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Abstract. In this paper, we study a boomerang attack approach on
MD4-based hash functions, and present a practical 4-sum distinguisher
against the compression function of the full 5-pass HAVAL. Our ap-
proach is based on the previous work by Kim et al., which proposed the
boomerang distinguisher on the encryption mode of MD4, MD5, and
HAVAL in the related-key setting. Firstly, we prove that the differential
path for 5-pass HAVAL used in the previous boomerang distinguisher
contains a critical flaw and thus the attack cannot work. We then search
for new differential paths. Finally, by using the new paths, we mount
the distinguisher on the compression function of the full 5-pass HAVAL
which generates a 4-sum quartet with a complexity of approximately
21 compression function computations. As far as we know, this is the
first result on the full compression function of 5-pass HAVAL that can be
computed in practice. We also point out that the 4-sum distinguisher can
also be constructed for other MD4-based hash functions such as MD5,
3-pass HAVAL, and 4-pass HAVAL. Our attacks are implemented on a
PC and we present a generated 4-sum quartet for each attack target.

Keywords: boomerang attack, 4-sum distinguisher, hash, HAVAL.

1 Introduction

Hash functions are taking important roles in various aspects of the cryptography.
After the breakthrough by Wang et al. [26/27] and through the SHA-3 competi-
tion [20], cryptanalysis against hash functions have been improved significantly.

The boomerang attack, which was proposed by Wagner [22], is a tool for the
cryptanalysis against block-ciphers. At FSE2011, Biryukov et al. applied the
boomerang attack for hash functions, and showed that a zero-sum distinguisher
could be constructed on them [3], where zero-sum is a set of messages whose
XOR is 0 and the XOR of their corresponding outputs is also 0. Lamberger and
Mendel independently applied the boomerang attack on SHA-2 and obtained
a significant improvement on the 4-sum distinguisher against its reduced-step
compression function [I0], where a k-sum is a set of k paired initial-values and
messages such that the XOR of their outputs is 0. It seems that the boomerang
attack is potentially very powerful against hash functions, and thus more investi-
gation is required to understand their impact deeply. Note that at CRYPT 02007,
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Joux and Peyrin proposed an (amplified) boomerang attack for SHA-1 [7]. They
used the idea of the boomerang attack for the message modification technique
in the collision attack, which the purpose is different from our research.

The boomerang attack on hash functions does not always discuss the security
as the hash function. As done in [I0], it often discusses the security of the
compression function or the internal block-cipher. Although they do not impact
to the security of the hash function immediately, such analyses are useful from
several viewpoints; 1) The progress of the cryptanalysis, in other words, the
security margin can be measured, 2) The attack could be used as a tool for
different purposes in the future, e.g., a pseudo-collision attack on MD5 [4]. 3)
The attack on a building-block may invalidate the security proof for the hash
function. Specifically, hash functions using the PGV modes tend to have the
reduction security by assuming the ideal behavior of the internal block-cipher.

MD4, which was proposed by Rivest in 1990 [I3], is a hash function that is
used as a base of various hash functions. MD4 has an interesting property in its
message expansion. The sketch of its computation is as follows;

— Divide an input message block M into several message words my,
miy,...,MNg—1-

— Iteratively apply a round function Ny times, where the round function con-
sists of Ng steps.

— For Ng steps in each round, each of mg to my,—_1 is used exactly once.

— The order of message words, in other words, the permutation of the message-
word index may change for different rounds.

We call this type of the message expansion message-words permutation. MDA4,
MD5 [14], and HAVAL [32] are examples using the message-words permutation.
MD4, MD5, and HAVAL are now known to be vulnerable against various
attacks. For example, Van Rompay et al. found collisions of 3-pass HAVAL in
2003 [21], and Wang et al. found collisions of MD4, MD5, and 3-pass HAVAL in
2004 [2527]. The complexity of collision attacks were optimized to 2 for MD4
[18], 210 for MD5 [29], 27 for 3-pass HAVAL [1924], 236 for 4-pass HAVAL
[28131], and 222 for 5-pass HAVAL [31], where the unit of the complexity is one
computation of the compression function. Note that, only the theoretical result
is known for 5-pass HAVAL, and thus real collisions have not been found yet.
Theoretical preimage attacks are also presented. For example, [TJ6I1T] for
MD4, [I7] for MD5, [2I16] for 3-pass HAVAL, and [16] for 4-pass HAVAL. For
5-pass HAVAL, only the attack on 158-steps out of 160-steps is known [15].
Several researchers evaluated the security of the building block for these hash
functions. Examples which analyzed full steps are [4/5] for MD5 and [8J9I30] for
HAVAL. Among them, the work by Kim et al. [8J9], which applied the boomerang
attack to distinguish their encryption modes from a random permutation in
the related-key setting, is very powerful. They successfully distinguished these
encryption modes with 26 queries for MD4, 216 queries for MD5, and 296
queries for 4-pass HAVAL. These attacks were implemented and an example of
the boomerang quartet was presented for MD5. In addition, Kim et al. claimed
that 5-pass HAVAL could also be distinguished with 26 queries and the attack



Boomerang Distinguishers on MD4-Family 3

Table 1. Comparison of the attack complexity

Attack Target MD4 MD5 HAVAL-3 HAVAL-4 HAVAL-5
(Time Ref.) (Time Ref.) (Time Ref.) (Time Ref.) (Time Ref.)

Collision Hash Function 2  [I8 2! [29] 27 [@oR4] 23¢ PRIBI 2'2° [31)
Boomerang Block-Cipher 26 @ 2% @ - 296 )] 261 )]
Boomerang Compress. Func. - 210 Ours 24 Ours 2!

was partially verified by implementing it for reduced-round variants. Note that
although Kim et al. pointed out the vulnerability of the MD4-based structure
against the boomerang attack, the analysis on 5-pass HAVAL is still infeasible.

Our Contributions

In this paper, we study the boomerang attack approach on MD4-based hash
functions. We use the differential path for the boomerang attack to construct
the 4-sum distinguisher on the compression function, while Kim et al. [9] used the
boomerang path to distinguish its encryption mode from a random permutation.
For both of our approach and the one in [9], the core of the attack is the existence
of the differential path suitable for the boomerang attack. However, because the
attack scenario is different, the procedure to optimize the attack is quite different.
We first collect various techniques for the boomerang attack on hash functions
from several papers (mainly [3/9I0]), and summarize the attack framework.

We then revisit the differential path for the boomerang attack against
5-pass HAVAL in [9]. On the contrary to the authors’ claim, we prove that the
differential path in [9] contains a critical flaw and thus the attack cannot work.

We then search for new differential paths for the boomerang attack and con-
struct the attack procedure optimized for attacking the compression function.
Finally, by using the new paths, we mount the distinguisher on the full com-
pression function of 5-pass HAVAL which generates a 4-sum quartet with a
complexity of 2!! compression function computations. The attack complexity is
summarized in Table [l As far as we know, this is the first result on the full
5-pass HAVAL that can be computed in practice. The attack is implemented on
a PC and we present a generated 4-sum quartet.

Note that as long as the good boomerang differential path is available, 4-sum
distinguishers can be constructed on the compression function. Then, with the
differential paths in [9], we attack MD5, 3-pass HAVAL, and 4-pass HAVAL with
a complexity of 219, 24 and 2'' compression function computations, respectively.
We present generated 4-sums in Appendix [Bl

Paper Outline

We describe the specification of HAVAL and clarify the terminology in Sect. 2l
We summarize previous work in Sect. Bl We give a summary of techniques for
the boomerang attack on hash functions in Sect. @l We demonstrate a dedicate
attack on 5-pass HAVAL in Sect. Bl Finally, we conclude this paper in Sect.
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Table 2. Word-wise rotation ¢, , of HAVAL

T Ts T4 T3 T2 T1 TQ Te s T4 T3 T2 T1 TQ Te Ts g4 T3 T2 T1 TQ
R A N bl
$3,1 T1 TO T3 T5 Te T2 T4 P41 T2 Te T1 T4 Ts T3 To $5,1 T3 T4 T1 To Ts T2 Te
$3,2 Ta T2 T1 To T5 T3 T6 Pa,2 T3 Ts T2 To T1 Te T4 P5,2 Te T2 T1 To T3 T4 Ts
$3,3 Te T1 T2 T3 T4 Ts To $Pa,3 T1 T4 T3 Te To T2 T5 P5,3 T2 Te To T4 T3 T1 Ts
- - P4,4 T6 T4 To Ts T2 T1 T3 P54 T1 Ts T3 T2 To T4 T6
- - - - $5,5 T2 Ts To Te T4 T3 T1

Table 3. Message-words permutation. The first column shows the round numbers.

index for each round

1 01 2 3 45 6 7 8 91011121314 1516 1718 19 20 21 22 23 24 25 26 27 28 29 30 31
2 51426181128 716 0232022 110 4 830 321 9172429 619121513 2253127
319 9 4202817 82229142512243016263115 7 3 1 0182713 621102311 5 2
424 4 014 2 7282326 63020182519 322113121 82712 9 129 5151710 16 13
527 321261711202919 012 713 83110 5 9143018 62824 2231622 4 12515

2 Preliminaries

2.1 Specification of HAVAL

HAVAL [32] uses a narrow-pipe Merkle-Damgard structure. An input message
M is padded to be a multiple of the block-size (1024 bits), and then divided
into message blocks (Mg, M1, ..., Mp_1). Then, chaining variable H; starting
from the pre-specified initial value H is iteratively updated by the compression
function CF; H;y1 < CF(H;, M;),fori = 0,1,...,L — 1. Finally, Hy, is the
hash value of M. HAVAL can produce a hash value of smaller sizes by using the
output tailoring function. Because our attack target is the compression function,
we omit the description for the padding and the output tailoring function.

The size of chaining variables is 256 bits. Inside the compression function,
M; is divided into thirty-two 32-bit message words (mg, mq,...,mg1). Three
algorithms are prepared for HAVAL; 3-pass, 4-pass, and 5-pass. The number
of rounds for 3-pass, 4-pass, and 5-pass are 3 rounds (96 steps), 4 rounds (128
steps), and 5 rounds (160 steps), respectively.

Let us denote a 256-bit state before step j by p; and denote p; by eight 32-bit
variables Qj_7||Qj_6||Qj_5||Qj_4||Qj_3||Qj_2||Qj_1||Qj. The step function Rj
computes @11 as follows:

Qj+1 — (Qj_7 > 11) + (éj(¢x,y(Qj—67 Qj—57 EERE) Q])) > 7) + M) + kj’

where ¢, , is a word-wise rotation for z-pass HAVAL in round y defined in
Table 2l and 7 (7) is shown in Table B

2.2 Technical Terminologies

In this paper, we discuss differences of several computations. Let us consider the
two computations H;yy < CF(H;, M;) and H,, < CF(H], M]). The message
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difference, input chaining-variable difference, and output difference are defined
as M; © Mj, H; ® Hj, and H; 1 ® Hj, respectively. Similarly, the difference of
two computations is defined as XOR of corresponding states.

The transition of the difference of internal state is described by several terms
such as differential path, differential trail, and differential characteristic. As far
as we know, the term differential characteristic was firstly used in the context of
the symmetric-key cryptography. However, in the context of the hash function
analysis, the term differential path seems to be used more frequently e.g., [26127].
To follow this convention, in this paper, we use the term differential path.

When the input and output differences are fixed, we often consider all possible
differential paths connecting them. A set of all possible differential paths is called
a differential or multiple-paths. In this paper, we use the term differential.

3 Related Work

3.1 Boomerang Attack

The boomerang attack was proposed by Wagner [22] as a tool for attacking
block-ciphers. The attack is a chosen-plaintext and adaptively chosen-ciphertext
attack. It can be regarded as a type of the second-order differential attack. In
this attack, the attacker divides the target cipher E into two parts F; and Fs
such that E(-) = Es o F1(-). Let us denote the differential for E; by A — A*
and for Fs by V* — V. The differences A, A*, V*, and V are chosen by the
attacker at offline. The attack procedure is as follows;

1. The attacker first prepares a plaintext P! and compute P? < Pl @ A.

2. P! and P? are passed to the encryption oracle and the attacker obtains the
corresponding ciphertexts C' and C2.

3. The attacker prepares the paired ciphertexts C? < C'@V and C* < C?@V,
and passes them to the decryption oracle.

4. Finally, the attacker checks whether or not P? and P* has the difference A.

Assume that the probability for the differentials for £ and F5 are p and g,
respectively. Then, Pr[P? @ P* = A] is expressed as p?q?. In the end, we can
conclude that if E can be divided into two parts with a high-probability differ-
ential, the boomerang attack is very efficient.

For a long time, it was assumed that the differentials for £y and Es can be
chosen independently. In 2009, Murphy pointed out that this was not sufficient,
and discovered several examples of this case for DES and AES [12].

3.2 Boomerang Distinguishers for Hash Functions

In 2011, Biryukov et al. pointed out that the zero-sum distinguisher can be
constructed by applying the boomerang attack on hash functions [3]. In the
boomerang attack, P'@P? = A and P2@P* = A. Therefore, P'1@P?¢P3@P* =
A® A= 0. Similarly, C' © C? ® C®* @ C* = V@ V = 0. Hence, by starting
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from a pair of plaintexts P! and P? such that P! @ P2 = A, the attacker finds
a zero-sum quartet with a complexity of (p?¢?)~!. [3] considered the attack
starting from the border state between E; and Fs, and optimized the attack
by applying the message modification technique [26127]. [3] also computed the
complexity to find a zero-sum in a random function for n-bit output. They
explained that by starting from two paired plaintexts (resp. ciphertexts) with
pre-specified differences, the complexity to find a zero-sum quartet of ciphertexts
(resp. plaintexts) is 22. Note that [3] considered the differential path rather
than the differential for their attack. In fact, to apply the message modification
technique, considering a differential path is much easier than a differential. Also
note that [3] considered the observation by Murphy [12]. They had to give up
combining the best differential paths for F; and Es due to their dependency.

In 2011, Lamberger and Mendel independently applied the boomerang 4-sum
for the SHA-2 compression function [I0]. They claimed that the complexity for
finding a 4-sum quartet in a random function without any limitation on the
input is 25 by using the generalized birthday attack [23].

3.3 Boomerang on Encryption Modes of MD4, MD5, and HAVAL

Kim et al. applied the boomerang attack approach on the encryption modes of
MD4, MD5, and HAVAL in the related-key model [9]. They proposed boomerang
distinguishers with 26 queries for MD4, 216 queries for MD5, and 2°-6 queries for
4-pass HAVAL. These attacks were verified by the machine experiment. Further-
more, they proposed differential paths for 5-pass HAVAL, and claimed that the
boomerang distinguisher with 261 queries was possible. They also claimed that
this distinguisher was partially verified with an experiment on a reduced-round
variant which was truncated for the first and the last several rounds.

Our attack framework is close to the one discussed in Sect. 3.2l but use the
differential paths in [9] as a tool. In fact, we use the same paths as [9] for MD5
and 4-pass HAVAL. However, we need new differential paths for 5-pass HAVAL
due to the flaw which we will point out in Sect.

4 Summary of Boomerang Attack on Hash Function

Because various techniques for the boomerang attack on hash functions are dis-
tributed in several papers, we summarize the attack framework. Therefore, most
of the contents in this section were originally observed by [3I9I10].

The attack can be divided into five phases; 1) message differences (AM),
2) differential paths and sufficient conditions (DP), 3) contradiction between
two paths (CP), 4) message modification (MM), and 5) amplified probability
(AP). We explain each phase with several observations specific to message-words
permutation hash functions.

4.1 Message Differences (AM)

A generic strategy for an Nr-round hash function is illustrated in Fig. [l For
Npr = 4, the first two and last two rounds are regarded as E1 and Es, respectively.
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Fig. 1. Strategies for differential path

Fig. 2. Message search procedure

For E;, we search for the message word which appear in an early step in the
first round and in a late step in the second round. Then, the message difference
is propagated until the beginning and end of F;. The same strategy is applied
for FE5. Because the differential paths for both of Fy and Es are short, they are
satisfied with high probability even without the message modification technique.

For N = 5, we extend the differential paths for the 4-round attack by a half
more round. As shown in Fig. [Il the paths become long and hard to satisfy by
the naive search. Wang et al. showed that the differential path for one round
can be satisfied for free by the message modification technique [26J27]. Hence,
with these techniques, 5 rounds can be attacked. In this paper, we denote the
differential path between the end of round 2 and the beginning of round 4 by
inside path, and the differential paths in round 1 and round 5 by outside paths.

4.2 Differential Paths and Sufficient Conditions (DP)

Based on the strategy in Fig.[Il we construct differential paths and conditions for
chaining variables. These procedures are basically the same as the ones for pre-
vious collision attacks. We only list the differences of the path search procedure
between the collision and boomerang attacks.

— If the feed-forward operation is performed by a modular addition (H =
PHC(), the attacker should introduce the additive difference among a quartet.
in such a case, the difference for the quartet is defined as (H*B H?®)B (H?*H
HY)Y)=H'BH?BH*®H.

— The number of conditions must be minimized because setting = more condi-
tions will increase the complexity by a factor of 22% rather than 2°.

— In the middle round, we apply the message modification, and thus even
complicated paths can be satisfied. However, by taking into account the
Phase CP, the paths should be simplified around the border of two paths.
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— If active-bit positions are concentrated around the MSB in both of F; and F5
for the optimization, the risk of the contradiction of two paths will increase.

4.3 Contradiction between Two Paths (CP)

As Murphy pointed out [12], differential paths for F; and Fs are not independent,
and thus we need to check that any contradiction does not occur. As far as we
know, no systematic method is known to check the contradiction. However, it
can be said that the attacker at least needs to check the following conditions.

Condition 1. EF; and E> do not require to fix the same bit to different values.
Condition 2. F; (resp. E2) does not require to fix the value of an active bit
for Ey (resp. E1).

The first case is obviously in contradiction. In the second case, even if the condi-
tion is satisfied between one pair, say P! and P2, the condition is never satisfied
for the other pair P and P* due to the difference between P! and P3.

As discussed in Sect. [£.2] if many bits are activated or active-bit positions
are concentrated around MSB, the contradiction comes to occur more easily.
Regarding HAVAL, due to the large word-size (32 bits) and the different rotation
constants in forward and backward, the contradiction is less likely to occur. If
the word size is smaller or if the similar rotation constants are used such as
BLAKE, the contradiction seems to occur with a high probability.

If the contradiction occurs, rotating the path for either Fy or Fs by several
bits may avoid the contradiction (though the efficiency becomes worse).

4.4 Message Modification (MM)

Let us denote a quartet of texts at step j forming the boomerang structure
by (p},p%pgﬁp?). The difference for E; is denoted by A, which is considered
between p; and ps and between p3 and ps. The difference for E5 is denoted
by V, which is considered between p; and ps and between py and ps. We call
conditions on the path for F; A-conditions, and for Fy V-conditions.

The message search procedure is described in Fig. 2l The attack starts from
the state at the border between E; and Fs. Let us denote this step by b. First,
we set a chaining-variables quartet (pé,pg,pg,pg) so that both of A- and V-
conditions are satisfied. We then perform the backward computation for F; and
forward computation for F2 as shown in Alg. [[land Alg. Bl respectively.

These procedures are computed until the inside path is ensured to be satisfied
with probability of 1. This often occurs before all message words are fixed by
the above procedure. Therefore, towards the outside paths, we do as follows.

— Assume that several message-words are not determined even after the inside
path are ensured. Then, we never modify the message-words and chaining-
variables related to the inside path, and compute the outside paths by ran-
domly choosing the message-words not used for the inside path.

This enables us to iterate the outside computation with keeping the inside path
satisfied. Hence, the complexity for satisfying the inside path can be ignored.
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Algorithm 1. Message search procedure for step j in the backward direction

Input: Inside differential path and a chaining-variables quartet (p} 1, pf 1, p? 1, p? 1)
Output: A message-words quartet (m}r(]-), mi(]-), mf’rm,mim) and a chaining-
variables quartet (p; , pf , p? , p?)
1: Choose the value of p} to satisfy conditions (A-conditions) for p}. Then, compute
m}rm by solving equation R;.
2: Compute mfrm, mf’ru), and mfrm with the specified differences AM and VM.
3: Compute p? with mf’r(j
fied. If so, compute p? and p}*. If not, repeat the procedure with different p}.

y and check if all conditions (A-conditions) for p} are satis-

Algorithm 2. Message search procedure for step j in the forward direction

Input: Inside differential path and a chaining-variables quartet (p}, pf, p?, pf)

Output: A message-words quartet (m}r(]-),mfr(]-),mf’rm,m,r(j)) and
a chaining-variables quartet (p%H, pfﬂ, pfﬂ, p?H)

1: Choose the value of p}_H to satisfy conditions (V-conditions) for p}_H. Then, com-

pute m}r(]-) by solving R;.

2: Compute mfrm, mf’rw, and mfrm with the specified differences AM and VM.

3: Compute p?H and check if all conditions (V-conditions) for p? 11 are satisfied. If
so, compute p?H and p§+1. If not, repeat the procedure with different p;H.

4.5 Amplified Probability (AP)

Amplified probability is the probability that each outside path results in the
4-sum. We consider the differential to estimate this probability. This is often
estimated by an experiment. Alg. Bl shows how to compute the amplified prob-
ability APB* for the first round (from step j — 1 to step 0). The amplified
probability for the final round APF" is similarly computed. Note that as long
as the operation (usually either XOR or the modular addition) used to com-
pute the 4-sum in this experiment and used in the feed-forward is identical, the
success probability after the feed-forward is preserved as APBF x gApFor,

5 4-Sum Distinguisher on 5-Pass HAVAL

We start from pointing out the flaw of the previous differential path (Sect. 1),
and construct new differential paths (Sect. B2). We then explain the attack
based on the discussion in Sect. @] and finally show the experimental results.

Algorithm 3. Evaluation of the amplified probability
Input: Outside differential path
Output: Amplified probability of the outside differential path
1: Randomly choose a chaining-variables quartet (p},p?,p;’,p?) and message-words
used in steps j — 1 to 0 with appropriate message differences AM and VM.
2: Compute this quartet until step 0 and check whether the 4-sum is constructed.
3: Repeat the above for an enough amount of times, and calculate the probability.
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Table 4. Differential path and conditions for 5-pass HAVAL [9]. e. represents that
only z-th bit has a difference.

Output diff. at step j Equation for &; Conditions on 20th bit

Jj (AQj-7,...,AQj) Di(¢5,3(Qj—6,---,Qj5)) for &; =0
(0,0,0,0,0,0,0,e20)

70 (0,0,0,0,0,0,e20,0) P70( Qes, Qea,AQ70, Qs6, Qo7, Qe9, Qo5) Qo9 =0
71 (0,0,0,0,0,e20,0,0) P71( Qo9, Qes5, Q71, Qe7, Qos, AQ70, Qos) Qe67Qes ® Q71 =0
72 (0,0,0,0,e20,0,0,0) P72(AQ70, Qos, Q72, Qes, Qeo, Qr1, Qo7) Qes =0
73 (0,0,0,e20,0,0,0,0) P73( Q71, Qe7, Q73, Qe9,AQ70, Qr2, Qos) Q72Qe9 ® Qo7 =0
74 (0,0,e20,0,0,0,0,0) P74( Qr2, Qoes, Q74,4Q70, Qr1, Q73, Qoeo) Q73 Q71 ® Q72Qe0 =0
75 (0,e20,0,0,0,0,0,0) P75( Q73, Qeo, Q75, Qr1, Qr2, Qra,AQ70) Qmn =1
76 (e20,0,0,0,0,0,0,0) P76( Qra,AQ70, Qre, Qr2, Qr3, Qrs, Qm1) Q73 =0

77 (0,0,0,0,0,0,0,e9) Pr7( Q7s, Qri, Qr7, Qrz, Qra, Qre, Qr2) -

5.1 Proving Flaw of Previous Differential Path

We point out that the differential path for the third round in [9] cannot work.
Note that the verifying experiment by [9] is for the reduced-round variants which
are truncated for the first and the last several rounds [9, Sect. 4.2]. Hence, our
claim does not contradict to the partial verification by [9].

The differential path during 8 steps (steps 70-77) in the third round is shown in
Tabledl The authors claimed that the path could be satisfied with a probability
of 277, The necessary and sufficient condition for satisfying this path with a
probability of 277 is that the difference in Q7o will not propagate through &;.
@; for these steps is a bit-wise Boolean function expressed as

Dj(x6, x5, Ta, T3, T2, T1,T0) = T12223 O 174 O T2T5 D 326 D Tox3 D To.

Conditions to achieve the path were not explained in [9]. We first derive the nec-
essary and sufficient conditions to achieve the path, which are shown in Table [l

Proof. For steps 70, 75, and 76, we have conditions Qg9 = 0, Q71 = 1, and
Q73 = 0. Then, the left-hand side of the condition for step 74 becomes 0 & 1 &
(Q72 - 0) = 1, which contradicts to the condition that this value must be 0. O

We verified the above proof with a small experiment;

1. Randomly choose the values of Qg3 to Q70 and my(7g) t0 My (77)-
2. Set Q, + Q. for z = 63,64, ...,70. Then compute Q% < Q70H0x00100000.
3. Compute until step 77 and check whether or not the path is satisfied.

With 230 trials, the differential path in TableE was not satisfied. This contradicts
to the claim in [9], which the path is satisfied with a probability 277.
5.2 Constructing New Differential Paths

We reconstruct the attack based on the strategy explained Sect. LTl For Phase
AM, we confirmed that the message differences in [9] (Ams = 0x80000000,
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Table 5. Boomerang path construction for 5-pass HAVAL

index for each round
1 01® 3@ 5 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
— A constant
2 51426181128 716 0232022 110@ 830 321 9172429 619121513 @ 25 31 27
constant A —
319 9@ 202817 82229142512243016263115 7 3 1 0182713 621102311 5@
message modification message modification
424@ 014 @ 7282326 63020182519 322113121 82712 9 129 515171016 13
— V constant
5 27 321261711202919 012 713 83110 5 9143018 62824 @2 231622@ 12515
constant VvV —

Am, = 0 for ¢ # 2, Vmy = 0x80000000,Vm, = 0 for x # 4) match the
strategy in Fig.[Il and thus we use the same message differences. This is described
in Table [l

For Phase DP, we need to specify how the differences will propagate to
chaining variables. We describe our path search algorithm in Appendix [Al The
searched paths and conditions for chaining variables are given in Table Gl

For Phase CP, the overlap of the conditions and active-bit positions in Ta-
ble Gl must be checked. According to Table[f], the conditions 1 and 2 described in
Sect. [£.3] are satisfied. Note that as long as the step function is similar to MD4,
MD5, or HAVAL, the active bit positions and conditions for A and V tend to
be different due to the asymmetric rotation constants in forward and backward
directions. In fact, for all differential paths in [9] and ours, the best differential
paths which were independently computed could be combined.

5.3 Attack Procedure

In Phase MM, we optimize the attack complexity based on the strategy in
Sect. 4l The detailed procedure is given in Alg. @l

As shown in Table [l the inside path starts from step 60 and ends at step
97. Several words (wa, was, W31, War, Wag, w4) are used twice and we need a spe-
cial attention. However, as shown in Table [6 conditions are set only on Qsg to
93, and thus, the second-time use of these words outside of Q55 to Qg3 always
succeed for any value. Hence, these values are chosen for satisfying conditions
for Q58 to Qg3. After we satisfy all conditions for Qss to Qg3, 4 message words
wig, W11, Ws, and wy are still unfixed. Therefore, we can iterate the outside path
search without changing the inside path up to 2'2® times, which is enough to
satisfy the outside paths.

The complexity of the message modification for satisfying the inside path
(up to Step 3 in Alg. M) is negligible. Hence, the attack complexity is only the
iterative computations for satisfying the outside paths (Steps 4-11 in Alg. [)).
This complexity is evaluated by considering the amplified probability in Phase
AP, which will be explained in the following section.
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Algorithm 4. Attack procedure with the message modification
Input: Entire differential paths and conditions
Output: A quartet of (H;—1, M;_1) satisfying the 4-sum property
1: Randomly choose the values of pig, p2o, pao and pio so that the differences and
conditions (both of A and V) in Table [6l can be satisfied. Note that, choosing pg,
means choosing eight 32-bit variables Qgy, Q%9, Q%s, Q%7, Q7¢, Q7s, Q%4, and Q75.

2: Apply the backward computation in Alg. [ to obtain pis, p2s, pas and pas. This
fixes chaining variables up to Q5s and message words from m (7g) to Mr(s5)-
3: Apply the forward computation in Alg. Plto obtain pds, p2s, pss and pas. This fixes
chaining variables up to Q§3 and message words from m,(s0)y t0 My (92).
//End of the message modification for the inside path
4: while a 4-sum quartet of the compression function output is not found do
5:  Randomly choose the values of message-words quartet for mysy = maii,
My (94) = M5, and My (95) = M2 with the message difference on m2, and compute
a chaining-variables quartet until pis, p2s, pss and pas.

6:  Randomly choose the values of message-words quartet for mn 4y = mio, and
compute a chaining-variables quartet until pgo, p2o, Peo and peo-
7:  Compute a chaining-variables quartet until p3, p2, p5 and pg in backward and

Pleos Picos Pico and pleo in forward.
8: if (P(l) &) P%eso) B (P(Q) S p%GO) B (Pg S p{’GO) B (Pg & P%eso) =0 then
9: return (ps, 3, po, po) and (M*, M?, M?, M*)
10: end if
11: end while

Algorithm 5. Differential path search algorithm for E; from step 60 to step 79
Input: Message difference AM, where Amg = 0x80000000 and Am, = 0 for x # 2
Output: Differences of each chaining variable between step 60 and step 79
1: Initialize tempHD <+ 0
for z = 53 to 60 do
Q. < a randomly chosen value
Q%+ Qu
end for
for x = 60 to 79 do
My (z) < a randomly chosen value
m;<z> — Ma(z) D AM
Compute Qu+1 and Q41
10: tempHD <« tempHD + HW (Quz+1 ® Qly1)
11: if tempHD > 10 then
12:  goto step 1
13: end if
14: end for
15: print Q, ® Q,, for y = 61,62,...,80



Boomerang Distinguishers on MD4-Family 13

Table 6. New differential paths and conditions for 5-Pass HAVAL. [z] =0, [2] = 1 are
conditions on the value of z-th bit of the chaining variable. For the first and last several
steps, we do not fix a particular difference for the amplified probability. The difference
is considered in XOR. In some cases, we need conditions on the sign of the difference.
[2] = 0+, [2] = 1— mean the value is first fixed to 0 (resp. 1) and change to 1 (resp. 0)
after the difference is inserted.

Path for B with Amg = 0x80000000 Path for Eg with Vimy = 0x80000000
J AQ; Conditions on Q;  Am j VQj; Conditionson Q;  Vm  m_ )
-7 AP AP -7 my
-6 AP AP -6 mq
-5 AP AP 0x80000000 -5 mo
-4 -4 m3
52 52 my3
53 0x80000000 53 mo
54 54 mas
55 55 m31
56 56 may
57 57 mig
58 [31]=0 58 mg
59 [31]=0 59 my
60 [31]=0 60 mag
61 0x80000000 61 mog
62 [31]=0 62 my7
63 [31]=0 63 mg
64 [31,24]=0 64 mag
65 [24]=0 65 mag
66 [24,20]=0 66 mig
67 0x01000000 [20]=0 67 mas
68 [24,20]=0 68 mig
69 0x00100000 [24]=0 69 may
70 [24,20,17]=0 70 m3q
71 [20,17]=0 71 mig
72 [24,20,17]=0 72 maog
73 0x00020000 73

74 74 0x00000001 [0]=1—

75 75 [18]=0

76 76 [18]=0 start
77 0x00000200 77 [18,0]=0 step
78 78 0x00040000 [21]=0,[18]=0+

79 0x00000400 79 [21]=0,[18]=1

80 80 [21,18]=0

81 81 [21,18,14]=0 mg1
82 82 0x00200000 [14]=0 mi1s
83 83 [21]=1,[14]=0 my
84 84 0x00004000 [21]=0 msg
85 85 [21]=0,[14]=1 my
86 86 [14]=0 mq
87 87 [14,10]=0 mig
88 88 [10]=0 maoy
89 89 [10]=0 m13
90 90 0x00000400 meg
91 91 [10]=1 ma1
92 92 [10]=1 mi10
93 93 [10]=1 mag
94 94 mi1
95 95 mg
96 96 mo
97 97 moy
98 98 0x80000000 7124
99 99 mq
156 156 mag
157 157 0x80000000 AP 0x80000000 M4
158 158 AP AP mq
159 159 AP AP mas

160 160 AP AP mis
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Table 7. Experimental results for the amplified probability

Number of obtained 4-sums

Amplified probability

Back 1,000,000 53,065 g 424
For 1,000,000 37,623 Q%78
Total 1,000,000 1,975 9898

Table 8. An example of the boomerang quartet for the full 5-pass HAVAL

Ht1 0x6ad6913b 0x52831497 0x42e2afea 0x042171e8 0x05c66540 0xf6308abd 0x69b242bb Oxfeadf2df
Ml1 0x55f408ea 0xade29473 0x5cd48f01 0x862fac29 0xb59b9103 Oxdfeldff3 Ox44aaff68 0xa5716cc8
0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1ald1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cbl 0xe6911e8d 0x5816e997 Ox1a8fc1d3 Oxc5ddal128 0x43e5f428 Oxcfle861f 0xf5258b98
H}_H 0x50b484bf 0x9d28c720 Oxc2abab4d Ox5aec2d4b 0x63659cae 0x0023£316 0xa02276be Oxeab5fb84
Hf 0x6ad6913b 0x52831497 0x42e2afea 0x042171e8 0x05c66540 0xf6308e5d 0x69b242bb Oxfeae32df
Mf 0x55f408ea 0xade29473 0xdcd48f01 0x862fac29 0xb59b9103 Oxdfeldff3 Ox44aaff68 0xa5716cc8
0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1ald1f69 0x35a88db0 0xb50£50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cbl O0xe6911e8d 0x5816e997 Ox1a8fc1d3 Oxcbddal128 0x43e5f428 Oxcfl1e861f 0xf5258b98
H12+1 0xfa15769c 0x6ed1bl9a 0x405b263b 0x57cd6359 0xd8688750 Oxcdc3c9d3 Oxa3dc7fd8 0x2e59£283
Hf 0xb70b5251 0x851d041a 0x7abf5fad 0x98626bbl 0x9d739cbc 0x67bc3181 Oxed48edcac Oxeeb57£26
Mf 0x55f408ea 0xade29473 0x5cd48f01 0x862fac29 0x359b9103 Oxdfeldff3 Ox44aaff68 0xab716cc8
0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1ald1f69 0x35a88db0 0xb50£50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cbl O0xe6911e8d 0x5816e997 Oxla8fc1d3 Oxc5ddal128 0x43e5f428 Oxcfl1e861f 0xf5258b98
H?Jrl 0x9ce945d5 Oxcfc2b6a3 0xfa225b10 Oxef2d2714 0x7bl2d42a Ox71af9a3a Oxlafe80af 0xdbbd87cb
Hf 0xb70b5251 0x851d041a 0x7abf5fad 0x98626bb1l 0x9d739cbc 0x67bc3581 Oxed48edcac Oxeeb5bf26
Ml-4 0x55f408ea 0xade29473 0xdcd48f01 0x862fac29 0x359b9103 Oxdfeldff3 Ox44aaff68 0xa5716cc8
0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1ald1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cbl 0xe6911e8d 0x5816e997 0x1a8fc1d3 Oxc5ddal128 0x43e5f428 Oxcfle861f 0xf5258b98
H1-4Jrl 0x464a37b2 Oxal6balld 0x77d7d5fe OxecOe5d22 Oxf01b5becc 0x3f4f70f7 0x1eb889c9 Ox1f617eca
4-sum 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
Table 9. An example of the boomerang quartet for MD5

Ht1 0x7adb1lbee 0x68a07529 0x5369e5f1 0x62£52251
Ml1 0x58df0f5e 0x678b3525 0x03105c08 0xa068f82a 0x21ead339 Oxebe2ea9c 0x5cf986el 0x9890fd27
0xcfB8a438f 0x2cecb915 0x44935dfe 0xf06£f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

HilJrl 0x1de7b79a 0x6e573e2a 0x0ef900e3 0xc72985ef

H? Oxfadblbee 0x68a07529 0xd369e5f1 0xe2f52251
Mf 0x58df0f5e 0x678b3525 0x83105c08 0xa068f82a 0x21ead339 Oxebe2ea9c 0x5cf986el 0x9890fd27
0xcfB8a438f 0x2cecb915 0x44935dfe 0xf06£f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

Hl-zJrl 0x03d5ae50 0x722a5685 0x361b13al 0x75a3a89d

Hf 0x97e364fe 0xb191e24c Oxdec0361f 0x6a8d3d9f
M? 0x58df0f5e 0x678b3525 0x03105c08 0xa068f82a 0x21ead339 OxeBe2eadc 0x5cf9I86el 0x9890£d27
0xcfB8a438f 0x2cecb915 0x44935dfe 0x706£103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H?_H 0x3af600aa 0xb748a94d 0x9a4f4f11 Oxcec19£3d

Hf 0x17e364fe Oxb191e24c 0xbec0361f Oxea8d3dof
Mf 0x58df0f5e 0x678b3525 0x83105c08 0xa068f82a 0x21ead339 OxeBe2eadc 0x5cf9I86el 0x9890£d27
0xcfB8a438f 0x2cecb915 0x44935dfe 0x706£103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H:I-%—l 0x20e3£760 Oxbblbcla8 0xc17161cf 0x7d3bcleb

4-sum 0x00000000 0x00000000 0x00000000 0x00000000
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Table 10. An example of the boomerang quartet for 3-pass HAVAL

0x8af103dd 0x89952e4e 0xba8ba930 0xb1681125 0x8bf68d12 0x11f454da Ox31babeaf 0x1c684£37
0x14c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0x56a25710 0x31381427 0x193906fa
0xa97fe484 0x9228f3e7 0x3d307061 Ox7eald8al Oxcflcf1f5 0x2b250fb8 0xd874£573 0xb71£7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29
0x9b18b769 0x01959420 0x480cead2 0x7c38cf17 0x70323bda 0xd46e06e9 0x09d05ae3 0xd315£8f6

0x8af103dd 0x89952e4e 0xba8ba930 0xb1681125 0x8bf68d12 0x11f454da Ox31babeaf 0x1c684b37
0x94c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0x56a25710 0x31381427 0x193906fa
0xa97fed84 0x9228f3e7 0x3d307061 Ox7eald48al Oxcflcf1f5 0x2b250fb8 0xd874£573 0xb71£7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29
0x2ab0c721 0xda378441 0x99789481 Oxaf2db9cb 0x900971d1 Oxdfa8ec61 0x122c330e Oxa77c26af

0x6cad8418 0x6711d760 0x52670414 0x4dfe762f
0x14c97b03 0x03021d0b 0x6e0a398b 0x12acd59d
0xa97fed484 0x9228f3e7 0x3d307061 Ox7eald8al
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb
0x3ef0661f9 0x098a53d0 0xf25db814 0xdb003165
0x7ccc37a4 0xdf123d32 0xdfe84516 0x18cf3421

0x6cad8418 0x6711d760 0x52670414 0x4dfe762f
0x94c97b03 0x03021d0b 0x6e0a398b 0x12acd59d
0xa97fe484 0x9228f3e7 0x3d307061 Ox7eald8al
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165
0x0c64475¢c 0xb7b42d53 0x3153ef65 Ox4bc4leds

0x00000000 0x00000000 0x00000000 0x00000000

0xf9baeldb5 0x7a9a2074 0x4518e6bf Oxb6acecb54d
0xa0e58017 0xd6a25710 0x31381427 0x193906fa
Oxcflcf1f5 0x2b250fb8 0xd874£573 0xb71£7585
0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29
0xdd£6909d 0x3d13d283 0x9d2e82f3 0x217c6£f0c

0xf9baeldb5 0x7a9a2074 0x4518e6bf Oxb6acecl4d
0xa0e58017 0xd6a25710 0x31381427 0x193906fa
Oxcflcf1f5 0x2b250fb8 0xd874£573 0xb71£7585
0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x31779903 0x4ebc57a0 0x9060622a 0x24cObf29
Oxfdcdc694 0x484eb7fb Oxab8abble 0xfb5e29cch

0x00000000 0x00000000 0x00000000 0x00000000

Table 11. An example of the boomerang quartet for 4-pass HAVAL

0x564187b3 0x5af775fb 0x10136ca0 0x8a9ffalc
0x8bc2d93c 0xc9e9f4eb 0xd4e85905 0x39828bfb
0x84963793 0x263a6675 Oxafa8892c 0x340904ff
0x48142ead 0x5b911f1b 0xe5693f5f 0xd1c28e92
0xdfb80fbd 0x88ceelfd 0x7bd6c417 0x43ab29df
0x910e3d63 0x83c406ec 0x464230f7 0x3bfc4d84

0x564187b3 0x5af775fb 0x10136ca0 0x8a9ffalc
0x8bc2d93c 0xc9e9f4eb 0x54e85905 0x39828bfb
0x84963793 0x263a6675 Oxafa8892c 0x340904ff
0x48142ead 0x5b911f1b 0xe5693f5f 0xd1c28e92
0xdfb80fbd 0x88ceelfd 0x7bd6c417 0x43ab29df

Ox3edeecd0 0xd2e74f6c 0x15576f1c 0x70deOeb7
Ox6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9
Oxaccb5103 0xf3bac932 OxbelfOae4 0x93c377cl
0x11b24646 Oxac7dd73d 0x745b0c46 0x5cal756¢
0xfdbb5d87a 0x3569ce43 0xc7dc1347 0x462efbda
0x14fddff2 0x5092bf5f 0x07cd2ad3 0x31cOe36a

Ox3edeecd0 0xd2e74b6c 0x15572f1c 0x70e24eb7
Ox6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9
Oxaccb5103 0xf3bac932 OxbelfOae4 0x93c377cl
0x11b24646 Oxac7dd73d 0x745b0c46 0x5cal756¢
0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462efbda

Oxe6b6ce20 0x3260de7a 0x681aadbd 0x277995cd 0x9d4959bc Oxaec251c2 0x41446efa 0x75cf2b80

Oxaf8abf6d Oxd2aafd4c 0xc7£01506 0xfd258be0 0x299edd95 0xab61lcfbc 0x61175£52 0xec8049a0
0x8bc2d93c 0xc9e9fdeb 0xd4e85905 0x39828bfb Ox6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9
0x84963793 0x263a6675 0Oxafa8892c 0x340904ff Oxaccb5103 0xf3bac932 OxbelfOaed 0x93c377cl
0x48142ead 0xdb911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 Oxac7dd73d 0x745b0c46 0x5cal756¢
0xdfb80fbd 0x88ceelfd 0x7bd6c417 0x43ab29df O0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462efbda
0xeab7751d 0xfb778e3d Oxfeled95d Oxae81df58 0x7fbdd0b7 0x230d3faf 0x538d1b09 0xad631e53

Oxaf8abf6d Oxd2aafd4c 0xc7f01506 0xfd258be0 0x299edd95 0xab6lcbbc 0x61171£52 Oxec8489a0
0x8bc2d93c 0xc9e9fdeb 0x54e85905 0x39828bfb Ox6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9
0x84963793 0x263a6675 0Oxafa8892c 0x340904ff Oxaccb5103 0xf3bac932 OxbelfOaed 0x93c377cl
0x48142ead 0xdb911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 Oxac7dd73d 0x745b0c46 0x5cal756¢
0xdfb80fbd 0x88ceelfd 0x7bd6c417 0x43ab29df O0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462efbda
0x400005da Oxaal465cb 0x1ff74cc3 0x99ff27al 0x08094a81 0x813cd212 0x8d045£30 0xf1716669

0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
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5.4 Experimental Results

By following the algorithm in Alg. [3 we evaluated the amplified probability for
the first and last several rounds. The results are shown in Table [l According
to our experiments, APBak = 9-4.24 gpFor — 9-473 41 the entire success
probability is 27898 which matches APP* x APFor = 97897 The attack
complexity is for 289 iterations of Steps 4-11 in Alg. @l Because we compute
quartets, the complexity is approximately 2''(~ 4 x 2898) compression func-
tion computations. Finally, we implemented our 4-sum distinguisher on 5-pass
HAVAL. An example of the generated 4-sum quartet is presented in Table ]l

6 Concluding Remarks

We studied the boomerang attack approach on hash functions. We proved that
the previous differential path on 5-pass HAVAL contained a flaw. We then con-
structed the new path and proposed the 4-sum distinguisher on the compression
function with a complexity of approximately 2! computations. We implemented
the attack and showed an example of the 4-sum quartet. As far as we know, this
is the first feasible result on the full compression function of 5-pass HAVAL.
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A Differential Path Search Algorithm for 5-Pass HAVAL

Our path search algorithm is semi-automated and minimizes the Hamming dis-
tance of the entire inside path. We independently searched for the path for
E; (steps 60 — 79) with Amgy = 0x80000000 and path for Es (steps 98 — 73)
with Vmy4 = 0x80000000. Conditions and contradiction of two paths were later
checked by hand. We only explain the algorithm for F; in Alg.[Bl HW () returns
the Hamming weight of the input variable.

After an enough number of iterations of Alg.[El we obtained the path in Table[G]
whose tempH D is 6.

B Examples of Boomerang Quartet

The differential paths in [9] can be used to construct a 4-sum on the compression
function. We show the generated 4-sums for MD5, 3-pass HAVAL, and 4-pass
HAVAL. The amplified probability to satisfy the entire path is approximately
278 for MD5, 272 for 3-pass HAVAL, and 27 for 4-pass HAVAL.
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