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Abstract. The multi-objective optimization involves multiple, competing 
functionality requirements, which is mainly limited to downstream detailed 
design. Axiomatic design provides the theory to design a complex system top 
down and deals with multiple functional requirements (FR). It has demonstrated 
its strength in various types of design tasks. In fact, the objective function is a 
FR and those variables affecting the objective function are the design 
parameters (DPs). This paper presents an application of axiomatic design to 
multi-objective optimization. First, identify the relationship between FRs and 
DPs in terms of contribution of each DP to each FR by using orthogonal 
experiment and analysis of variance (ANOVA); then identify important design 
parameters to a FR and classify design variables into groups based on 
uncoupled design philosophy; and then establish the function dependence table, 
and sequentially optimize every objective function. An application in a disk 
brake design is used to demonstrate the use of the proposed method in dealing 
with real-world design problems. The results show that the proposed method 
provides a promising approach to optimize multiple, competing design 
objectives. 

Keywords: Axiomatic design, Multi-objective optimization, ANOVA, Disk 
Brake. 

1 Introduction 

Multi-objective optimization is generally more difficult to achieve each objective 
optimum because of tradeoff between the various objectives, so the absolutely 
optimal solution may not exist. Axiomatic design approach has demonstrated its 
strength in various types of large-scale system design, including vehicles, aircrafts, 
manufacturing facilities, and so on [1]. Liu [2], Hwang [3] and Jeff [4] apply 
independent axiom of axiomatic design theory to improve and optimize multi-
objective and large-scale engineering systems. In this paper, a systematic method is 
presented for applying independent axiom to multi-objective optimization problems. 
Firstly, identify the relationship between FRs and DPs in terms of contribution of 
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each DP to each FR by using orthogonal experiment and analysis of variance; 
secondly, important design parameters to a specific objective are identified and could 
be grouped into one set of parameters by means of the “uncoupled” philosophy of 
axiomatic design; then establish the function dependence table, and optimize every 
objective function in sequence.  

2 Multi-objective Optimization Formulation 

The mathematical model of multi-objective optimization is generally expressed as 

Min: { }T
21 )()()()( xxxx mfffF ，，，=  

s.t. 0)( ≤xjg qj ,,1=  

0)( =xkh pk ,,1=

(1) 

where, x=(x1, x2, …,xn)
T is  n-dimensional design variables; F(x) is the vector of 

objective functions; fi (x) is the ith sub-objective function and m is the number of sub-
objective function; gi (x) is the jth inequality constraint and q is the number of 
inequality constraint functions, hk (x) is the kth equality constraints and k is the 
number of equality constraint functions. 

In the above equation, achieving the optimum of each objective is generally 
difficult. Specially, when there are tradeoffs between the various objectives, namely, 
the optimization problem has conflicting goals, it is impossible to make each sub-
objective simultaneously attain optimum. Thus, it should be required that the optimal 
solutions of all sub-objectives are balanced, so that the totally satisfactory solutions 
can be obtained. Compared to single objective optimization, the theory and 
computational methods on multi-objective optimization are not perfect. Therefore, it 
is necessary to introduce other relative design theories, such as axiomatic design, to 
further promote multi-objective optimization theory and methodology. 

3 Optimization Design Based on “Uncoupled” Philosophy 

In fact, the objective function is a FR and those variables affecting the objective 
function are the DPs already mentioned. But, in this case, the FR must be able to be 
expressed by the DPs in the form of a mathematical equation. It is obvious that 
optimization design is the method mapping between one FR and a set of DPs at a 
lower or the lowest level of FR and DP hierarchies in the process of axiomatic design 
[5]. For the design with only a FR, FR is clearly independent, and the optimal value of 
FR can be easily obtained by adjusting the corresponding DPs. Here, optimal design 
is very effective. For those with multiple objective functions, it is difficult to tune the 
corresponding DPs to simultaneously obtain the optimal solutions of FRs. For 
example, in order to obtain the optimum of FR1, the value of DPs should be tuned. In 
order to improve the FR2, the value of DPs should be further tuned, but the 
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FR1 will be changed. Therefore, it is needed to return to tune the DPs to optimize 
FR1; on the contrary, the FR2 will be changed. So again, this is a trade-off among 
multiple objectives.   

In the axiomatic design, uncoupled or decoupled design is a good design [1]. The 
functional forms of the relations with two functional requirements are as follows: 

For uncoupled design: )( 111 xff = , )( 222 xff =  

For decoupled design: )( 111 xff = , ),( 2122 xxff =  

where f1 and f2 are functional requirements and x1 and x2 are corresponding design 
parameters. For uncoupled design, the design parameters can be determined 
separately. For decoupled design, x1 and x2 should be determined sequentially. In the 
first step of the decoupled design, the value of x1 can be get by optimizing f1, and x1 is 
fixed in the next step as x1

*. In the second step, the value of x2 can be obtained by 
optimizing f2. The solution obtained from the above process could not be the optimum 
when x1 is not fixed in the second step. Therefore, the decoupled design may not be 
good one when the design solution is calculated by a mathematical optimization. It is 
necessary to make the design to be uncoupled design. 

In the multi-objective optimization problems, there are usually two different 
solving methods. The one is that the most important FR is selected as an objective 
function and the other FRs are ignored. Thus multiple FRs are transformed into single 
FR, and optimization is effective to determine the optimal value of FR and the value 
of corresponding DPs, but the other FRs can't be optimized. The other is that every 
FR is weighted to form the aggregate objective function. Although it is also single FR 
optimization, it can't optimize FRs directly. Additionally, it is difficult to identify the 
weight. Therefore, in order to satisfy the independence axiom, FRs should be 
redefined or DPs should be reselected, and the different FRs is controlled by 
corresponding DPs independently. For uncoupled design, each sub-objective of multi-
objective optimization is independent mutually, which is equivalent to single 
objective optimization. 

For coupled design problem: ),( 2111 xxff = , ),( 2122 xxff = . If the influence of x1 

on f1 is far greater than that of x2 on f1, and the influence of x2 on f2 is far greater than 
that of x1 on f2, the problem can be considered as a nearly uncoupled problem. Thus 
the axiomatic design process can be applied. When the influence of design parameters 
on the rest of design objectives can't be ignored, it is a strong coupling problem that 
can’t be dealt with by axiomatic design. 

Generally, there are more design variables than objective functions in optimization 
design. However, according to axiomatic design theory, the number of design 
variables (design parameters) must be the same as that of the objective functions 
(functional requirements in axiomatic design). Therefore, these designs are generally 
redundant, or may be coupled, and they violate the independence axiom and are not 
good designs. When the number of design variables is large, the variables can be 
grouped to have similar characteristics via the sensitivity information. That is, 
important variables to a specific objective function can be grouped into one set of 
parameters, and the number of the groups is the same as that of the objective 
functions. Thus the design is rearranged to be a nearly uncoupled design. The 
pertinence is backed up by the Theorem 8 in axiomatic design theory. 
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Theorem 8: Independence and Tolerance. 
A design is an uncoupled design when the designer-specified tolerance is greater than 
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in which case the non-diagonal elements of the design matrix can be neglected from 
design consideration. 

A multi-objective optimization problem will be transformed into single objective 
optimization problem in sequence by utilizing the method of large-scale optimization 
system or decomposition and coordination method of multi-disciplinary optimization. 
As the optimal solution of each sub-objective function may be not the optimum of 
multi-objective optimization, among of sub-objective function should be coordinated. 
According to optimization method on decomposition and coordination, the design 
variable of the previous objective function is fixed in the next objective function in 
the optimization process; the next objective function only optimize those design 
variables that is classified into this group, and the optimal variables will be returned to 
the previous objective function. By an iterative manner again and again, the 
optimization process continues until it satisfies the convergence condition. The key 
question of the "decomposition/coordination" optimization is how to identify the 
corresponding design variables and constraints of each objective function. In large-
scale / multi-disciplinary optimization, the design variables are grouped according to 
the locations of parts in structural design or experts-based domain knowledge. In this 
research, the decomposition is based on the relationship between DPs and FRs, which 
is defined as "logical decomposition". 

4 Optimization Design Method Using Independent Axiom 

The steps of multi-objective optimization design using independent axiom in 
axiomatic design can be given as in the following: 

Step 1. Select design variables and identify objective functions and constraints. 
Consider an optimization design problem that consists of six design variables, three 

objective functions and three constraints functions which is given by the following 
design equation. 
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The vector of design variables is { }T
654321 ,,,,, xxxxxx=x . 
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Step 2. Put the optimization objectives and design variables into a design matrix. 
The relationship between design variables and optimization objectives is expressed as 
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where FRi is the ith functional requirement, namely design objective. The sign “1” 
means a relation exists and “0” means there is no relation between FR and design 
variable. 

If the design matrix is rearranged into a new matrix by making it as diagonal matrix 
as possible, it shows the optimization objectives are independent, then turn to step 4. 

Step 3. Use orthogonal experiment and ANOVA to identify the contribution of 
each design variables to objective functions, and determine the principal design 
variables and ignore those design variables with small influence. In design matrix, the 
sign “ × ” means design variable has significant effect on FR and “+” means design 
variable has little effect on FR. The equation (4) is rewritten as 
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Rearrange the design matrix to make it as diagonal matrix as possible.  
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The design variables are grouped and the number of the groups is the same as that of 
optimization objectives. Thus, the design will be nearly uncoupled design. According 
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to equation (6), the design variables are classified into three groups. The design 
parameters DP1 include x1 and x2, DP2 include x4 and x5, and DP3 include x3 and 
x6. Then the formula can be rewritten as 
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Step 4. Suppose xp and xq lie in the same group fi(x), if one constraint is only relative 
to xp and xq, this constraint will be classified into this group. All other constraints are 
classified into different groups by analogy, and then go to step 6. Otherwise, go to the 
next step. 

Step 5. According to the relationship between the design functions (including the 
objective function and constraint functions) and design variables, establish the 
dependence matrix on the design functions and design variables, which is named as 
the function dependence table (FDT). If a constraint function relates to one design 
variable, the corresponding position in FDT is marked as “1”, otherwise marked as 
“0”. Here, the contribution values of design variables on the constraint function are 
not considered. The relationship between the objective function and design variables 
is still marked as "×" or "+". 

Table 1. Function Dependence Table 

 x1 x2 x4 x5 x3 x6 
f1 × × + +   
g1 1 1     
g2 1   1   
g3 1   1 1 1 
f2 +  × ×  + 
g2 1  1 1   
g3 1   1 1 1 
f3  + + + × × 
g3 1   1 1 1 

 
In any case, the constraints must be met, so they can be classified into the different 

groups. Namely, if a constraint relates to design variables of multiple groups, it can be 
respectively classified into those groups. As shown in table 1, g1(x)  only relate to 
{f1(x); x1, x2}, it will be classified into this group; g3(x) relate to design variables of 
three groups {x1; x5; x3, x6}, it will be respectively classified into these groups. 

Step 6. If the design functions of each group are independent, the multi-objective 
optimization problem can be solved by single objective optimization manner. Then go 
to step 10. However, in many cases, even if the objective functions are independent, 
the constraint functions are often closely linked to each other. So, it can not be solved 
in single objective optimization manner and should be optimized in sequence. 



68 Z. Wu, X. Cheng, and J. Yuan 

Step 7. Determine the order of each group and optimize them in sequence. 
According to the order of optimization, if the optimization objective and constraints in 
one group not only relate to the design variables in this group, but also they relate to 
that in other group, the design variables in this group is only optimized and that in 
other group will be fixed. In the next group, the values of design variables obtained 
from the previous group are fixed. Each group is optimized in sequence, and set k = 1. 

Step 8. Start from the first group continuously, the design variables in other groups 
are fixed. The other groups will be optimized in sequence and set k =k+1. 

Step 9. Determine the optimization results whether meet the convergence criteria. 

If ( ) ε<− ++ 11 kkk xxx , then return to step 10, where ε is the convergence precision 

and is usually set 43 10~10 −−=ε . Otherwise return to step 8 and continue for the 
next cycle. 

Step 10. Output the optimal solution ( )** F，x . 

The algorithm flow of optimization design using “uncoupled” idea of axiomatic 
design is shown in figure 1. 

5 Case Study 

In the optimization design for caliper disc brake used in automobile, the short braking 
time and small nave parameter under controllable temperature are required. When the 
vehicle is full-loaded the load of a single wheel W is 3400N; the vehicle’s running 
speed v is 160km/h; the radius of a wheel r is 350mm; the number of brakes (i.e. 
number of wheels) m is 4; the allowed maximum diameter for brake disk [Dmax] is 
300mm; the allowed maximum temperature [Tmax] is 260ºC; the material of brake disc 
is steel and the original temperature Ti is 35ºC; the diameter of nave Dh is 75mm; the 
friction coefficient between pad and brake disc μ is 1 and the adhesion coefficient 
between tire and road surface φ is 1; the allowed maximum pressure of pad [pmax] is 
3MPa; the allowed maximum oil pressure of hydro-cylinder [p0max] is 7MPa; the 
thickness of hydro-cylinder wall tc is 6.5mm. 

The structural relationship between caliper and brake disc is shown in fig. 2. The 
circular friction surface of pad is discretized as an arc concentric with the disc, as 
shown in fig. 3. Considering that asymmetrical wear process lead to pv´ (unit-pressure 
× Rotate-speed) become balance gradually on the whole fiction plane, so we suppose 
that pv´ =C=const. 

The force of pad acting on disc: 
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Fig. 1. The flow diagram of optimization design using “uncoupled” idea of axiomatic design 

                

1. piston    2. pad    3. disc                          1. pad    2. pad disc 

Fig. 2. The structure diagram of disk brake            Fig. 3. Calculation diagram of brake 
 

 



70 Z. Wu, X. Cheng, and J. Yuan 

The friction torque of braking: 
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During the process of breaking the power dissipation of pad and brake disc is as 
much as kinetic energy of auto vehicle. Then the braking time can be derived: 

mgnIF
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where Wa is total weight of a car (N); n0 is the rotation speed of brake discs or wheels 

when start braking (r/min); F is thrust force of oil cylinder, 0
2

4
pDF p ⋅= π

, where 

Dp is diameter of piston (mm); p0 is oil pressure (MPa) 

5.1 Mathematical Model 

(1) Design variables 

{ }T
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The design variables are shown in fig. 2 and fig. 3. 
(2) Constraint functions  
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where J is mechanical equivalent of heat and equals to 1 N·m/J; c is specific heat 
capacity and equals to 472.8 J/kgºC; ρ is density and equals to 7.8×10-6kg/mm3; E is 

power dissipation of friction torque and equals to )2/(2 mgvWa ⋅ . 
(3) Objective functions 

To assure the safety of vehicle, it is essential to improve the work efficiency of 
brakes and to shorten the braking time, so minimizing braking time should be 
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considered as optimization objective. In addition, minimizing thickness and 
temperature of the brake disc can be also considered as other two objectives. i.e.: 

Min )(xF = Min { }T
321 )()()( xxx fff ，，    . (12) 

where f1( x )=t, f2( x )=a, f3( x )=
5

2
3

4

xxcJ
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5.2 Computing Process and Results 

(1) Identify the relationship between optimization objectives and design variables in 
terms of design matrix, and then rearrange the design matrix to make it into a nearly 
diagonal matrix or triangular matrix. 
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As FR1 is independent of FR2 and FR3, and FR2 is only related to x5, so we only 
need to determine the contribution of x3 and x5 to FR3. Since there are three sub-
objectives in optimization design, the design variables can be grouped and the number 
of the groups is three. 

Table 2. Level of factor (unit: mm) 

Factor 
Level 

1 2 3 

x3 200 250 300 
x5 4 5 6 

(2) Identify the contribution of x3 and x5 to FR3 using orthogonal experiment and 
ANOVA. Three levels are determined for both x3 and x5, as shown in table 2, and the 

orthogonal table )3( 4
9L  is selected.  

The results of ANOVA show that x3 has great influence on FR3 and x5 has small 
influence on FR3. Then the equation (13) can be rewritten as 
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(3) Establish the function dependence table. The FDT of disc brake is shown in Table 3. 

Table 3. FDT of disc brake  

 x1 x2 x4 x6 x5 x3 
f1 1 1 1 1   
g1 1 1     
g2 1 1    1 
g3 1  1    

      g5    1   
g6 1 1 1 1   
g7 1 1 1 1   
f2 +    1  
g8     1 1 
f3     + × 
g2 1 1    1 
g4      1 
g8     1 1 

 
(4) According to table 3, f1(x) is independent of f2(x) and the relation between f3(x) 
and f2(x) is nearly uncoupled. Thus, f1(x) and f2(x) can be optimized simultaneously. 
But both the constraint g2 in the group {f1(x)} and g8 in the group {f2(x)} relate to x3 
in the group {f3(x)}, x3 should be fixed in the optimization process of f1(x) and f2(x). 
When f3(x) is optimized, x1, x2 and x5 should be fixed. 

Continue the next iteration until convergence criterion is satisfied. Then the 
optimal solutions are obtained. 

The initial sizes of disc brake and the results of the weighted optimization method 
and the proposed method in this paper are summarized in table 4, here weighting 
factors w1, w2 and w3 are 0.495, 0.495 and 0.01 respectively. According to the results 
and process of calculation, it shows that results obtained from the weighted 
optimization method will change with different weighting factors, so it is difficult to 
balance every objective. The optimal results based on the proposed method are more 
satisfactory, which consider the influence of design variables to design objectives and 
make the design to be nearly uncoupled design. The values of the first two objectives 
are smaller except the third objective, which is consistent with the importance of the 
first two objectives. 

Table 4. The optimal results  

 x1(mm) x2(mm) x3(mm) x4(mm) x5(mm) x6(MPa) 
f1(x)=t 

(s) 
f2(x)=a 
(mm) 

f3(x)=T 
(ºC) 

Initial value 100 60 280 40 5 3 7.241 5 378.938 
Weighted 

optimization 
100.016 60.036 280.145 40.077 7.272 3.516 6.153 7.272 207.484 

Proposed 
method 

100.052 60.121 300 40.258 5.848 4.727 4.535 5.848 224.997 
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6 Conclusions 

In this paper, a new method of multi-objective optimization is presented. The concept 
of contribution of design variables to design objectives is used to identify the relation 
between them. Following the “uncoupled design” idea of axiomatic design, the design 
matrix is rearranged to be as diagonal matrix as possible. If the design is a nearly 
uncoupled design, an iterative method is suggested. The important design variables to 
a specific objective are identified and can be grouped into one set of parameters, and 
then establish the function dependence table and optimize every objective function in 
sequence. The optimization design of disc brake has been solved to show the validity 
of the proposed method. 
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