≪ 6), and k6

′
2 = k0 ⊕ k1 ⊕ k3 ⊕ (B ≪ 6). As a result,

we compute the whole 128 bits of the key. 24 = 16 key can be computed, for
there are 2 values for a subkey. Filter the right key by a known plaintext and
corresponding ciphertexts.

Complexity. The data complexity is 239 adaptive chosen plaintexts and cipher-
texts. The collection of the pairs is dominant the time complexity, which is 240

MMB encryptions. Once a right quarter is obtained, the right subkey can be
computed. So the success rate is (0.98)2 = 0.96.

4.3 Experimental Results

We performed an experiment on the number of right quartets. We implement
the quartet framework in Sect. 4.2, check the right quartets, and we repeated
the procedure for 1320 times. The number of right quartet are given in Tab. 1,
and we can see from Fig. 3 that the experimental data approximates well to the
theoretic data.

Table 1. The Number of Right Quartets

#Right Quartets 0 1 2 3 4 5 6 7 8 9 10 11 12

Experiment 23 106 202 252 273 185 137 86 30 17 5 4 0

Theory 24.1 96.7 193.4 257.8 257.8 206.3 137.5 78.5 39.2 17.4 6.9 2.5 0.8

Fig. 3. The Number of Right Quartets in Our Experiment and the Theory

Our experiment was carried out on a IBM X3950 M2 server, with 64 Intel
Xeon E7330 2.4GHz cores inside. The operation system is Red Hat 4.1.2-46,
Linux 2.6.18. The compiler is gcc 4.1.2, and we use the standard optimization
flags, one thread in each core. It takes about 1 hour to identify a right quartet,
and recovery the main key of MMB.
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5 Rectangle-Like Sandwich Attack on MMB

The sandwich attack is an adaptive chosen plaintexts and ciphertexts attack. So
we have to query the decryptions of the adapted ciphertexts. This section is to
fulfill the rectangle-like sandwich attack, which can result in a chosen-plaintext
attack.

5.1 5-Round Rectangle-Like Sandwich Distinguisher

Firstly, we give a 5-round rectangle-like sandwich distinguisher which can be
detected with the birthday attack complexity. We transform the above 5-round
sandwich distinguisher into a rectangle-like sandwich distinguisher directly.

E0

E1

EM

E0

E1

EM
X

Y

C

P

˜P ′

˜X ′

˜Y ′

˜C′

P ′

X ′

Y ′

C′

˜P

˜X

˜Y

˜C

γ

γ

ζ

ζ

α α

ββ

Fig. 4. Rectangle-like sandwich distinguisher

We decompose 5-round MMB into E = E1 ◦EM ◦E0 the same as Subsect. 4.1.
Let α = γ = (0, 0̄, 0̄, 0), β = ζ = (0, 0̄⊕ δ, 0̄⊕ δ, 0). In the rectangle-like sandwich

distinguisher (see Fig. 4), we choose P ⊕ P ′ = α, P̃ ⊕ P̃ ′ = α. Query the

corresponding ciphertexts of the 5-round MMB (C, C′, C̃, C̃′). If the equations

C ⊕ C̃ = ζ and C′ ⊕ C̃′ = ζ hold, the quartet is right.
Since the probability of the 2-round differential is 1, similar with Subsect. 4.1,

we know that

Pr((Y ′ ⊕ Ỹ ′ = γ)|(Y ⊕ Ỹ = γ) ∧ (X̃ ⊕ X̃ ′ = β) ∧ (X ⊕X ′ = β)) = 1,

P r((Y ⊕ Ỹ = γ)|(Y ′ ⊕ Ỹ ′ = γ) ∧ (X̃ ⊕ X̃ ′ = β) ∧ (X ⊕X ′ = β)) = 1.

It is easy to know that, C ⊕ C̃ = ζ holds if and only if C′ ⊕ C̃′ = ζ holds.
Using the birthday searching algorithm, we get a pair (C, C̃) correspond-

ing to the collision C = C̃ ⊕ ζ by searching two sets with 264 chosen pairs
(P, P ′) and (P̃ , P̃ ′) respectively. (C, C̃) and the corresponding (C′, C̃′) consists
of a right quartet. So, the 5-round rectangle-like sandwich distinguisher can
be distinguished with 264 chosen plaintexts and 264 table lookups.
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5.2 The Key Recovery Attack

We set the 5-round rectangle-like sandwich distinguisher from round 1 to round
5. If a right quartet occurs, the ciphertext differences should satisfy the following
two equations:

C ⊕ C̃ = (V1, V1 ⊕ V2, V1 ⊕ V2, V2) (17)

C′ ⊕ C̃′ = (W1,W1 ⊕W2,W1 ⊕W2,W2) (18)

where V1 and W1 are output diffrences of G1 corresponding to input difference
(0̄⊕δ), V2 and W2 are output differences of G2 corresponding to input difference
(0̄⊕ δ).

In order to be available to search the right quartet by fulfilling the birthday
attack, we convert (17) and (18) into the following equivalent four equations.

(C0 ⊕ C1 ⊕ C3)⊕ (C̃0 ⊕ C̃1 ⊕ C̃3) = 0,

(C0 ⊕ C2 ⊕ C3)⊕ (C̃0 ⊕ C̃2 ⊕ C̃3) = 0,

(C′
0 ⊕ C′

1 ⊕ C′
3)⊕ (C̃′

0 ⊕ C̃′
1 ⊕ C̃′

3) = 0,

(C′
0 ⊕ C′

2 ⊕ C′
3)⊕ (C̃′

0 ⊕ C̃′
2 ⊕ C̃′

3) = 0.

We choose 265.5 plaintext pairs (P, P ′) at random with the difference (0, 0̄, 0̄, 0).
Encrypt the corresponding ciphertext pairs (C,C′). Compute 265.5 128-bit values
which consist of set A.

A = {Z| Z = (C0 ⊕ C1 ⊕ C3, C0 ⊕ C2 ⊕ C3, C
′
0 ⊕ C′

1 ⊕ C′
3, C

′
0 ⊕ C′

2 ⊕ C′
3)}.

Search all the collisions of set A by birthday attack. The expected number of
collisions is 8. This is because, for each 264 pairs of A, there is a right quartet
according to Subsect. 5.1. So, there are about 4 collisions in A which implies 4
right quartets. According to birthday attack, there are another 265.5 · 265.5 · 2−1 ·
2−128 = 4 collisions (Z, Z̃) occur. So, we have totally 8 corresponding quartets

(C,C′, C̃, C̃′), and there are 4 right quartets.
For each sieved quartet, we get the equivalent key k6

′
1 and k6

′
2 respectively as

in Subsect. 4.2 with 230 MMB encryptions. Then we find the rest 64-bit keys
by exhaustively searching. The data complexity of the attack is 2 · 265.5 = 266.5

chosen plaintexts, the memory complexity is 265.5 128-bit block pairs, i.e., 270.5

bytes.

6 The Improved Differential Cryptanalysis of MMB

A 6-round differential with high probability is given in this section, which can
be used to 7-round extended MMB. The differential path is given as,

(0, 0̄, 0̄, 0)
ρ[k0]−→
1

(0̄, 0, 0, 0̄)
ρ[k1]−→
1

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
ρ[k2 ]−→
p1

(τ, 0, 0, τ)
ρ[k3]−→
p2

(0, 0̄, 0̄, 0)
ρ[k4 ]−→

(0̄, 0, 0, 0̄)
ρ[k5]−→
1

(0, 0̄⊕ δ, 0̄⊕ δ, 0),

where τ satisfies the following two differtials.
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0̄⊕ δ
G1−→ τ

G0−→ 0̄, (19)

0̄⊕ δ
G2−→ τ

G3−→ 0̄. (20)

By search all the τ , the 5-round differential holds with probability p1.p2 = 2−94.
Because there are 16862718720 pairs make the differential characteristics (19)
and (20) hold together, the probability is 16862718720/(2128)

.
= 2−94.

6.1 Improved Differential Attack on the Full MMB

We use the last five rounds of the differential path to attack the full round MMB.
The 5-round differential is as follows.

(0̄, 0, 0, 0̄)
ρ[k0]−→
1

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
ρ[k1 ]−→
p1

(τ, 0, 0, τ)
ρ[k2 ]−→
p2

(0, 0̄, 0̄, 0)
ρ[k3]−→
1

(0̄, 0, 0, 0̄)
ρ[k4]−→
1

(0, 0̄⊕ δ, 0̄⊕ δ, 0),

We mount the 5-round differential path to rounds 1-5 of the 6 rounds. In the
rest of the section, we give the attack algorithm.

The Key Recovery Attack. We choose 296 pairs of plaintext with difference
(0̄, 0, 0, 0̄), then there are 4 right pairs. The output difference of the 5-th round
for a right pair is (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), so the difference of the ciphertext should
be (V1, V1 ⊕ V2, V1 ⊕ V2, V2), where V1, V2 are non-zero 32-bit words. We use
this to sieve the ciphertext pairs, and there will be 296 · 2−64 = 232 pairs left.
Furthermore, the input difference of the 6-th round is (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), the
number of possible output difference values given the input difference 0̄ ⊕ δ for
G1 or G2 is about 228.56. So there are 232 · 2(28.56−32)×2 = 225.12 pairs satisfying
the output difference.

For each of 225.12 pairs, we recover the key as Subsect. 4.2. Calculate the 32-bit
words k6

′
1 , k6

′
2 respectively, and increase the counter corresponding to (k6

′
1 , k6

′
2 )

by 1. For G1 and G2, the number of pairs with input difference 0̄ ⊕ δ and any
given output difference is at most 214.28, so the maximum count per counted
pair of the wrong subkey words will be 214.28 ·214.28 = 228.56. The signal-to-noise
ratio is :

S/N =
p · 2k
α · β =

2−94 × 264

2−64−6.88 × 228.56
= 210.32.

According to [12], the success probability is

Ps =

∫ ∞

−
√

μS/N−Φ−1(1−2−a)√
S/N+1

Φ(x)dx = 0.9686,

where a = 64 is the number of subkey bits guessed, μ is the number of right
pairs and μ = 4.

The data complexity of the attack is 296 chosen plaintexts, which is dominant
the time complexity. We need 2·214.28 ·225.12 = 240.40 XOR operations and 214.28 ·
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Table 2. Summary of the Attacks on MMB

#Rounds Type Time Data Memory Source

3 LC 2126 EN 2114.56 KP - [13]
4 SQ 2126.32 EN 234 CP 266 [13]
6 DC 2118 EN 2118 CP 266 [13]

6 SW 240EN 239 ACP 218 this paper
6 SR 266.5 EN 266.5 CP 270.5 this paper
6 DC 296 EN 296 CP 266 this paper
7 DC 296 EN 296 CP 266 this paper

LC: Linear Cryptanalysis; DC: Differential Cryptanalysis.
SQ: Square Attack; SW: Sandwich Attack; SR: Rectangle-like Sandwich Attack.
EN: MMB Encryption.
KP: Known Plaintexts; CP: Chosen Plaintexts; ACP: adaptive chosen Texts.

214.28 · 225.12 = 253.68 counts, equivalent to 243 MMB encryptions to recovery
the 64-bit subkey. The memory complexity is 264 64-bit counters, equivalent to
266 bytes. There are 4 values for 64 bits of the key, and the rest 64 bits can be
recovered by exhaustive search.

6.2 Differential Attack of MMB+

If we call the 7-round version of MMB as MMB+, we show that MMB+ can
also be broken with the same complexity of the 6-round differential attack. Note
that in the above subsection, we only use 5 rounds out of the 6-round differential
path, and the probability of the 5-round path is the same as the 6-round path.
So if we use the 6-round differential path, we can also attack MMB+ by the
same manner described in the above subsection. It means that even if MMB has
7 rounds it is still vulnerable to the differential attack.

7 Conclusion

In this paper, we construct a 5-round sandwich distinguisher for MMB with high
probability 1. With the distinguisher, we recover the 128-bit key of MMB with
239 adaptive chosen plaintexts and ciphertexts, 240 MMB encryptions. On this
bases, we present a rectangle-like sandwich attack to MMB, with 266.5 chosen
plaintexts, 266.5 MMB encryptions and 270.5 bytes memory. Besides, we improve
the differential attack on MMB in [13]. The data complexity is 296 chosen plain-
texts, the time complexity is 296 MMB encryptions and the memory complexity
is 266 bytes. We summarize the results on MMB in Table 2.
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