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Abstract. In this paper, we study a boomerang attack approach on
MD4-based hash functions, and present a practical 4-sum distinguisher
against the compression function of the full 5-pass HAVAL. Our ap-
proach is based on the previous work by Kim et al., which proposed the
boomerang distinguisher on the encryption mode of MD4, MD5, and
HAVAL in the related-key setting. Firstly, we prove that the differential
path for 5-pass HAVAL used in the previous boomerang distinguisher
contains a critical flaw and thus the attack cannot work. We then search
for new differential paths. Finally, by using the new paths, we mount
the distinguisher on the compression function of the full 5-pass HAVAL
which generates a 4-sum quartet with a complexity of approximately
211 compression function computations. As far as we know, this is the
first result on the full compression function of 5-pass HAVAL that can be
computed in practice. We also point out that the 4-sum distinguisher can
also be constructed for other MD4-based hash functions such as MD5,
3-pass HAVAL, and 4-pass HAVAL. Our attacks are implemented on a
PC and we present a generated 4-sum quartet for each attack target.

Keywords: boomerang attack, 4-sum distinguisher, hash, HAVAL.

1 Introduction

Hash functions are taking important roles in various aspects of the cryptography.
After the breakthrough by Wang et al. [26,27] and through the SHA-3 competi-
tion [20], cryptanalysis against hash functions have been improved significantly.

The boomerang attack, which was proposed by Wagner [22], is a tool for the
cryptanalysis against block-ciphers. At FSE2011, Biryukov et al. applied the
boomerang attack for hash functions, and showed that a zero-sum distinguisher
could be constructed on them [3], where zero-sum is a set of messages whose
XOR is 0 and the XOR of their corresponding outputs is also 0. Lamberger and
Mendel independently applied the boomerang attack on SHA-2 and obtained
a significant improvement on the 4-sum distinguisher against its reduced-step
compression function [10], where a k-sum is a set of k paired initial-values and
messages such that the XOR of their outputs is 0. It seems that the boomerang
attack is potentially very powerful against hash functions, and thus more investi-
gation is required to understand their impact deeply. Note that at CRYPTO2007,
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Joux and Peyrin proposed an (amplified) boomerang attack for SHA-1 [7]. They
used the idea of the boomerang attack for the message modification technique
in the collision attack, which the purpose is different from our research.

The boomerang attack on hash functions does not always discuss the security
as the hash function. As done in [10], it often discusses the security of the
compression function or the internal block-cipher. Although they do not impact
to the security of the hash function immediately, such analyses are useful from
several viewpoints; 1) The progress of the cryptanalysis, in other words, the
security margin can be measured, 2) The attack could be used as a tool for
different purposes in the future, e.g., a pseudo-collision attack on MD5 [4]. 3)
The attack on a building-block may invalidate the security proof for the hash
function. Specifically, hash functions using the PGV modes tend to have the
reduction security by assuming the ideal behavior of the internal block-cipher.

MD4, which was proposed by Rivest in 1990 [13], is a hash function that is
used as a base of various hash functions. MD4 has an interesting property in its
message expansion. The sketch of its computation is as follows;

– Divide an input message block M into several message words m0,
m1, . . . ,mNS−1.

– Iteratively apply a round function NR times, where the round function con-
sists of NS steps.

– For NS steps in each round, each of m0 to mNS−1 is used exactly once.
– The order of message words, in other words, the permutation of the message-

word index may change for different rounds.

We call this type of the message expansion message-words permutation. MD4,
MD5 [14], and HAVAL [32] are examples using the message-words permutation.

MD4, MD5, and HAVAL are now known to be vulnerable against various
attacks. For example, Van Rompay et al. found collisions of 3-pass HAVAL in
2003 [21], and Wang et al. found collisions of MD4, MD5, and 3-pass HAVAL in
2004 [25,27]. The complexity of collision attacks were optimized to 2 for MD4
[18], 210 for MD5 [29], 27 for 3-pass HAVAL [19,24], 236 for 4-pass HAVAL
[28,31], and 2123 for 5-pass HAVAL [31], where the unit of the complexity is one
computation of the compression function. Note that, only the theoretical result
is known for 5-pass HAVAL, and thus real collisions have not been found yet.

Theoretical preimage attacks are also presented. For example, [1,6,11] for
MD4, [17] for MD5, [2,16] for 3-pass HAVAL, and [16] for 4-pass HAVAL. For
5-pass HAVAL, only the attack on 158-steps out of 160-steps is known [15].

Several researchers evaluated the security of the building block for these hash
functions. Examples which analyzed full steps are [4,5] for MD5 and [8,9,30] for
HAVAL. Among them, the work by Kim et al. [8,9], which applied the boomerang
attack to distinguish their encryption modes from a random permutation in
the related-key setting, is very powerful. They successfully distinguished these
encryption modes with 26 queries for MD4, 211.6 queries for MD5, and 29.6

queries for 4-pass HAVAL. These attacks were implemented and an example of
the boomerang quartet was presented for MD5. In addition, Kim et al. claimed
that 5-pass HAVAL could also be distinguished with 261 queries and the attack
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Table 1. Comparison of the attack complexity

Attack Target MD4 MD5 HAVAL-3 HAVAL-4 HAVAL-5
(Time Ref.) (Time Ref.) (Time Ref.) (Time Ref.) (Time Ref.)

Collision Hash Function 2 [18] 210 [29] 27 [19,24] 236 [28,31] 2123 [31]
Boomerang Block-Cipher 26 [9] 211.6 [9] - 29.6 [9] 261 [9]
Boomerang Compress. Func. - 210 Ours 24 Ours 211 Ours 211 Ours

was partially verified by implementing it for reduced-round variants. Note that
although Kim et al. pointed out the vulnerability of the MD4-based structure
against the boomerang attack, the analysis on 5-pass HAVAL is still infeasible.

Our Contributions

In this paper, we study the boomerang attack approach on MD4-based hash
functions. We use the differential path for the boomerang attack to construct
the 4-sum distinguisher on the compression function, while Kim et al. [9] used the
boomerang path to distinguish its encryption mode from a random permutation.
For both of our approach and the one in [9], the core of the attack is the existence
of the differential path suitable for the boomerang attack. However, because the
attack scenario is different, the procedure to optimize the attack is quite different.
We first collect various techniques for the boomerang attack on hash functions
from several papers (mainly [3,9,10]), and summarize the attack framework.

We then revisit the differential path for the boomerang attack against
5-pass HAVAL in [9]. On the contrary to the authors’ claim, we prove that the
differential path in [9] contains a critical flaw and thus the attack cannot work.

We then search for new differential paths for the boomerang attack and con-
struct the attack procedure optimized for attacking the compression function.
Finally, by using the new paths, we mount the distinguisher on the full com-
pression function of 5-pass HAVAL which generates a 4-sum quartet with a
complexity of 211 compression function computations. The attack complexity is
summarized in Table 1. As far as we know, this is the first result on the full
5-pass HAVAL that can be computed in practice. The attack is implemented on
a PC and we present a generated 4-sum quartet.

Note that as long as the good boomerang differential path is available, 4-sum
distinguishers can be constructed on the compression function. Then, with the
differential paths in [9], we attack MD5, 3-pass HAVAL, and 4-pass HAVAL with
a complexity of 210, 24 and 211 compression function computations, respectively.
We present generated 4-sums in Appendix B.

Paper Outline

We describe the specification of HAVAL and clarify the terminology in Sect. 2.
We summarize previous work in Sect. 3. We give a summary of techniques for
the boomerang attack on hash functions in Sect. 4. We demonstrate a dedicate
attack on 5-pass HAVAL in Sect. 5. Finally, we conclude this paper in Sect. 6.
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Table 2. Word-wise rotation φx,y of HAVAL

x6 x5 x4 x3 x2 x1 x0 x6 x5 x4 x3 x2 x1 x0 x6 x5 x4 x3 x2 x1 x0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
φ3,1 x1 x0 x3 x5 x6 x2 x4 φ4,1 x2 x6 x1 x4 x5 x3 x0 φ5,1 x3 x4 x1 x0 x5 x2 x6

φ3,2 x4 x2 x1 x0 x5 x3 x6 φ4,2 x3 x5 x2 x0 x1 x6 x4 φ5,2 x6 x2 x1 x0 x3 x4 x5

φ3,3 x6 x1 x2 x3 x4 x5 x0 φ4,3 x1 x4 x3 x6 x0 x2 x5 φ5,3 x2 x6 x0 x4 x3 x1 x5

- - φ4,4 x6 x4 x0 x5 x2 x1 x3 φ5,4 x1 x5 x3 x2 x0 x4 x6

- - - - φ5,5 x2 x5 x0 x6 x4 x3 x1

Table 3. Message-words permutation. The first column shows the round numbers.

index for each round
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27
3 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2
4 24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3 22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13
5 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10 5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

2 Preliminaries

2.1 Specification of HAVAL

HAVAL [32] uses a narrow-pipe Merkle-Damg̊ard structure. An input message
M is padded to be a multiple of the block-size (1024 bits), and then divided
into message blocks (M0,M1, . . . ,ML−1). Then, chaining variable Hi starting
from the pre-specified initial value H0 is iteratively updated by the compression
function CF; Hi+1 ← CF(Hi,Mi), for i = 0, 1, . . . , L − 1. Finally, HL is the
hash value of M . HAVAL can produce a hash value of smaller sizes by using the
output tailoring function. Because our attack target is the compression function,
we omit the description for the padding and the output tailoring function.

The size of chaining variables is 256 bits. Inside the compression function,
Mi is divided into thirty-two 32-bit message words (m0,m1, . . . ,m31). Three
algorithms are prepared for HAVAL; 3-pass, 4-pass, and 5-pass. The number
of rounds for 3-pass, 4-pass, and 5-pass are 3 rounds (96 steps), 4 rounds (128
steps), and 5 rounds (160 steps), respectively.

Let us denote a 256-bit state before step j by pj and denote pj by eight 32-bit
variables Qj−7‖Qj−6‖Qj−5‖Qj−4‖Qj−3‖Qj−2‖Qj−1‖Qj. The step function Rj

computes Qj+1 as follows:

Qj+1 ← (Qj−7 ≫ 11) + (Φj(φx,y(Qj−6, Qj−5, . . . , Qj)) ≫ 7) +mπ(j) + kj ,

where φx,y is a word-wise rotation for x-pass HAVAL in round y defined in
Table 2, and π(j) is shown in Table 3.

2.2 Technical Terminologies

In this paper, we discuss differences of several computations. Let us consider the
two computations Hi+1 ← CF(Hi,Mi) and H ′i+1 ← CF(H ′i ,M

′
i). The message
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difference, input chaining-variable difference, and output difference are defined
as Mi ⊕M ′i , Hi ⊕H ′i, and Hi+1 ⊕H ′i+1, respectively. Similarly, the difference of
two computations is defined as XOR of corresponding states.

The transition of the difference of internal state is described by several terms
such as differential path, differential trail, and differential characteristic. As far
as we know, the term differential characteristic was firstly used in the context of
the symmetric-key cryptography. However, in the context of the hash function
analysis, the term differential path seems to be used more frequently e.g., [26,27].
To follow this convention, in this paper, we use the term differential path.

When the input and output differences are fixed, we often consider all possible
differential paths connecting them. A set of all possible differential paths is called
a differential or multiple-paths. In this paper, we use the term differential.

3 Related Work

3.1 Boomerang Attack

The boomerang attack was proposed by Wagner [22] as a tool for attacking
block-ciphers. The attack is a chosen-plaintext and adaptively chosen-ciphertext
attack. It can be regarded as a type of the second-order differential attack. In
this attack, the attacker divides the target cipher E into two parts E1 and E2

such that E(·) = E2 ◦ E1(·). Let us denote the differential for E1 by Δ → Δ∗

and for E2 by ∇∗ → ∇. The differences Δ,Δ∗,∇∗, and ∇ are chosen by the
attacker at offline. The attack procedure is as follows;

1. The attacker first prepares a plaintext P 1 and compute P 2 ← P 1 ⊕Δ.
2. P 1 and P 2 are passed to the encryption oracle and the attacker obtains the

corresponding ciphertexts C1 and C2.
3. The attacker prepares the paired ciphertexts C3 ← C1⊕∇ and C4 ← C2⊕∇,

and passes them to the decryption oracle.
4. Finally, the attacker checks whether or not P 3 and P 4 has the difference Δ.

Assume that the probability for the differentials for E1 and E2 are p and q,
respectively. Then, Pr[P 3 ⊕ P 4 = Δ] is expressed as p2q2. In the end, we can
conclude that if E can be divided into two parts with a high-probability differ-
ential, the boomerang attack is very efficient.

For a long time, it was assumed that the differentials for E1 and E2 can be
chosen independently. In 2009, Murphy pointed out that this was not sufficient,
and discovered several examples of this case for DES and AES [12].

3.2 Boomerang Distinguishers for Hash Functions

In 2011, Biryukov et al. pointed out that the zero-sum distinguisher can be
constructed by applying the boomerang attack on hash functions [3]. In the
boomerang attack, P 1⊕P 2 = Δ and P 3⊕P 4 = Δ. Therefore, P 1⊕P 2⊕P 3⊕P 4 =
Δ ⊕ Δ = 0. Similarly, C1 ⊕ C2 ⊕ C3 ⊕ C4 = ∇ ⊕ ∇ = 0. Hence, by starting
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from a pair of plaintexts P 1 and P 2 such that P 1 ⊕ P 2 = Δ, the attacker finds
a zero-sum quartet with a complexity of (p2q2)−1. [3] considered the attack
starting from the border state between E1 and E2, and optimized the attack
by applying the message modification technique [26,27]. [3] also computed the
complexity to find a zero-sum in a random function for n-bit output. They
explained that by starting from two paired plaintexts (resp. ciphertexts) with
pre-specified differences, the complexity to find a zero-sum quartet of ciphertexts
(resp. plaintexts) is 2

n
2 . Note that [3] considered the differential path rather

than the differential for their attack. In fact, to apply the message modification
technique, considering a differential path is much easier than a differential. Also
note that [3] considered the observation by Murphy [12]. They had to give up
combining the best differential paths for E1 and E2 due to their dependency.

In 2011, Lamberger and Mendel independently applied the boomerang 4-sum
for the SHA-2 compression function [10]. They claimed that the complexity for
finding a 4-sum quartet in a random function without any limitation on the
input is 2

n
3 by using the generalized birthday attack [23].

3.3 Boomerang on Encryption Modes of MD4, MD5, and HAVAL

Kim et al. applied the boomerang attack approach on the encryption modes of
MD4, MD5, and HAVAL in the related-key model [9]. They proposed boomerang
distinguishers with 26 queries for MD4, 211.6 queries for MD5, and 29.6 queries for
4-pass HAVAL. These attacks were verified by the machine experiment. Further-
more, they proposed differential paths for 5-pass HAVAL, and claimed that the
boomerang distinguisher with 261 queries was possible. They also claimed that
this distinguisher was partially verified with an experiment on a reduced-round
variant which was truncated for the first and the last several rounds.

Our attack framework is close to the one discussed in Sect. 3.2, but use the
differential paths in [9] as a tool. In fact, we use the same paths as [9] for MD5
and 4-pass HAVAL. However, we need new differential paths for 5-pass HAVAL
due to the flaw which we will point out in Sect. 5.

4 Summary of Boomerang Attack on Hash Function

Because various techniques for the boomerang attack on hash functions are dis-
tributed in several papers, we summarize the attack framework. Therefore, most
of the contents in this section were originally observed by [3,9,10].

The attack can be divided into five phases; 1) message differences (ΔM ),
2) differential paths and sufficient conditions (DP), 3) contradiction between
two paths (CP), 4) message modification (MM ), and 5) amplified probability
(AP). We explain each phase with several observations specific to message-words
permutation hash functions.

4.1 Message Differences (ΔM )

A generic strategy for an NR-round hash function is illustrated in Fig. 1. For
NR = 4, the first two and last two rounds are regarded asE1 and E2, respectively.
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Fig. 2. Message search procedure

For E1, we search for the message word which appear in an early step in the
first round and in a late step in the second round. Then, the message difference
is propagated until the beginning and end of E1. The same strategy is applied
for E2. Because the differential paths for both of E1 and E2 are short, they are
satisfied with high probability even without the message modification technique.

For NR = 5, we extend the differential paths for the 4-round attack by a half
more round. As shown in Fig. 1, the paths become long and hard to satisfy by
the naive search. Wang et al. showed that the differential path for one round
can be satisfied for free by the message modification technique [26,27]. Hence,
with these techniques, 5 rounds can be attacked. In this paper, we denote the
differential path between the end of round 2 and the beginning of round 4 by
inside path, and the differential paths in round 1 and round 5 by outside paths.

4.2 Differential Paths and Sufficient Conditions (DP)

Based on the strategy in Fig. 1, we construct differential paths and conditions for
chaining variables. These procedures are basically the same as the ones for pre-
vious collision attacks. We only list the differences of the path search procedure
between the collision and boomerang attacks.

– If the feed-forward operation is performed by a modular addition (H =
P�C), the attacker should introduce the additive difference among a quartet.
in such a case, the difference for the quartet is defined as (H4�H3)� (H2�
H1) = H1 �H2 �H3 �H4.

– The number of conditions must be minimized because setting x more condi-
tions will increase the complexity by a factor of 22x rather than 2x.

– In the middle round, we apply the message modification, and thus even
complicated paths can be satisfied. However, by taking into account the
Phase CP , the paths should be simplified around the border of two paths.
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– If active-bit positions are concentrated around the MSB in both of E1 and E2

for the optimization, the risk of the contradiction of two paths will increase.

4.3 Contradiction between Two Paths (CP)

AsMurphy pointed out [12], differential paths forE1 andE2 are not independent,
and thus we need to check that any contradiction does not occur. As far as we
know, no systematic method is known to check the contradiction. However, it
can be said that the attacker at least needs to check the following conditions.

Condition 1. E1 and E2 do not require to fix the same bit to different values.
Condition 2. E1 (resp. E2) does not require to fix the value of an active bit

for E2 (resp. E1).

The first case is obviously in contradiction. In the second case, even if the condi-
tion is satisfied between one pair, say P 1 and P 2, the condition is never satisfied
for the other pair P 3 and P 4 due to the difference between P 1 and P 3.

As discussed in Sect. 4.2, if many bits are activated or active-bit positions
are concentrated around MSB, the contradiction comes to occur more easily.
Regarding HAVAL, due to the large word-size (32 bits) and the different rotation
constants in forward and backward, the contradiction is less likely to occur. If
the word size is smaller or if the similar rotation constants are used such as
BLAKE, the contradiction seems to occur with a high probability.

If the contradiction occurs, rotating the path for either E1 or E2 by several
bits may avoid the contradiction (though the efficiency becomes worse).

4.4 Message Modification (MM )

Let us denote a quartet of texts at step j forming the boomerang structure
by (p1j , p

2
j , p

3
j , p

4
j). The difference for E1 is denoted by Δ, which is considered

between p1 and p2 and between p3 and p4. The difference for E2 is denoted
by ∇, which is considered between p1 and p3 and between p2 and p4. We call
conditions on the path for E1 Δ-conditions, and for E2 ∇-conditions.

The message search procedure is described in Fig. 2. The attack starts from
the state at the border between E1 and E2. Let us denote this step by b. First,
we set a chaining-variables quartet (p1b , p

2
b , p

3
b , p

4
b) so that both of Δ- and ∇-

conditions are satisfied. We then perform the backward computation for E1 and
forward computation for E2 as shown in Alg. 1 and Alg. 2, respectively.

These procedures are computed until the inside path is ensured to be satisfied
with probability of 1. This often occurs before all message words are fixed by
the above procedure. Therefore, towards the outside paths, we do as follows.

– Assume that several message-words are not determined even after the inside
path are ensured. Then, we never modify the message-words and chaining-
variables related to the inside path, and compute the outside paths by ran-
domly choosing the message-words not used for the inside path.

This enables us to iterate the outside computation with keeping the inside path
satisfied. Hence, the complexity for satisfying the inside path can be ignored.
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Algorithm 1. Message search procedure for step j in the backward direction

Input: Inside differential path and a chaining-variables quartet (p1j+1, p
2
j+1, p

3
j+1, p

4
j+1)

Output: A message-words quartet (m1
π(j),m

2
π(j), m

3
π(j),m

4
π(j)) and a chaining-

variables quartet (p1j , p
2
j , p

3
j , p

4
j)

1: Choose the value of p1j to satisfy conditions (Δ-conditions) for p1j . Then, compute
m1

π(j) by solving equation Rj .

2: Compute m2
π(j), m

3
π(j), and m4

π(j) with the specified differences ΔM and ∇M .

3: Compute p3j with m3
π(j) and check if all conditions (Δ-conditions) for p3j are satis-

fied. If so, compute p2j and p4j . If not, repeat the procedure with different p1j .

Algorithm 2. Message search procedure for step j in the forward direction

Input: Inside differential path and a chaining-variables quartet (p1j , p
2
j , p

3
j , p

4
j )

Output: A message-words quartet (m1
π(j),m

2
π(j), m

3
π(j),m

4
π(j)) and

a chaining-variables quartet (p1j+1, p
2
j+1, p

3
j+1, p

4
j+1)

1: Choose the value of p1j+1 to satisfy conditions (∇-conditions) for p1j+1. Then, com-
pute m1

π(j) by solving Rj .

2: Compute m2
π(j), m

3
π(j), and m4

π(j) with the specified differences ΔM and ∇M .

3: Compute p2j+1 and check if all conditions (∇-conditions) for p2j+1 are satisfied. If
so, compute p3j+1 and p4j+1. If not, repeat the procedure with different p1j+1.

4.5 Amplified Probability (AP)

Amplified probability is the probability that each outside path results in the
4-sum. We consider the differential to estimate this probability. This is often
estimated by an experiment. Alg. 3 shows how to compute the amplified prob-
ability APBack for the first round (from step j − 1 to step 0). The amplified
probability for the final round APFor is similarly computed. Note that as long
as the operation (usually either XOR or the modular addition) used to com-
pute the 4-sum in this experiment and used in the feed-forward is identical, the
success probability after the feed-forward is preserved as APBack ×APFor.

5 4-Sum Distinguisher on 5-Pass HAVAL

We start from pointing out the flaw of the previous differential path (Sect. 5.1),
and construct new differential paths (Sect. 5.2). We then explain the attack
based on the discussion in Sect. 4 and finally show the experimental results.

Algorithm 3. Evaluation of the amplified probability

Input: Outside differential path
Output: Amplified probability of the outside differential path
1: Randomly choose a chaining-variables quartet (p1j , p

2
j , p

3
j , p

4
j) and message-words

used in steps j − 1 to 0 with appropriate message differences ΔM and ∇M .
2: Compute this quartet until step 0 and check whether the 4-sum is constructed.
3: Repeat the above for an enough amount of times, and calculate the probability.
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Table 4. Differential path and conditions for 5-pass HAVAL [9]. ez represents that
only z-th bit has a difference.

Output diff. at step j Equation for Φj Conditions on 20th bit
j (ΔQj−7, . . . , ΔQj) Φj(φ5,3(Qj−6, . . . , Qj)) for Φj = 0

(0,0,0,0,0,0,0,e20)
70 (0,0,0,0,0,0,e20,0) Φ70( Q68, Q64, ΔQ70, Q66, Q67, Q69, Q65) Q69 = 0
71 (0,0,0,0,0,e20,0,0) Φ71( Q69, Q65, Q71, Q67, Q68, ΔQ70, Q66) Q67Q68 ⊕Q71 = 0
72 (0,0,0,0,e20,0,0,0) Φ72(ΔQ70, Q66, Q72, Q68, Q69, Q71, Q67) Q68 = 0
73 (0,0,0,e20,0,0,0,0) Φ73( Q71, Q67, Q73, Q69, ΔQ70, Q72, Q68) Q72Q69 ⊕Q67 = 0
74 (0,0,e20,0,0,0,0,0) Φ74( Q72, Q68, Q74, ΔQ70, Q71, Q73, Q69) Q73 ⊕Q71 ⊕Q72Q69 = 0
75 (0,e20,0,0,0,0,0,0) Φ75( Q73, Q69, Q75, Q71, Q72, Q74, ΔQ70) Q71 = 1
76 (e20,0,0,0,0,0,0,0) Φ76( Q74, ΔQ70, Q76, Q72, Q73, Q75, Q71) Q73 = 0
77 (0,0,0,0,0,0,0,e9) Φ77( Q75, Q71, Q77, Q73, Q74, Q76, Q72) -

5.1 Proving Flaw of Previous Differential Path

We point out that the differential path for the third round in [9] cannot work.
Note that the verifying experiment by [9] is for the reduced-round variants which
are truncated for the first and the last several rounds [9, Sect. 4.2]. Hence, our
claim does not contradict to the partial verification by [9].

The differential path during 8 steps (steps 70-77) in the third round is shown in
Table 4. The authors claimed that the path could be satisfied with a probability
of 2−7. The necessary and sufficient condition for satisfying this path with a
probability of 2−7 is that the difference in Q70 will not propagate through Φj .
Φj for these steps is a bit-wise Boolean function expressed as

Φj(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x3 ⊕ x0.

Conditions to achieve the path were not explained in [9]. We first derive the nec-
essary and sufficient conditions to achieve the path, which are shown in Table 4.

Proof. For steps 70, 75, and 76, we have conditions Q69 = 0, Q71 = 1, and
Q73 = 0. Then, the left-hand side of the condition for step 74 becomes 0 ⊕ 1 ⊕
(Q72 · 0) = 1, which contradicts to the condition that this value must be 0. �

We verified the above proof with a small experiment;

1. Randomly choose the values of Q63 to Q70 and mπ(70) to mπ(77).
2. Set Q′z ← Qz for z = 63, 64, . . . , 70. Then computeQ′70 ← Q70⊕0x00100000.
3. Compute until step 77 and check whether or not the path is satisfied.

With 230 trials, the differential path in Table 4 was not satisfied. This contradicts
to the claim in [9], which the path is satisfied with a probability 2−7.

5.2 Constructing New Differential Paths

We reconstruct the attack based on the strategy explained Sect. 4.1. For Phase
ΔM , we confirmed that the message differences in [9] (Δm2 = 0x80000000,
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Table 5. Boomerang path construction for 5-pass HAVAL

index for each round
1 0 1 2© 3 4© 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

← Δ constant
2 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4© 8 30 3 21 9 17 24 29 6 19 12 15 13 2© 25 31 27

constant Δ →
3 19 9 4© 20 28 17 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2©

message modification message modification
4 24 4© 0 14 2© 7 28 23 26 6 30 20 18 25 19 3 22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13
← ∇ constant

5 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10 5 9 14 30 18 6 28 24 2© 23 16 22 4© 1 25 15
constant ∇ →

Δmx = 0 for x �= 2, ∇m4 = 0x80000000,∇mx = 0 for x �= 4) match the
strategy in Fig. 1, and thus we use the same message differences. This is described
in Table 5.

For Phase DP , we need to specify how the differences will propagate to
chaining variables. We describe our path search algorithm in Appendix A. The
searched paths and conditions for chaining variables are given in Table 6.

For Phase CP , the overlap of the conditions and active-bit positions in Ta-
ble 6 must be checked. According to Table 6, the conditions 1 and 2 described in
Sect. 4.3 are satisfied. Note that as long as the step function is similar to MD4,
MD5, or HAVAL, the active bit positions and conditions for Δ and ∇ tend to
be different due to the asymmetric rotation constants in forward and backward
directions. In fact, for all differential paths in [9] and ours, the best differential
paths which were independently computed could be combined.

5.3 Attack Procedure

In Phase MM , we optimize the attack complexity based on the strategy in
Sect. 4.4. The detailed procedure is given in Alg. 4.

As shown in Table 5 the inside path starts from step 60 and ends at step
97. Several words (w2, w25, w31, w27, w24, w4) are used twice and we need a spe-
cial attention. However, as shown in Table 6, conditions are set only on Q58 to
Q93, and thus, the second-time use of these words outside of Q58 to Q93 always
succeed for any value. Hence, these values are chosen for satisfying conditions
for Q58 to Q93. After we satisfy all conditions for Q58 to Q93, 4 message words
w19, w11, w5, and w2 are still unfixed. Therefore, we can iterate the outside path
search without changing the inside path up to 2128 times, which is enough to
satisfy the outside paths.

The complexity of the message modification for satisfying the inside path
(up to Step 3 in Alg. 4) is negligible. Hence, the attack complexity is only the
iterative computations for satisfying the outside paths (Steps 4–11 in Alg. 4).
This complexity is evaluated by considering the amplified probability in Phase
AP , which will be explained in the following section.
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Algorithm 4. Attack procedure with the message modification

Input: Entire differential paths and conditions
Output: A quartet of (Hi−1,Mi−1) satisfying the 4-sum property
1: Randomly choose the values of p180, p

2
80, p

3
80 and p480 so that the differences and

conditions (both of Δ and ∇) in Table 6 can be satisfied. Note that, choosing px80
means choosing eight 32-bit variables Qx

80, Q
x
79, Q

x
78, Q

x
77, Q

x
76, Q

x
75, Q

x
74, and Qx

73.

2: Apply the backward computation in Alg. 1 to obtain p165, p
2
65, p

3
65 and p465. This

fixes chaining variables up to Qx
58 and message words from mπ(79) to mπ(65).

3: Apply the forward computation in Alg. 2 to obtain p193, p
2
93, p

3
93 and p493. This fixes

chaining variables up to Qx
93 and message words from mπ(80) to mπ(92).

//End of the message modification for the inside path

4: while a 4-sum quartet of the compression function output is not found do
5: Randomly choose the values of message-words quartet for mπ(93) = m11,

mπ(94) = m5, and mπ(95) = m2 with the message difference on m2, and compute
a chaining-variables quartet until p198, p

2
98, p

3
98 and p498.

6: Randomly choose the values of message-words quartet for mπ(64) = m19, and
compute a chaining-variables quartet until p160, p

2
60, p

3
60 and p460.

7: Compute a chaining-variables quartet until p10, p
2
0, p

3
0 and p40 in backward and

p1160, p
2
160, p

3
160 and p4160 in forward.

8: if (p10 � p1160)� (p20 � p2160)� (p30 � p3160)� (p40 � p4160) = 0 then
9: return (p10, p

2
0, p

3
0, p

4
0) and (M1,M2,M3,M4)

10: end if
11: end while

Algorithm 5. Differential path search algorithm for E1 from step 60 to step 79

Input: Message difference ΔM , where Δm2 = 0x80000000 and Δmx = 0 for x �= 2
Output: Differences of each chaining variable between step 60 and step 79
1: Initialize tempHD← 0
2: for x = 53 to 60 do
3: Qx ← a randomly chosen value
4: Q′

x ← Qx

5: end for
6: for x = 60 to 79 do
7: mπ(x) ← a randomly chosen value
8: m′

π(x) ← mπ(x) ⊕ΔM
9: Compute Qx+1 and Q′

x+1

10: tempHD← tempHD+HW (Qx+1 ⊕Q′
x+1)

11: if tempHD > 10 then
12: goto step 1
13: end if
14: end for
15: print Qy ⊕Q′

y for y = 61, 62, . . . , 80
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Table 6. New differential paths and conditions for 5-Pass HAVAL. [z] = 0, [z] = 1 are
conditions on the value of z-th bit of the chaining variable. For the first and last several
steps, we do not fix a particular difference for the amplified probability. The difference
is considered in XOR. In some cases, we need conditions on the sign of the difference.
[z] = 0+, [z] = 1− mean the value is first fixed to 0 (resp. 1) and change to 1 (resp. 0)
after the difference is inserted.

Path for E1 with Δm2 = 0x80000000 Path for E2 with ∇m4 = 0x80000000

j ΔQj Conditions on Qj Δm j ∇Qj Conditions on Qj ∇m mπ(j)

-7 AP AP -7 m1
-6 AP AP -6 m0
-5 AP AP 0x80000000 -5 m2
-4 -4 m3
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
52 52 m13
53 0x80000000 53 m2
54 54 m25
55 55 m31
56 56 m27
57 57 m19
58 [31]=0 58 m9
59 [31]=0 59 m4
60 [31]=0 60 m20
61 0x80000000 61 m28
62 [31]=0 62 m17
63 [31]=0 63 m8
64 [31,24]=0 64 m22
65 [24]=0 65 m29
66 [24,20]=0 66 m14
67 0x01000000 [20]=0 67 m25
68 [24,20]=0 68 m12
69 0x00100000 [24]=0 69 m24
70 [24,20,17]=0 70 m30
71 [20,17]=0 71 m16
72 [24,20,17]=0 72 m26
73 0x00020000 [17]=1− 73
74 [20,17]=0 74 0x00000001 [0]=1−
75 [17,9]=0 75 [18]=0
76 [17,9]=0 76 [18]=0 start
77 0x00000200 [9]=0+ 77 [18,0]=0 step
78 [17,10,9]=0 78 0x00040000 [21]=0,[18]=0+
79 0x00000400 [10]=1− 79 [21]=0,[18]=1
80 80 [21,18]=0

81 81 [21,18,14]=0 m31
82 82 0x00200000 [14]=0 m15
83 83 [21]=1,[14]=0 m7
84 84 0x00004000 [21]=0 m3
85 85 [21]=0,[14]=1 m1
86 86 [14]=0 m0
87 87 [14,10]=0 m18
88 88 [10]=0 m27
89 89 [10]=0 m13
90 90 0x00000400 m6
91 91 [10]=1 m21
92 92 [10]=1 m10
93 93 [10]=1 m23
94 94 m11
95 95 m5
96 96 m2
97 97 m24
98 98 0x80000000 m4
99 99 m0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
156 156 m22
157 157 0x80000000 AP 0x80000000 m4
158 158 AP AP m1
159 159 AP AP m25
160 160 AP AP m15



14 Y. Sasaki

Table 7. Experimental results for the amplified probability

Direction Number of trials Number of obtained 4-sums Amplified probability

Back 1,000,000 53,065 2−4.24

For 1,000,000 37,623 2−4.73

Total 1,000,000 1,975 2−8.98

Table 8. An example of the boomerang quartet for the full 5-pass HAVAL

H1
i 0x6ad6913b 0x52831497 0x42e2afea 0x042171e8 0x05c66540 0xf6308a5d 0x69b242bb 0xfeadf2df

M1
i 0x55f408ea 0xade29473 0x5cd48f01 0x862fac29 0xb59b9103 0xdfe1dff3 0x44aaff68 0xa5716cc8

0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1a1d1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cb1 0xe6911e8d 0x5816e997 0x1a8fc1d3 0xc5dda128 0x43e5f428 0xcf1e861f 0xf5258b98

H1
i+1 0x50b484bf 0x9d28c720 0xc2a5ab4d 0x5aec2d4b 0x63659cae 0x0023f316 0xa02276be 0xeab5fb84

H2
i 0x6ad6913b 0x52831497 0x42e2afea 0x042171e8 0x05c66540 0xf6308e5d 0x69b242bb 0xfeae32df

M2
i 0x55f408ea 0xade29473 0xdcd48f01 0x862fac29 0xb59b9103 0xdfe1dff3 0x44aaff68 0xa5716cc8

0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1a1d1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cb1 0xe6911e8d 0x5816e997 0x1a8fc1d3 0xc5dda128 0x43e5f428 0xcf1e861f 0xf5258b98

H2
i+1 0xfa15769c 0x6ed1b19a 0x405b263b 0x57cd6359 0xd8688750 0xcdc3c9d3 0xa3dc7fd8 0x2e59f283

H3
i 0xb70b5251 0x851d041a 0x7a5f5fad 0x98626bb1 0x9d739cbc 0x67bc3181 0xe48e4cac 0xeeb57f26

M3
i 0x55f408ea 0xade29473 0x5cd48f01 0x862fac29 0x359b9103 0xdfe1dff3 0x44aaff68 0xa5716cc8

0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1a1d1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cb1 0xe6911e8d 0x5816e997 0x1a8fc1d3 0xc5dda128 0x43e5f428 0xcf1e861f 0xf5258b98

H3
i+1 0x9ce945d5 0xcfc2b6a3 0xfa225b10 0xef2d2714 0x7b12d42a 0x71af9a3a 0x1afe80af 0xdbbd87cb

H4
i 0xb70b5251 0x851d041a 0x7a5f5fad 0x98626bb1 0x9d739cbc 0x67bc3581 0xe48e4cac 0xeeb5bf26

M4
i 0x55f408ea 0xade29473 0xdcd48f01 0x862fac29 0x359b9103 0xdfe1dff3 0x44aaff68 0xa5716cc8

0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1a1d1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cb1 0xe6911e8d 0x5816e997 0x1a8fc1d3 0xc5dda128 0x43e5f428 0xcf1e861f 0xf5258b98

H4
i+1 0x464a37b2 0xa16ba11d 0x77d7d5fe 0xec0e5d22 0xf015becc 0x3f4f70f7 0x1eb889c9 0x1f617eca

4-sum 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Table 9. An example of the boomerang quartet for MD5

H1
i 0x7ad51bee 0x68a07529 0x5369e5f1 0x62f52251

M1
i 0x58df0f5e 0x678b3525 0x03105c08 0xa068f82a 0x21ead339 0xe6e2ea9c 0x5cf986e1 0x9890fd27

0xcf8a438f 0x2cecb915 0x44935dfe 0xf06f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H1
i+1 0x1de7b79a 0x6e573e2a 0x0ef900e3 0xc72985ef

H2
i 0xfad51bee 0x68a07529 0xd369e5f1 0xe2f52251

M2
i 0x58df0f5e 0x678b3525 0x83105c08 0xa068f82a 0x21ead339 0xe6e2ea9c 0x5cf986e1 0x9890fd27

0xcf8a438f 0x2cecb915 0x44935dfe 0xf06f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H2
i+1 0x03d5ae50 0x722a5685 0x361b13a1 0x75a3a89d

H3
i 0x97e364fe 0xb191e24c 0xdec0361f 0x6a8d3d9f

M3
i 0x58df0f5e 0x678b3525 0x03105c08 0xa068f82a 0x21ead339 0xe6e2ea9c 0x5cf986e1 0x9890fd27

0xcf8a438f 0x2cecb915 0x44935dfe 0x706f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H3
i+1 0x3af600aa 0xb748a94d 0x9a4f4f11 0xcec19f3d

H4
i 0x17e364fe 0xb191e24c 0x5ec0361f 0xea8d3d9f

M4
i 0x58df0f5e 0x678b3525 0x83105c08 0xa068f82a 0x21ead339 0xe6e2ea9c 0x5cf986e1 0x9890fd27

0xcf8a438f 0x2cecb915 0x44935dfe 0x706f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H4
i+1 0x20e3f760 0xbb1bc1a8 0xc17161cf 0x7d3bc1eb

4-sum 0x00000000 0x00000000 0x00000000 0x00000000
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Table 10. An example of the boomerang quartet for 3-pass HAVAL

H1
i 0x8af103dd 0x89952e4e 0xba8ba930 0xb1681125 0x8bf68d12 0x11f454da 0x31babeaf 0x1c684f37

M1
i 0x14c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0x56a25710 0x31381427 0x193906fa

0xa97fe484 0x9228f3e7 0x3d307061 0x7ea148a1 0xcf1cf1f5 0x2b250fb8 0xd874f573 0xb71f7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29

H1
i+1 0x9b18b769 0x01959420 0x480cea32 0x7c38cf17 0x70323bda 0xd46e06e9 0x09d05ae3 0xd315f8f6

H2
i 0x8af103dd 0x89952e4e 0xba8ba930 0xb1681125 0x8bf68d12 0x11f454da 0x31babeaf 0x1c684b37

M2
i 0x94c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0x56a25710 0x31381427 0x193906fa

0xa97fe484 0x9228f3e7 0x3d307061 0x7ea148a1 0xcf1cf1f5 0x2b250fb8 0xd874f573 0xb71f7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29

H2
i+1 0x2ab0c721 0xda378441 0x99789481 0xaf2db9cb 0x900971d1 0xdfa8ec61 0x122c330e 0xa77c26af

H3
i 0x6ca48418 0x6711d760 0x52670414 0x4dfe762f 0xf9bae1d5 0x7a9a2074 0x4518e6bf 0x6acec54d

M3
i 0x14c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0xd6a25710 0x31381427 0x193906fa

0xa97fe484 0x9228f3e7 0x3d307061 0x7ea148a1 0xcf1cf1f5 0x2b250fb8 0xd874f573 0xb71f7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29

H3
i+1 0x7ccc37a4 0xdf123d32 0xdfe84516 0x18cf3421 0xddf6909d 0x3d13d283 0x9d2e82f3 0x217c6f0c

H4
i 0x6ca48418 0x6711d760 0x52670414 0x4dfe762f 0xf9bae1d5 0x7a9a2074 0x4518e6bf 0x6acec14d

M4
i 0x94c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0xd6a25710 0x31381427 0x193906fa

0xa97fe484 0x9228f3e7 0x3d307061 0x7ea148a1 0xcf1cf1f5 0x2b250fb8 0xd874f573 0xb71f7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29

H4
i+1 0x0c64475c 0xb7b42d53 0x3153ef65 0x4bc41ed5 0xfdcdc694 0x484eb7fb 0xa58a5b1e 0xf5e29cc5

4-sum 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Table 11. An example of the boomerang quartet for 4-pass HAVAL

H1
i 0x564187b3 0x5af775fb 0x10136ca0 0x8a9ffa0c 0x3edeecd0 0xd2e74f6c 0x15576f1c 0x70de0eb7

M1
i 0x8bc2d93c 0xc9e9f4eb 0xd4e85905 0x39828bfb 0x6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9

0x84963793 0x263a6675 0xafa8892c 0x340904ff 0xaccb5103 0xf3bac932 0xbe1f0ae4 0x93c377c1
0x48142ead 0x5b911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 0xac7dd73d 0x745b0c46 0x5ca1756c
0xdfb80fbd 0x88cee1fd 0x7bd6c417 0x43ab29df 0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462ef5da

H1
i+1 0x910e3d63 0x83c406ec 0x464230f7 0x3bfc4d84 0x14fddff2 0x5092bf5f 0x07cd2ad3 0x31c0e36a

H2
i 0x564187b3 0x5af775fb 0x10136ca0 0x8a9ffa0c 0x3edeecd0 0xd2e74b6c 0x15572f1c 0x70e24eb7

M2
i 0x8bc2d93c 0xc9e9f4eb 0x54e85905 0x39828bfb 0x6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9

0x84963793 0x263a6675 0xafa8892c 0x340904ff 0xaccb5103 0xf3bac932 0xbe1f0ae4 0x93c377c1
0x48142ead 0x5b911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 0xac7dd73d 0x745b0c46 0x5ca1756c
0xdfb80fbd 0x88cee1fd 0x7bd6c417 0x43ab29df 0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462ef5da

H2
i+1 0xe6b6ce20 0x3260de7a 0x681aa45d 0x277995cd 0x9d4959bc 0xaec251c2 0x41446efa 0x75cf2b80

H3
i 0xaf8abf6d 0xd2aafd4c 0xc7f01506 0xfd258be0 0x299edd95 0xa561cfbc 0x61175f52 0xec8049a0

M3
i 0x8bc2d93c 0xc9e9f4eb 0xd4e85905 0x39828bfb 0x6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9

0x84963793 0x263a6675 0xafa8892c 0x340904ff 0xaccb5103 0xf3bac932 0xbe1f0ae4 0x93c377c1
0x48142ead 0xdb911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 0xac7dd73d 0x745b0c46 0x5ca1756c
0xdfb80fbd 0x88cee1fd 0x7bd6c417 0x43ab29df 0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462ef5da

H3
i+1 0xea57751d 0xfb778e3d 0xfe1ed95d 0xae81df58 0x7fbdd0b7 0x230d3faf 0x538d1b09 0xad631e53

H4
i 0xaf8abf6d 0xd2aafd4c 0xc7f01506 0xfd258be0 0x299edd95 0xa561cbbc 0x61171f52 0xec8489a0

M4
i 0x8bc2d93c 0xc9e9f4eb 0x54e85905 0x39828bfb 0x6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9

0x84963793 0x263a6675 0xafa8892c 0x340904ff 0xaccb5103 0xf3bac932 0xbe1f0ae4 0x93c377c1
0x48142ead 0xdb911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 0xac7dd73d 0x745b0c46 0x5ca1756c
0xdfb80fbd 0x88cee1fd 0x7bd6c417 0x43ab29df 0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462ef5da

H4
i+1 0x400005da 0xaa1465cb 0x1ff74cc3 0x99ff27a1 0x08094a81 0x813cd212 0x8d045f30 0xf1716669

4-sum 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
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5.4 Experimental Results

By following the algorithm in Alg. 3, we evaluated the amplified probability for
the first and last several rounds. The results are shown in Table 7. According
to our experiments, APBack = 2−4.24, APFor = 2−4.73, and the entire success
probability is 2−8.98, which matches APBack × APFor = 2−8.97. The attack
complexity is for 28.98 iterations of Steps 4–11 in Alg. 4. Because we compute
quartets, the complexity is approximately 211(≈ 4 × 28.98) compression func-
tion computations. Finally, we implemented our 4-sum distinguisher on 5-pass
HAVAL. An example of the generated 4-sum quartet is presented in Table 8.

6 Concluding Remarks

We studied the boomerang attack approach on hash functions. We proved that
the previous differential path on 5-pass HAVAL contained a flaw. We then con-
structed the new path and proposed the 4-sum distinguisher on the compression
function with a complexity of approximately 211 computations. We implemented
the attack and showed an example of the 4-sum quartet. As far as we know, this
is the first feasible result on the full compression function of 5-pass HAVAL.
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A Differential Path Search Algorithm for 5-Pass HAVAL

Our path search algorithm is semi-automated and minimizes the Hamming dis-
tance of the entire inside path. We independently searched for the path for
E1 (steps 60 – 79) with Δm2 = 0x80000000 and path for E2 (steps 98 – 73)
with ∇m4 = 0x80000000. Conditions and contradiction of two paths were later
checked by hand. We only explain the algorithm for E1 in Alg. 5. HW (·) returns
the Hamming weight of the input variable.

After an enough number of iterations of Alg. 5, we obtained the path in Table 6
whose tempHD is 6.

B Examples of Boomerang Quartet

The differential paths in [9] can be used to construct a 4-sum on the compression
function. We show the generated 4-sums for MD5, 3-pass HAVAL, and 4-pass
HAVAL. The amplified probability to satisfy the entire path is approximately
2−8 for MD5, 2−2 for 3-pass HAVAL, and 2−9 for 4-pass HAVAL.
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