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Abstract. In [Mil03] [LM05], Millen-Lynch-Meadows proved that, un-
der some restrictions on messages, including identities for canceling an
encryption and a decryption within the same term during analysis will be
redundant. i.e., they will not lead to any new attacks that were not found
without them. In this paper, we prove that slightly modified restrictions
are sufficient to safely remove those identities, even when protocols con-
tain operators such as the notorious Exclusive-OR operator that break
the free algebra assumption with their own identities, in addition to the
identities considered by Millen-Lynch-Meadows.
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1 Introduction

1.1 Background

Consider the following protocol:

Message 1. A — B : [Kaglsha,B)
Message 2. C — A : [N]u(B,0)
Message 3. A — B : [[N](B,c)lsh(a,B)
Message 4. B — C : N.

(Notation: A, B,C are agent variables; K 4p is a session-key variable; N is a
nonce variable; sh(X,Y) represents the long-term shared-key of agents X and
Y'; [t]x represents t encrypted with k using a symmetric cipher).

Suppose A and B are played by two honest agents a and b, while C' is played
by a dishonest agent c¢. Then the following attack is possible:

Message 1. a—0b : [kab]sh(ap)

Message 2. c—a [n]sh(b c)

Message 3. c(a) — b : [kabsh(ap) (replaying Message 1)
Message 4. b—c : [kab]sh(b )"

(Note: We use all lower-case symbols now since this is a protocol execution.
¢(a) denotes ¢ spoofing as a).
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The protocol and the attack were inspired from the example in [Mil03]. Basi-
cally, in the attack, c replays the first message to b as the third message. Since b
does not know that the plain-text of the encryption is a session-key kg, not the
encryption that it was expecting, it would innocently decrypt it using sh(a,b),
then with sh(b,c), and send [kab];hl(b,c) td] ¢, thinking it sent n. Agent ¢ can
happily encrypt it with sh(b,c) that it shares with b, to learn kqp.

This vulnerability could be found when [KaB]sn(a,p) and [[N]ax(B,c)lshia,B)
are unified, whence it would be apparent that N should be substituted with
[K AB]S_;Ll( B.C)" However, we would not discover it, if the unification algorithm

did not include the identity [[p]; '] = p. i.e., an Explicit Decryption Operator
(EDO) identity.

Protocol analysis techniques that adopt an identity-free (or free algebra)
model such as [THGI8, MS01l, [HS02] miss attacks that exploit identities. Oth-
ers like the NRL analyzer [Mea92 [Mea96| that do include such identities would
discover them.

Millen considers this issue in [Mil03] and notes that, if protocols are designed
without terms like [ |~% (called pure protocols) and? do not contain terms of
the form [X] at all where X is a variable (called EV-Free protocols), then we
would never have terms of the form [[ |7!] during analysis, in which case, the
EDO identity is never used. For instance, in the above protocol, if message 3
is changed to [[N, Blsy(B,c)lsh(a,B), agent B would expect to see a pair after
decrypting with sh(A, B) and sh(B,C). If not, it would reject the message.
Hence, the attack exploiting the EDO identity would not exist.

Similarly, Lynch & Meadows extended Millen’s result to the asymmetric en-
cryption case [LM05]. They showed that if protocols do not use private encryp-
tion keys or public signature keys explicitly in messages and do not contain terms
of the forntd [X] 7, then cancellations in asymmetric encryptions will not be pos-
sible and the corresponding identities, e.g. [[t] ) )] i) = t Will be redundant
during analysis. They call such protocols, pk-pure, and PEV-free.

The point here is not that the example attack above is a realistic scenario,
but the conditions in which an identity-free analysis is sound. Indeed, it is
well-known that encryptions should have some redundancy to ensure correct
decryption and to use some random number in the plain-text as well, since de-
terministic encryption is insecure. Millen-Lynch-Meadows show that the same
principles are sufficient for identity-free analysis, and hence their restrictions are
not additional — they are a must anyway for secure protocols. But the lesser

1 [t],;1 denotes t decrypted with k using a symmetric cipher; the notation might seem

strange, but it is motivated by the fact that decryption in symmetric ciphers uses
the same key as encryption, but the process is inverted (or reversed).

2 Following Lowe [Low99], we use underscore ( ) when the value in that place is irrel-
evant in a formula; this helps the reader to focus on the important values.

3 We use a superscript — to indicate the use of an asymmetric cipher, because the key
inverse is used for encryption/decryption, but the process is the same as encryption
(there is not a reverse process for decryption).
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the identities used in protocol analysis, the easier and faster analysis becomes,
so Millen-Lynch-Meadows results are quite useful for protocol analysis.

1.2 The Problems and Our Contributions

We wanted to find out whether Millen-Lynch-Meadows results hold when more
operators are used in protocols that have their own identities, in addition to those
considered by Millen-Meadows-Lynch. For instance, the Exclusive-OR, (XOR) op-
erator is one such operator that possesses ACUN (Associativity, Commutativity,
existence of Unity and Nilpotence) identities. To be precise, the main questions
we were concerned about were:

1. Can we still conduct protocol analysis without the identities consid-
ered by Millen-Meadows-Lynch when protocols use operators such as
XOR that have their own identities?

2. Are the restrictions given by Millen-Meadows-Lynch sufficient in
such protocols or do we need more restrictions?

It is very important to find these out since many protocols used in real-life
such as SSH and SSL use the XOR operator. This operator is also notorious since its
ACUN identities were used to reveal surprising attacks that were not discovered
without them [RS98]. Further, contemporary research efforts are focusing on
these kind of problems. For instance, in a very recent work [SEMMI0], the
theory of ACUN with public-key/private-key cancellation was used to show new
attacks. [SEMM10] also emphasized the importance of studying combinations of
theories, quite strongly.

We found that EV-freedom doesn’t necessarily help under XOR. For instance,
if the third message in our example protocol was [[N @ Bl (B,c)lsn(a,B), it is
EV-Free. But the attack is still possible, by replaying message 1 into message 3,
since b cannot check the format of the XOR term inside. In fact, b would decrypt
the replayed message with sh(a, b), then with sh(b, ¢), and send [kab];lzl(b,c) Db as
the fourth message (thinking it sent just n). Agent ¢ can obtain k,, by xoring it
with b, followed by encrypting with sh(b, c).

But if the third message in the protocol is changed to some [[I,N @&
Blsn(B,c)lsh(a,B), the attack is thwarted, since B would look for a pair after
decrypting with sh(A, B) and sh(B, C). Using this concept, we make the follow-
ing contributions:

1. A combination and unification of the results in [Mil03] and [LMO05] who dealt
with symmetric and asymmetric encryption respectively, but not both;

2. We show that when protocols adopt a new, slightly modified version of EV-
Freedom, called EVX-Freedom, and the other restriction of Millen-Lynch-
Meadows called purity, using identities to cancel encryptions do not reveal
any new attacks under X0R (Section Bl);

3. We also show that if protocols obey another scheme that is a slight modifi-
cation of a scheme in [LMO05] called Structure (independent of purity and

EVX-Freedom), cancellation identities again do not reveal any new attacks;
4. We fix a few minor errors in [Mil03] and [LMO05].
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2 Protocol Model

In this section, we will define the term algebra in Section[2.]] attacker deductions
in Section 2.2, and constraint solving for protocol analysis in Section

2.1 Term Algebra

We assume the existence of a set of variables denoted Vars. The signature X
contains the set of nullary functions symbols denoted Constants and another set
of symbols to construct more terms: {tuple, senc, sdec, penc, sign, zor}.

senc and sdec represent symmetric encryption and decryption operators re-
spectively. penc represents asymmetric key encryption. There is no pdec, since
as we noted before, in most asymmetric ciphers, the process of decryption is the
same as encryption but using the inverse key. sign represents the signature of a
term such that sign(t, k) is a signature of ¢ that is to be verified using the inverse
of k.

We will call the terms created with operators senc, sdec, penc and sign as
“encrypted terms”. We will also use a predicate encrypted() that returns true
only if the argument supplied to it is an encrypted term.

Cumulatively, we define the infinite set Terms as,

Terms = Vars U Constants U {f(t1,...,tn) | f € X At1,...,t, € Terms}.

Syntactically, tuple(ti,... tn) = [t1,...,tn], senc(t, k) = [tlk, sdec(t,k) =
[t]lzla penc(tk‘) = [t]zv Sign(tvk) = [t]?v CL‘OT(tl,tg) =t ©ta.

We use a superscript — for signatures, since although they use asymmetric
ciphers, they are different from asymmetric encryptions, since they encrypt a
hash of the text, not the text itself.

In contrast to [Mil03] [LM05] who used a functional notation throughout,
we use the above syntactic sugar to denote terms, which we believe helps
in following the proofs. For instance, [LMO05] denotes the asymmetric encryp-
tion of X with a private-key K7 and public-key K> as pe(pk(Ka,pub, enc),
pe(pk(K1,priv,enc), X)), which might be easier to follow if denoted as
(X Iph i)

We will call ¢ in [t] or [t]; or [t]}” as the “plain-text” of those terms and k
as their “key”. We use functions plaintext() and key() to refer to the plain-text
and key of encrypted terms.

Using AC properties of zor, we write zor(t1, zor(ta,t3)) simply as t1 Dty Dts.

The subterm relation C is defined as,

(t/ C t) iff (t/ = t) \ (Hf € Xitt, ...ty t//) ((t" G(t{:’f(tt%n})’f\n()t)l/\g t")) .

We will denote the subterms of a term ¢ as SubTerms(t). We will denote the
subterms of ¢ that are encrypted as EncSubTerms(t). A ground term is a term
with no variables as subterms.
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By pk(k) and spk(k’) we denote the keys k and k' being used as public-keys
for asymmetric encryption. Similarly, pv(k) and spv(k’) as private keys. The use
of functions pk, pv, spk, spv helps in distinguishing the purpose of the keys and
define the identities and deductions accordingly. For instance, our identities and
deductions will not allow [t] 7, to be decrypted with spv(k).

Note also that pk(k) (and similarly puv(k), spk(k), spv(k)) does not mean
that k is necessarily an agent identity; it can be any term. i.e., pk(k) is not
necessarily an atomic key where pk() is a look-up function on agents’ public-
keys. It only denotes k being used is a key for asymmetric encryption that is
known to everyone and that it possesses an inverse denoted pv (k) that is known
to some or only one agent.

We define the following set of identities that reflect cancellation of asymmet-
ric/symmetric encryption/decryption rounds, denoted E1={FEs1, Es2, Ep1, Epa,
Eps, Epy} where,

Egi : [[ﬂ;l]li =t Bp1 s ([thiwlpuw =t Eps < g, 0)ipem =1
Esa : [[tlel, =, Ep2 < [[t] 0 )l pey =t Era ([ poy =1

We also give the ACUN identities, denoted E2 = {E4, Ec, Ey, En} where,

EAZtl@(tg@tg)Z(tl@tg)@tg,EUZt@O:t,
Ec :t1 ®to =ty Dy, En:t®t=0.

We denote E = E;yUFE,. We will denote by R/R1/Rs the rewriting rules to be
applied on a term to reduce it using the identities E/E;/Es respectively. R can
be shown to be confluent. Ry can be shown to be convergent using techniques
described in [Mea92]. Ry will not be convergent because of E¢. Hence, when
we refer to irreducibility under Es, we mean the irreducibility under E5 modulo
E4, Ec. We will denote the normal form of a term ¢ (or set of terms) modulo a
set of rewriting rules R as t | g.

The main results in this paper show that R; are inapplicable on terms under
some syntactic restrictions. This would mean that when R are applied on terms,
effectively only Ry are applied.

We will use a predicate irred(,) taking parameters a term/set of terms/sub-
stitution and a set of identities/rewrite rules that returns true if the former is
irreducible modulo the latter. E.g. If ¢ is a term, irred(t, Ry) is true if ¢ is
irreducible modulo Rj.

2.2 Attacker Deductions

Our attacker deduction model is based on Lowe’s model in [Low04]. We model
single step attacker deduction rules through the relation I, defined as:

F :: P(Terms) x Labels x Terms

such that, S F; s represents that the attacker can deduce s from S using the
action label [ belonging to the set Labels.
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We use two different sets of deduction rules to achieve two different results in
Sections [3] and @l We define them separately in those sections.

We define the derivation of a term s from a set of terms S using deduction
rules L, identities F that are represented by rewrite rules R, using the relation =:

Let S be irreducible by R. Then,

S ':E,L S <&
(3(S1F s1y..., 50 F sn))
(S1=5)A (sn = s)A (1)

(VZ S {17 .. ,TL}) (Si+1 cS;u {Si lR})/\
(F e Lyo;TH ) ((To =g Sio ANto =g s;0)).

Read S =g s as s is derivable from S using the deduction rules L and
identities E.

2.3 Protocol Analysis Using Constraint Solving

We now define strands to model protocols and constraint solving for protocol
analysis.

Definition 1 (Node, Strand, Protocol, Semi-bundle)

A node is a tuple (£,t), where + and — denote “sending” and “receiving” a term
t respectively. A strand is a sequence of modes. A protocol is a set of strands.
A semi-bundle is a collection of strands from a protocol, after applying some
substitutions to some of the variables in the strands.

We will overload the function SubTerms() to return all the subterms in a set of
strands.

A constraint is denoted m : T where m is a term and T is a set of terms. Pro-
tocol analysis on semi-bundles using constraint solving can reveal vulnerabilities
on protocols.

Definition 2 (Constraints, Satisfiability)
A constraint m : T is satisfiable using a substitution o, identities E and deduc-
tion rules D if To, mo are ground terms, and To =g p mo:

satisfiable(o, E,D,m : T) & To =g p mo.

A constraint sequence C' = (my : T1,...,my, : T,,) is from a semi-bundle S if

— everym: T € C is such that
e m is a term on a receiving node in S;
o cveryt € T is a term on a sending node in S;
e if m and t are on the same strand, then t precedeﬂ m;
— for allm;, m; wherei,j € {1,...,n}, m; precedes m; if they are both on the
same strand;
- (Vie{l,...,n=1})(T; C Tit1).

4 t; precedes t; if (t1,...,t,) is a strand and t;,t; € {t1,...,tn} 8.t 0 < j.
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C' is satisfiable with o under (E, D), iff every constraint in C is satisfiable
with the same substitution:

satisfiable(o, E, D, C) < (V¢ € C)(satisfiable(o, E, D, ¢)).

We denote all possible constraint sequences from a semi-bundle S as ConSeq(S).

We assume that every protocol has a set of variables that are intended to be
kept secret in each execution of the protocol. We denote them SecVars(Pr). We
also denote the constants substituted to those variables as secrets(S) if S is a
semi-bundle of Pr such that S = Prog for some substitution og.

A protocol has an attack on secrecy if a constraint sequence from a semi-
bundle of a protocol after an artificial constraint with a secret as the target term
to the end of the constraint sequence is satisfiable:

Definition 3 (Insecurity for secrecy)
A protocol Pr is insecure for secrecy under identities E and deduction rules D

if
- C=(:,..., :T)e€ ConSeq(S) such that S is a semi-bundle of Pr and
- C™(m:T) i satisfiable where m € secrets(S).

i.e.,

(Jo305;C5 S)
. (S = Prog) A (m € secrets(S))A
insecureForSecrecy(Pr, E, D) = (C=(:,. . :T)e ConSeq(S)A

satisfiable(o, E,D,C ™ (m : T))

3 Purity and EVX-Freedom Imply Soundness

In this section, we will prove that syntactic restrictions called purity and EVX-
Freedom on terms are sufficient to ensure that no new attacks can be found by
exploiting identities E; given in Section 211

3.1 Attacker Deduction Rules, D and DE

We first give rules D and DE that we will consider, starting with D:

[t1,. . tn] Fes, ti {t, k} Fsenc [tk {t, pk(F)} Fpkenc [tk
b1t} Formt [t stn] {[E]s k) Fodee t (Ut P ()} Fpoe ©
{t1,t2} Foor t1 B L2 {t, spo(k)} Fpusigene (o) {[tlpoky> SPE(R)} Fpusigaee ¢

Rules in DE include all the ones in D and some additional ones below:

{t. k} Fodene [ﬂ;l {t, pv(k)} Fpvenc [t];;(k) {t, spk(k)} Fprsigene [t];k(k})

5~ is the sequence concatenation operator.
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Notice that we don’t have the following deductions:

— {[t],;17k} Fsddec t, since it can be simulated with senc and the identity
Bsy: [ty e = 1.

= {[t] 0 (x> PE(F)} Fpudec T since it can be simulated with penc, and Eps; simi-
larly, pksigdec, which can be simulated with pvsigenc and FEp,4 respectively;

— {t1 ®ta,t1} F t1 and others involving @, that can be simulated with zor and
Es.

3.2 Purity and EVX-Freedom Requirements

We now define the syntactic requirements of purity and EVX-Freedom on proto-
cols that we claim void the deductions DE \ D and identities £ during protocol
analysis.

Definition 4 (Purity and EVX-Freedom).
A term t is pure if it does not have subterms of the form [ |~%, pv( ) or spk( ):

pure(t) < (B[], pu( ), spk( ) C1).

A term t is EVX-Free if the plain-texts of all its encrypted subterms are not
variables or XOR terms:

EVXF(t) & (Vt' C t)(plaintext(t') ¢ Vars A plaintext(t') # & ... D ).

The definition of purity might seem “non-uniform”: since it prohibits private
encryption keys pv( ), it might seem natural to prohibit private signature keys
spv( ) as well. But we need to permit either spv( ) or spk( ), not both, in order
to prevent the use of identities Eps and Eps. We choose to keep spv( ), since
one uses spk(k) to verify | ];v( s not vice-versa. If we prohibit spv( ), we would
have to expect people to possess other’s private signature keys!

Another alternative is to simply allow only terms of the form [t];k( k) in the
term algebra, with the intention that it represents that the signature of ¢ is
verified with spk(k). But in that case, we would have to remove any deductions
in D and DE that use spv( ), which is not unreasonable since signatures are only
verified — decrypting them will not serve any purpose since people encrypt the
hash of messages when signing, not the message itself.

We will call a protocol Pr as pure or EVK-Free if SubTerms(Pr) are pure or
EVX-Free respectively. We will assume that if a protocol is pure or EVX-Free,
then every semi-bundle from it is also pure and EVX-Free.

3.3 Soundness Proofs

In this section we will prove our main claim. We will start with a few lemmas
that assist us in the proof of the main theorem at the end.
The first lemma is the most crucial, lynchpin lemma.
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Lemma 1 (Purity and EVX-Freedom ensure irreducibility under R;)
Let t be a term and o a substitution. Then,

pure(t) AEVXF(t) A irred(o, R) = (to) |r= (o) |R, -

Proof. A term is reducible under R; if it has a subterm that resembles:

-7, 00 ];;( )];k( ) [l ]ﬁg( )];U( ) [l ];y( )];k( )’ [l ];k( )]?pu( y» OF
— [t 5 [tl,5 s [t5,0( )> such that a substitution to the term ¢ can result in the
term matching a term in the first case, after rules in Ry are applied.

But both these cases are not possible when a term is pure and EVX-Free by
definition.

Note that purity and EVX-Freedom do not prevent reducibility under Rs, but
only R;. For instance, as in the example given in the Introduction, [1, X ® A® bl
is pure and EVX-Free, but it is reducible under Ry with a substitution o =
{b/A}. But this is not of concern to us, since we are not trying to prove that our
syntactic restrictions prevent attacks that exploit ACUN identities, but only the
ones that exploit cancellation of symmetric/asymmetric encryption/decryption
operations (Ry).

Next, we define a new rewrite system P that “purifies” a term by replacing all
subterms of the form [X];' to [X]y. It also replaces those of the form [X Jpu(v)s
(X ];k(y) with X, since the decryption keys for those terms are publically avail-
able anyway.

(@ [t = [tk
(b) [t,0m —1
(c) [t];k(k) —t

P can be applied on any impure term to convert it into a pure term. Obviously,
every pure term t is irreducible modulo P. i.e., if ¢ is pure, then ¢t | p= ¢. Also,
every pure term is irreducible with R;.

The idea behind defining purification is to subsequently use it to show that any
breach of security in an “impure” analysis (using DE, F) can also be simulated
in a “pure” analysis (using D, E9) after purifying the terms.

The next lemma is similar to Lemma [I] except that only purity of a term is
assumed, not EVX-Freedom.

Lemma 2 (Irreducibility preserved under purification)
Let t be a term and o be a substitution. Then,

pure(t) A irred(o, P) = irred(to, P).

Proof. Under the symmetric case, since ¢ is pure, it does not have a subterm ¢’
such that ¢’ resembles [ ]71. Since o is irreducible, it does not have such a term
either. Hence, to will not have such terms and hence is irreducible under P.
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Similarly, for the asymmetric case, being pure, ¢ does not have any private
keys or public signature keys as subterms. Since o doesn’t have such terms either
(being irreducible under P), we have that to is irreducible under P.

Corollary 1. We can infer from the lemma that if t and o are irreducible under
P, it does not matter whether we purify to with P or first purify o with P and
then apply it to t. i.e., (to) lp=t(c |p).

The next step is to show that every single deduction in DE on a set of terms S
that are irreducible under R is also possible in D when necessary (i.e., if the
deduced term is not already in ), if S has been purified using P.

Theorem 1 (Deductions preserved under purification)
Let S be a set of terms. Then,

(S His) A (1 € DE)A (3 € D)(S Lpku s Lp)V
( irred(S, By) >:’<(sipeslp).}” & )

Proof (Sketch)
The detailed proof can be found in Appendix [Al Theorem [El
We show that for each deduction in DE, there is an equivalent deduction in D.
Deductions that deduce terms irreducible under R; are trivial. Some of these
are, ex;, comb, xzor, and pkdec.
For the other deductions, there are two possibilities: either the deduced term
is irreducible under Ry or reducible:

— If it is irreducible, we have a corresponding deduction in D when S and s are

purified. For instance, consider the following deduction using the rule sdenc
in DE: {t,k} Fodene [t]} "
If irred([t], !, R1), then we can have a deduction using rule senc in D:

{t lPa k lP} }_senc [t lP]kl}w

— If it is reducible, then we have another deduction in D which simulates the
combination of the equation that it is reducible with, and the deduction in
DE. For instance, in the same example as the first case, suppose t = [t']
(here ¢ must be irreducible under Ry, since ¢ is). Then, [[t'];]," =g, t'.
Hence, for the deduction below:

{[t/]k7 k‘} Fsdenc Ht/]k]lzl

we have the following deduction using rule sdec in D:

{[t/]klp7 k lP} Fsdec t
We are now ready to achieve the main result for this section.

Theorem 2 (Main Result 1)
If a protocol Pr is pure and EVX-Free and if Pr is insecure for secrecy under
(E,DE), it is also insecure for secrecy under (Ea, D).
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Proof (Sketch)

The detailed proof is in Appendix [Al Briefly, since Pr is insecure for secrecy,
from Def. Bl we have that a constraint sequence C' of a semi-bundle from Pr is
satisfiable after an artificial constraint with its target as a secret term is added
to C.

From Theorem [Il we have that if a constraint in C' is satisfied using =g pe,
it can also be satisfied using =g, p, if all the terms in C' are purified using the
purifying rewrite system P.

Hence, we have that Pr is also insecure for secrecy under (Es, D).

4 Structured Protocols

We now define the other requirement on protocols, namely “structured terms”:

Definition 5. A term is structured iff the plaintext of each of its encrypted
subterms is not a variable, an XOR term or an encrypted term;

(plaintext(t’) ¢ Vars)A
structured(t) < (Vt' C EncSubTerms(t)) | (plaintext(t') # & ...& A
—encrypted (plaintext(t'))

A protocol Pr is structured or structured(Pr) iff every term in SubTerms(t) is
structured.

A simple way to ensure that terms are structured is by adding constants as tags
to plain-texts of all encryptions that are not tuples, along the lines of [HLS03|
RS05, IML09].

Structured protocols need not be pure and they are EVX-Free by definition.
Structure achieves the effects of both purity and EVX-Freedom in preventing
cancellations.

Lack of purity allows cancellation after substitution. For instance, [[t];(leab] k
which will not occur in pure protocols is reducible when X = k @ b. Similarly,
for asymmetric encryptions, for pure protocols, [[ ];’}( )]ﬁf( ) do not occur, and
([ Ispu( )Jp( ) that could occur do not cancel because we assume spuv (k) # pv(k),
for all k and spk(k) # pk(k) as well. In this section, structure inhibits such
cancellations even in impure terms. We show that attacks found on structured
protocols using R can also be found using R, alone, with additional deductions
to make up for R;.

4.1 Attacker Deductions

Like in Section [3] we first define the attacker deduction rules that we will con-
sider. The first set of rules is DS, which are used only with Es. These include
those in D and some additional ones below:

{t.k} Fsdenc [t];Zl {t, pv(k)} Fpvenc [t];v(k) {t, spk(k) Fprsigenc [t];k(k)
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These were not part of D because of purity, but they were a part of DE,
because they were needed to be used in conjunction with R;.
DS also includes two more rules below:

{[t];;(k),pk(k)} Fpudec t {[t];k(k})7 spv(k)} Fpksigdec t

These were not in D because such terms do not appear in pure terms. But
now we do not assume purity. They were also not included in DE because they
can be simulated by combining a deduction rule and a reduction rule in R;.

We define DSE to include those in DS but excluding pkdec, puvsigdec, pvdec,
and pksigdec. DSE are used along with the identities E for deducing terms. The
excluded rules can be simulated with other rules and E. For instance, pkdec -
{{t] ki x) Pv(K)} Fprdec t can be simulated with pvenc - {t, pv(k)} Fpvenc [t] 1)
b%/;sing [t] )7.(x) in Place of ¢, whence, [t] 7 ) becomes [[t] 7 )]0 ) =t by virtue
(0) P1-

4.2 Proofs
We first prove a lemma that is analogous to Lemma [Tl

Lemma 3 (Irreducibility by R; preserved for structured protocols)
Let t be a term and o a substitution. Then,

structured(t) A irred(o, R) = (to) |r= (to) g, .

Proof. The only way to can be reducible under R; is if it was of the form [[ ]71] ,
ooy L)l Lo Sspecys Tlspr)lspu (-

But these forms are possible only if ¢ had an encrypted subterm of these forms
or an encrypted subterm with its plaintext a variable, XOR term or an encrypted
term so that to will resemble those forms. None of these are possible when ¢ is
a structured term.

Hence, we have, (to) |r= (to) |R,-

We are now ready to prove the main theorem on structured protocols. We do
not need to use any purification of terms using P now, since the theorem applies
for pure and impure protocols alike.

There was an error in the proof of a similar theorem in [LMO05, Theorem 3].
They claim they consider the deduction pkenc, but they actually consider pvenc
(most likely inadvertently). We fix it here.

Theorem 3 (Main Result 2)
If a structured protocol Pr is insecure for secrecy under (E, DSE), it is insecure
for secrecy under (Eq, DS).

Proof. We first prove that if S is a set of terms irreducible under Ry, then if a
term s can be deduced from S using rules in DSE, it can also be deduced using
rules in DS:

(Vi € DSE) (irred(S,Ri) A (Stislr,) = @' €DS)(Strs)). (2)
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This is straightforward for deductions like ex;, comb, and zor, which deduce
terms that are irreducible under R;. For instance, consider comb, which is pos-
sible in DSE and DS alike, since

{s1 lRr.»52 LR} Feooms (51 LRy, S2 LRy)

is the same as {51, S2} Feomb (S1,82), given that irred(S, R;) from hypothesis.

For the other deductions, we have to show that any result of a deduction in
DSE that is reducible under R; can be deduced using a deduction rule in DS
that was removed in DSE.

For instance, consider senc:

{t lRmk lR1} }_senc [t]k lRla

where [t]y, is reducible by R;. Then, ¢ must be some [t'];* where ¢’ and k are

irreducible. So the deduction is now: {[t'];' |z, k LR, } Fsenc (15 Tk lri =1,
But this is the same as: {[t’];l, k} Fsddec t'
(recall that sddec belongs to DS, but not DSE).

o Similarly, consider penc: If [t] 3, is reducible to ¢' such that ¢ = [t'] 7 ;.
en

{t lRupk(k lR1)} |_penc [t]ﬁc(k) lRl

is the same as {[t'] ;. Pk(K)} Fpodec T

Similar reasoning applies for pvsigenc which can be simulated by pksigdec if
the result [t were to be reducible.

We have included a formal version of the rest of the proof in Appendix [A]
since it is similar to Theorem 2

Informally, since Pr is insecure for secrecy, from Def. Bl we have that a con-
straint sequence C' of a semi-bundle from Pr is satisfiable after an artificial
constraint with its target as a secret term is added to C.

From above, we have that if a constraint in C is satisfied using =g pse, it
can also be satisfied using =g, ps, if all the terms in C are purified using the
purifying rewrite system P.

Hence, we have that Pr is also insecure for secrecy under (E3, DS).

5 Related Work

There has been a great amount of interesting research published in the last
decade combining algebraic properties with intruder deductions. For instance,
Basin et al. present a uniform and modular approach to handling algebraic prop-
erties in protocol analysis [BMV05]. A good coverage of such results is given in
the survey by Cortier et al. [CDL0G].

It seems that research in protocol analysis under algebraic properties at this
point is split largely into two directions:
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— Results showing how the properties can be included while developing anal-
ysis or verification tools. Extensions to the constraint solver, Maude-NPA,
ProVerif and other tools are being undertaken world-wide in this direction;

— Parallel results showing how to safely remove some identities, aiding in the
development and effective use of tools.

Our contributions in this paper clearly fall in the second category. While it is
not possible to cover all the related articles here, below are some results in the
same spirit:

— In a very significant result, Comon and Delaune describe how the presence of
the “finite variant property” which holds for theories such as Abelian groups
ensures that some algebraic properties can be safely removed [CDO3];

— In [KTO08], Kuesters-Truderung demonstrate the @-linearity property for pro-
tocols to reduce the protocol verification problem to free algebra verification,
when verifying using ProVerif;

— In [ML09, Mall0] we have shown that under the restriction of tagging mes-
sages (similar to the tagging in this paper), the role of ACUN identities
during unification is restricted so that unifiers result only from syntactic
unification. The net effect being that removing type-flaw and multi-protocol
attacks from consideration during analysis is sound.

6 Conclusion

In this paper, we proved that every attack found by including cancellation iden-
tities for symmetric and asymmetric encryption/decryption can also be found
without them, under some reasonable syntactic restrictions on protocols, even
when they use operators like Exclusive-OR, that possess their own identities.

The basic concept behind EV-Freedom [Mil03], PEV-Freedom [LMO05], EVX-
Freedom, and Structure is the same: Protocols should be designed so that agents
will be able to verify some property of messages after decryption, such as their
number in the protocol, operators used to create them etc. This is a prudent en-
gineering practice [AN94], has been used to guarantee protocol security against
important forms of attacks [HLS03, [GT00, MTL09, Mall0] and ensure decidabil-
ity [Low99, [RS05].

Exclusive-OR is just one of many similar operators and theories that we can
extend the results under. Especially, theories that are disjoint with the standard
algebre@ like monoidal theories can be similarly considered and the main results
can be easily achieved. Only Lemmas[Il and [3 would have to be changed for other
theories.

Identities such as [a,b] = a, [a,b] = a @ b etc. cannot be similarly considered,
since the lynchpin Lemmas [Il and [ cannot be extended when E» contains those
equations. But such identities are usually quite unrealistic and impractical, so

6 i.e., those that do not use free operators like tuples in their identities.
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it is probably not worth the trouble to invent restrictions that would preserve
soundness of analysis under them anyway.

As pointed out in [LMO05], our results on purity and EVX-Freedom cannot be
extended directly to other trace properties, in particular, authentication. This
is because, they involve purification that alters the protocol specification. For
instance, authentication of an agent that she is indeed Alice might depend on
determining if the agent possesses [secret];u (Alice) according to the protocol. But
our main theorem 1 in Section ] purifies the term into secret, removing the
encryption layer. Therefore, its derivation in a purified protocol doesn’t imply
that authentication is violated under (Fs,D) in the original protocol as well,
since it is sent in plain anyway. This is not a problem for the main theorem 2
on structured protocols though, since there is no purification or alteration of
protocol there. That result can be extended to authentication by a suitable
definition for that property, analogous to Def. [B] for secrecy.

The results in this paper are part of an ongoing effort to scale the security
analysis of protocols hierarchically following [Mea03], starting with the most ba-
sic model. Extensions of results would require extending proofs in the base model
appropriately with additional operators, theories and attacker capabilities. While
Millen’s result [Mil03] was the initial base for this result, Lynch-Meadows was
the next step in the hierarchy. Our contribution is about extending both [Mil03]
and [LMO5] appropriately with an additional equational theory, and extending
their proofs accordingly by strategically introducing the theory at crucial points.

We believe that future research in protocols will have to be similarly con-
ducted, building on the work in the base model, extending it to the desired level
in the hierarchy.
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A Detailed Proofs

Theorem 4 (Deductions preserved under purification)
Let S be a set of terms. Then,

(Sks)A (e DEYA (F" € D)(S |pry s lp)V
( ilrred(S,Rl) > = <(s lpe Slp).P votr) )

Proof. We will prove the theorem for each deduction in DE.

ex;, comb: For deductions ex; and comb, that every deduction in DE has a cor-
responding deduction in D is obvious. For instance, if {s1, s2} Fcoms
[s1, $2], then there can be a corresponding deduction in D such that
{51 lp,s2 lP} Fcomb [51 lp,s2 lP]
senc: Suppose {t,k} Fsenc [t]x. Then, we have two cases:

irred([t]r, R1): In this case, we can have a deduction
{tlp,klp}Fsenc [t P lkip-

—irred([t]r, R1): In this case, since irred(t Ry), suppose t = [t']; !,
where irred(t’, Ry). Then, [t]; =g, [[t];']x = t'. We will then use
sdec ont | p, k | p such that {t |p,k [p} = {[t’],:1 lpklp}t =
{[t, lP]klpa k lP} l_sdec

sdec: If {[t]k, k} Fsdec t, then irred(t, Ry) since irred([t]i, R1). Therefore,
we can have a deduction {[t | pli| s} Fsdec t I P-
sdenc: If {t,k} Fsdenc [t],;l, we have two cases:
irred([t]; !, R1): Then, we can have a deduction
{tlp,k lP} Fsene [t 1Pkl p-
—irred([t ]k ,R1): Then, suppose t = [t’],;l, where irred(t’, R;), since
irred(t, Ry). Then, [[t ’]k],; =g, t'. Hence, for {[t'|k, k} Fsdenc [[t’]k]gl,
we have {[t'|x .k P} Fsdec t/
zor: If {t1,t2} Fuor t1 ® to, then we can have: {t1 |p,ta [P} Faor t1 P
®ta |p.
pkenc: {t, pk(k)} Fprenc [t] 7 (r)- We have two cases:
irred([t],; ), R1): Then, we have {t | p,pk(k | p)} Fpkenc [t LP] o7 ,)-
—|1rred([ Lokry> Ba): Let t = [t'] 7 ). Then,
([0 Lrspk(k L)} = {t' Lp, pk(k | )} which implies #' | p€ S |p.
Similar reasoning applies for pusigenc.

pkdec: Suppose, {[t] ;1\, pv(k)} Fprdee t. Then, we have,

{1t LPlpkerp): PU(E LP)} Fpkdec T Lp-
Similar reasoning applies for puvsigdec.
pvenc: Suppose, {t, pv(k)} Fpvenc [t],,x)- We have two cases:
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irred([t],; ;) R1): Then, [t]7 ;) | p=1 |p, which belongs to
{tlp,po(k Lp)}.

—irred([t] ) ., R1): Then, let ¢ = [t'] 7, . So we can have,
{[t/ lP];;;(klp)va(k 1P)} Fpkdec t' |p. Similar reasoning applies for
pksigenc.

Theorem 5 (Main Result 1)
If a protocol Pr is pure and EVX-Free and if Pr is insecure for secrecy under
(E,DE), it is also insecure for secrecy under (E2, D).

Proof. Since Pr is insecure for secrecy under (F,DE), from Def. 2l suppose C =
C'™(m : T,), where m € secrets(S), S = Prog,C'=(my : T1,...,my : Tp,)€
ConSeq(S) where:

(Jo) ((Ym : T € C)(To Ep,pe mo)). (3)

Consider a constraint m : T € C. Let To = X, and mo = z. f To =g pe z,
then by the definition of = (Eq. [l) we have:

(@S F s S 5a)

(S1=X)A (s =2)A A

i {1, [ (Si © iU s Lab)n e
(N eDE;o;TH t)(To =g Sioc ANto =g s;0).

Since m and T are pure, EVX-Free, if ¢ is irreducible modulo R, from Lemmal/l
we have:

(Vt e ToU{mo})(t |[r=1t |R,)- (5)
which implies irred(To U {mo}, R1) and also that

(VteToU{mo})((t=pt') = (t =g, t')). (6)
Combining ) with (), @) and Theorem [Il we have:

(3(ST sty 8, F s)))
(p < n)A
. (S1=X1p)A(s, =z |lp)A (7)
N R AR=E A P '
(J € D;o;T by t)(To =g, Sjo Nto =g, s,o).

which implies X lP’:Eg,D x lp. i.e., (TO') lP’:Eg,D (ma) lp.
Using this in Corollary [l we have, To | pFg, p mo |p.
Applying this in ([B]) above, we have:

(30) ((Vm T e C)(TO’ lP):EQ,D mao lp)) (8)

From Def.[3] this implies that Pr is insecure for secrecy under (Es, D). Hence,
the result.
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Theorem 6 (Main Result 2)
If a structured protocol Pr is insecure for secrecy under (E, DSE), it is insecure
for secrecy under (E2, DS).

Proof. We first prove that if S is a set of terms irreducible under Ry, then if a
term s can be deduced from S using rules in DSE, it can also be deduced using
rules in DS:

(V1 € DSE) (irred(S, Ri) A (Stis Lry) = (B3 € DS)(SFry s)).  (9)

This is straightforward for deductions like ex;, comb, and zor, which deduce
terms that are irreducible under R;. For instance, consider comb, which is pos-
sible in DSE and DS alike, since

{31 lRu 52 lRl} Fcomb (51 lRu 52 lR1)

is the same as {51, S2} Feomb (81, 82), given that irred(S, R;) from hypothesis.

For the other deductions, we have to show that any result of a deduction in
DSE that is reducible under R; can be deduced using a deduction rule in DS
that was removed in DSE.

For instance, consider senc:

{t lR17k lR1} }_senc [t]k lRu

where [t]); is reducible by R;. Then, ¢ must be some [t]; " where # and k are
irreducible. So the deduction is now:

{[t/]lzl lRu k lRl} }_senc Ht/]lzl]k lRlz t

But this is the same as: {[t'],; ', k} Fsgaec t' (recall that sddec belongs to DS,
but not DSE).

Similarly, consider penc: If [t] ;1 is reducible to ' such that t = [t'] 7 ), then
{t lry, pk(k LR1)} Fpene [t];C I LR, is the same as {[t’];;(k),pk(k:)} Fpvdec t'.

Similar reasoning applies éor pusigenc which can be simulated by pksigdec if
the result [t were to be reducible.

Since Pr is insecure for secrecy under (E, DSE), from Def. 2l suppose C =
C'"~(m : T,), wherem € secrets(S), S = Prog,C' =(my : T1,...,my : Tp) €
ConSeq(S) such that:

(Ela)((Vm : TEC)(TO’ 'ZE,DSS ma)) (10)

Consider a constraintm : T € C.Let To = X, and mo = z. I To =g pse «,
then by the definition of = (Eq. [l) we have:

(3<Sl H S1y-eey Sn - 5n>)

(S1=X) A (sp =)\

(Si+1 € SiU{si [rPA (11)
(F e DSE;o)((T i tA ’

(TU{t})o =g (Si U{si})o)).

(Vie{l,....,n})
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Since m and T are structured, if ¢ is irreducible modulo R, from Lemma [3]

we have:
(Vt € ToU{mo})(t lr=1 |R,)- (12)

which implies irred(To U {mo}, R1) and also that
(VteToU{mo})((t=pt')= (t =g, t)). (13)

Combining (1)) with (1), (@3) and @) we have:

CETE RN AR
51 C 8 ({ s (14)
. ir1 © S, Ui LR,
(Vi€ {l,....n}) (azfé DS o) (T o 1 :
(T U{t}o =g, (S;U{si})o)).

which implies X =g, ps z. i.e., To Eg, ps mo.
Applying this in (I0) above, we have:

(Jo) ((Ym : T € C)(To Eg,,ps mo)) . (15)

From Def. B this implies that Pr is insecure for secrecy under (Es, DS).
Hence, the result.
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