
J. Tang et al. (Eds.): ADMA 2011, Part II, LNAI 7121, pp. 152–165, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Mining Good Sliding Window for Positive Pathogens 
Prediction in Pathogenic Spectrum Analysis* 

Lei Duan1, Changjie Tang1, Chi Gou1, Min Jiang2, and Jie Zuo1 

1 School of Computer Science, Sichuan University, 
Chengdu 610065, China 

2 West China School of Public Health, Sichuan University, 
Chengdu 610041, China 

{leiduan,cjtang}@scu.edu.cn 

Abstract. Positive pathogens prediction is the basis of pathogenic spectrum 
analysis, which is a meaningful work in public health. Gene Expression 
Programming (GEP) can develop the model without predetermined 
assumptions, so applying GEP to positive pathogens prediction is desirable. 
However, traditional time-adjacent sliding window may not be suitable for GEP 
evolving accurate prediction model. The main contributions of this work 
include: (1) applying GEP-based prediction method to diarrhea syndrome 
related pathogens prediction, (2) analyzing the disadvantages of traditional 
time-adjacent sliding window in GEP prediction, (3) proposing a heuristic 
method to mine good sliding window for generating training set that is used for 
GEP evolution, (4) proving the problem of training set selection is NP-hard, (5) 
giving an experimental study on both real-world and simulated data to 
demonstrate the effectiveness of the proposed method, and discussing some 
future studies. 
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1 Introduction 

Infectious disease prevention and control is an important and urgent issue in daily life. 
For example, thousands of people lost lives by SARS and A/H1N1. Correspondingly, 
adopting effective measures to prevent and control infectious diseases is a meaningful 
and challenging problem for public health research. To implement effective measures 
for infectious disease prevention and control, it is necessary for scientists to make 
clear of the infectious agent, that is, the pathogen of the infectious disease. The 
pathogen is a disease producer such as a virus, bacteria, prion, or fungus that causes 
disease to its host. For example, SARS is caused by a coronavirus [1]. 

The pathogenic spectrum of an infectious disease demonstrates the constituent ratio 
of each pathogen, which is related to the infectious disease. Example 1 gives an 
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example of calculating the pathogenic spectrum. Pathogenic spectrum analysis is a 
meaningful work in public health, since the variation of the pathogenic spectrum is 
the basis of disease break. Specifically, the change rate of the pathogenic spectrum is 
a significant indicator to evaluate the possibility of infectious disease break. 
Moreover, predicting the trend of the pathogenic spectrum alternation is helpful for 
the early warning of infectious disease break. 

Example 1. Given an infectious disease, suppose there are four viruses, v1, v2, v3 and 
v4, related to it. The virus-test result shows that the numbers of cases that are positive 
to these four viruses are 20, 50, 60 and 70, respectively. Then the virus pathogenic 
spectrum of this infectious disease consists of four parts. That is, v1: 
20/(20+50+60+70) = 10%, v2: 50/(20+50+60+70) = 25%, v3: 60/(20+50+60+70) = 
30%, and v4: 70/(20+50+60+70) = 35%. 
 

As shown in Example 1, the problem of pathogenic spectrum prediction can be 
converted into predicting the number of positive cases of each disease-related 
pathogen. In practice, the public-health researchers apply the virus test to patients, and 
record the numbers of patients whose test results are positive. This kind of test is 
carried out in a fixed period, such as one week, one month. As a result, we can see 
that the positive pathogens prediction is a time series problem.  

In public health domain, some traditional time series analysis methods, such as 
ARMA, ARIMA [2-4], Artificial Neural Networks (ANN) [5-7], which are 
implemented in SAS or SPSS software, have been widely used in positive pathogens 
prediction. However, none of these methods works well in all situations. For example, 
ARIMA is suitable for developing a linear model, while the disadvantages of ANN 
include "black box" nature, computational burden, proneness to over fitting, and the 
empirical nature of model building. Traditional methods may fail to develop adequate 
models due to the nonlinear dynamic behavior of time series, but also due to the lack 
of adaptation of the methods. This makes the problem is suitable for using heuristic 
methods, like evolutionary computation, which can develop the model without 
making many assumptions. For example, Genetic Programming has been widely 
performed for time series forecasting [8, 9]. 

The diarrhea syndrome monitoring data records the numbers of positive pathogens 
that are related to diarrhea syndrome every month since 2009 in China mainland. In 
this study, we apply GEP (Gene Expression Programming, GEP), the newest 
development of Genetic Programming [10, 11], to positive pathogens prediction in 
diarrhea syndrome monitoring data analysis.  

We choose GEP as the prediction method, since it has following advantages: 

 GEP can learn the fittest model from the data automatically without any 
predefined assumption. It has a powerful numeric calculation capability to 
evolve accurate model. 

 Previous studies on applying GEP to time series analysis get desirable 
results. 

The basic idea of applying GEP to time series mining is a sliding window prediction 
method. In training stage, once the size of sliding window is determined, the training 
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set can be generated by the sliding window. For data in sliding windows, GEP takes 
them as the independent variables and evolves a model to fit the target values. 
Moreover, the sliding window is always time-adjacent prior to the target value. For 
example, given a dataset D = {di | 1 ≤ i ≤ n}, suppose the sliding window size is 3. 
Then, for target value di, the dataset in sliding window is {di-3, di-2, di-1}. However, 
Example 2 demonstrates that this kind of sliding window may not be suitable to 
predict positive pathogens in diarrhea syndrome monitoring data.  

Example 2. Let dataset D = {di | 1 ≤ i ≤ 24} be the numbers of positive cases of a 
diarrhea syndrome related pathogen every month since 2005 to 2006. Each data in D 
is list in table below.  
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
2005 47 29 32 38 19 21 37 11 23 38 22 33 
index 1 2 3 4 5 6 7 8 9 10 11 12 
2006 35 19 24 32 14 17 34 8 21 36 20 31 
index 13 14 15 16 17 18 19 20 21 22 23 24 

Suppose the sliding window size is 3. If we apply GEP to find the relationship 
between di and (di-1, di-2, di-3), 4 ≤ i ≤ 24, GEP fails to find accurate relationship. 
However, if we apply GEP to find the relationship between di and (di-1, di-12, di-13), 
14 ≤ i ≤ 24, GEP can find that di = di-12 + (di-1 – di-13) * 0.8. 
 
Though Example 2 is a simple synthetic example, it reveals the fact that traditional 
time-adjacent sliding window is not suitable for predicting positive pathogens, which 
are related with diarrhea syndrome. The reasons include:  

 Firstly, in the diarrhea syndrome monitoring data analysis, the number of 
positive pathogens is related to environment factors, such as season, 
temperature. For example, it is unreasonable to predict the number of positive 
pathogens in autumn by the numbers in summer. 

 Secondly, besides the numbers of positive pathogens in previous months, the 
numbers in the same of months of last year is important while predicting the 
positive pathogens of current month. 

Additionally, Example 2 shows that sliding window is important for GEP. Since GEP 
takes the data in sliding window as independent variables, it cannot evolve the 
accurate prediction model from incorrect dataset. 

To the best of our knowledge, there is no previous work on mining sliding window 
for GEP prediction. The main contributions of this work include: (1) applying GEP-
based prediction method to diarrhea syndrome related pathogens prediction, (2) 
analyzing the disadvantages of traditional time-adjacent sliding window in GEP 
prediction, (3) proposing a heuristic method to mine good sliding window for 
generating training set that is used for GEP evolution, (4) proving the problem of 
training set selection is NP-hard, (5) giving an experimental study on both real-world 
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and simulated data to demonstrate the effectiveness of the proposed method, and 
discussing some future studies. 

The rest of this paper is organized as follows. Section 2 introduces related works. 
Section 3 presents the main ideas used by our methods and the implementation of the 
algorithm. Section 4 reports an experimental study on both real-world diarrhea 
syndrome monitoring data and synthetic data. Section 5 discusses future works, and 
concluding remarks. 

2 Related Works 

2.1 Traditional Time Series Prediction Methods 

Time series study is distinct from other data analysis problems, since time series data 
have a natural temporal ordering. By time series study, scientists can extract 
meaningful statistics and other characteristics of the data, and use the model to 
forecast future events based on known past events. Specifically, the model developed 
by time series prediction from the past data is used to predict data points before they 
are measured. Time series study has been widely applied in many domains, such as 
econometrics, meteorology, astronomy. 

The model for time series data represents stochastic process. Based on the model 
form, time series prediction methods can be classified into three types: linear model, 
such as ARMA, ARIMA [12], non-linear, such as ARCH, GARCH [13, 14], and 
model-free, such as some wavelet transform based methods [15]. 

Traditional time series modeling methods have been widely applied to many 
infectious disease prevention and control studies [2-7]. The authors in [3] used 
ARIMA to predict the number of beds occupied during a SARS outbreak in a 
Singapore’s tertiary hospital. In [4], ARIMA is used to predict the incidence of 
pulmonary tuberculosis. ANN can overcome the linear-modeling limitation of 
ARIMA, so it has been applied to many disease incidence predictions, such as cancer 
and hepatitis [6, 7]. 

2.2 GEP-Based Time Series Prediction 

GEP is a new development of Genetic Algorithms (GA) and Genetic Programming 
(GP). The basic steps of using GEP to seek the optimal solution are the same as those 
of GA and GP. However, compared with GA or GP, the coding of individuals 
(candidate solutions) in GEP is more flexible and efficient [10, 11].  

The most characteristic players in GEP are the chromosomes and the expression 
trees, the latter consisting of the expression tree of the genetic information encoded in 
the former. The chromosome is a linear, symbolic string of fixed length. One or more 
genes compose a chromosome by using linking function. Each gene is divided into a 
head and a tail. The head contains symbols that represent both functions and 
terminals, whereas the tail contains only terminals [10]. For each problem, the length 
of the head h is chosen by the user, whereas the length of the tail t is a function of h 
and the number of arguments of the function with more arguments n, and is evaluated 
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by the equation: t = h (n – 1) + 1. Consider a gene for which the set of functions F = 
{+, -, *, /}. In this case the maximum number of arguments of the element in F is 2, 
then n = 2. 

In GEP, the length of a gene and the number of genes composed in a chromosome 
are fixed. Despite its fixed length, each gene has the potential to code for expression 
trees of different sizes and shapes, the simplest being composed of only one node and 
the biggest composed of as many nodes as the length of the gene [11]. 

Through parsing the expression tree in the hierarchy way, the algebraic expression 
part of GEP genes can be obtained. The structural organization of GEP genes 
guarantees that any genic change in the chromosome always generates a valid 
expression tree [10]. That is, all candidate solutions evolved by GEP are syntactically 
correct. The chromosome is called as the individual’s genotype, while the expression 
tree is called as the individual’s phenotype [11].  

Figure 1 shows a gene is encoded as a linear string and its expression in expression 
tree. The valid part of gene is shown in bold in Figure 1. 
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Fig. 1. The genotype, phenotype and algebraic expression of a GEP individual 

The GEP algorithm begins with generating of the initial population, composed of a 
set of chromosomes, in a random way. Each chromosome is a candidate solution. 
Then the chromosomes (genotype) are expressed as expression trees (phenotype) and 
the fitness of each individual is evaluated by the predetermined fitness function. There 
are many kinds of measurements can be used as the fitness function, such as relative 
error and absolute error. The individuals are then selected according to fitness to 
reproduce with modification, generating new individuals with new traits. The 
individuals of the new generation are subjected to the same evolutionary process: 
expression of the genomes, selection by the fitness, and new individual generation. 
This procedure is repeated until a satisfactory solution is found, or a predetermined 
stop condition is reached. Then the evolution stops and the best-so-far solution, 
evolved by GEP, is returned [10]. 

GEP creates necessary genetic diversity for the selected individuals for keeping the 
evolutionary power in the long run. In nature, several genetic modifications, such as 
mutation, deletion, and insertion, are performed during the replication of the genomes. 
In basic GEP algorithm, the genetic operators perform in an orderly fashion, starting 
with replication and continuing with mutation, transposition, and recombination. The 
details of GEP implementation can be referred in [11]. 
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Since GEP can evolve accurate mathematic model, it is used to build the prediction 
model that fits the time series data as well as possible. C. Ferreira gives a basic sliding 
window based method of applying GEP to time series study in [11]. This method 
consists of two steps. 

 The first step is deciding the size of sliding window, that is, how many previous 
data points are used in predicting current data point. Suppose the window size is 
s. then the model predicts the value at a moment t, dt, using the previous s values 
in the sample, denoted as dt-1, dt-2,…, dt-s. Based on the sliding window, the data 
set is participated into several training samples. 

 Then GEP evolves a function f that predicts the values of a time series data as 
accurately as possible. Formally, let f (dt-1, dt-2,…, dt-s) = d't, the function f that 
has the smallest error between dt and d't is the best model, which is to be used for 
further prediction. 

GEP has been used successfully to solve various time series problems so far. Besides 
the work in [11], the authors in [16] designed a GEP-based method, called as 
Differential by Microscope Interpolation, for sunspot series prediction. In [17], the 
authors applied an adaptive GEP-based method to predict the precipitation and 
temperatures in a region of Romania. 

3 Sliding Window Mining 

3.1 Sub-sliding Windows Enumeration 

As stated above, the first step of applying GEP to time series prediction is 
determining the sliding window. In the basic GEP-based method for time series 
prediction, if the size of sliding window is s, for the value to be predicted at a moment 
t, dt, the data in sliding window are previous s values to dt. However, this kind of 
time-adjacent window may not be suitable for diarrhea syndrome monitoring data 
analysis as shown in Example 2. 

Let the number of observed data be n. We select s data to compose the sliding 

window. Then, there will be C s
n different sliding windows for selection. In general, 

the size of sliding window, s, is no greater than half of all observed data, n/2. We can 
get following: 
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From equation presented above, we can see that the search of selecting s data from all 
observed data is in exponential space. As a result, a polynomial time algorithm cannot 
enumerate all sliding windows that consist of s data.  

From the diarrhea syndrome monthly monitoring data, we get two observations as 
follows. Firstly, the periodicity exists in the monthly positive pathogens. Intuitively, it 
is worthwhile to consider the pathogenic spectrum in June 2009, when predict the one 
in June 2010. Secondly, it is unreasonable to select much data, which are in the same 
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observation time period but the intervals to the predicted data are large in the sliding 
window. For example, compared with Nov. 2010, the data in Feb. 2010 is not helpful 
to improve the prediction accuracy of pathogenic spectrum in Dec. 2010. 

According to the characteristics of monthly positive pathogens prediction, we 
design a heuristic method to enumerate candidate sliding windows based on following 
two principles: 

 Considering data in previous time periods while predicting the current data.  
 Paying more attention to the recent than to the past in prediction. 

Given a dataset, D, contains all observed data. Let dt ∈ D be the value to be predicted 
at moment t, the time period of the observed data be T. Then we divide D into time-
partitions, P, from dt backward. For each pi ∈ P, pi = {dr | 1 ≤ t - i·T < r ≤ t-(i-1)·T}. 
So, pi with smaller index is closer to dt. For example, suppose T = 4 and t = 15, then 
p1 = {d12, d13, d14, d15} as well as p2 = {d8, d9, d10, d11}. 

Definition 1 (sub-sliding window). Given a sliding window W, wi is a sub-sliding 

window of W, iff wi satisfies following conditions: i) W = ∪
k

i

iw
1=

; ii) wi ∩ wj = ∅, i≠j. 

Definition 1 shows that |W| = |w1| + |w2| + … + |wk|, and 0 ≤ |wi| ≤ |W|. In this study, 
the value of k is determined by the user, and each sub-sliding sliding window is a 
subset of time-partition. That is, for each wi ∈ W, wi ⊆ pi. As a result, the value of k is 
not greater than |P|. It is worthwhile to note that as wi can be null (∅), k is the 
maximal number of sub-sliding windows. The data in each sub-sliding window satisfy 
following constraints. 

Constraint (i) The data in wi are those in the rightmost side of pi. But dt is 
excluded from w1, since it is the value to be predicted. 

Constraint (ii) |wi+1| - |wi| < δ, where δ is a predefined small positive integer.  

In this work, we set δ is 1, since we prefer to pay more weight to the recent than to the 
past in prediction. Alternatively, the relationship between |wi| and |wi+1| can be a ratio. 
Note that, there is no limitation of how greater |wi| than |wi+1| is. Constraints (i) and 
(ii) satisfy the two principles stated above. 

Example 3. Given a sliding window W = {w1, w2, w3}, |W| = 7. Suppose the time 
period is 5 and d15 is the value to be predicted. Figure 2 illustrates the sub-sliding 
windows, when |w1| = 3, |w2| = 2, and |w3| = 2. 

t
d1 d2 d3 d4 d5 d9 d10d8d6 d7 d11 d12 d13 d14 d15

w1

p3 p1p2p4

w2w3

W

 
Fig. 2. An Example of a sliding window consists of 3 sub-sliding windows 
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Sub-sliding windows compose the sliding window for prediction. Given the size of 
sliding window and the maximal number of sub-sliding windows, there are different 
sub-sliding window combinations. Take w1, w2, and w3 in Example 3 as an example, 
the lengths of them, denoted as (|w1|, |w2| |w3|), can be (7, 0, 0), (6, 1, 0), (6, 0, 1), (5, 
2, 0), (5, 1, 1), (4, 3, 0), (4, 2, 1), (4, 1, 2), (3, 4, 0), (3, 3, 1), (2, 3, 2), (2, 2, 3), 
besides (3, 2, 2). The data in sub-sliding window are determined as soon as the size of 
the sub-sliding window is determined.  

3.2 Finding the Best Sliding Window 

Once the size of sliding window and the maximal number of sub-sliding windows are 
determined, an available sub-sliding window combination can be generated. Each 
sub-sliding window combination constructs a candidate sliding window. We find all 
candidate sliding windows that satisfied Constraint (i) and (ii), and make use of these 
candidate sliding windows to generate training sets. Afterwards, we apply GEP to 
training sets to evolve the best model as well as good sliding window. Algorithm 1 
describes the pseudo code of finding the most accurate model for prediction. 

Algorithm 1: Prediction_Model_Mine (D, T, w, k) 
Input: (1) observed dataset: D; (2) the time period: T; (3) the size of sliding window: 
w; (4) the maximal number of sub-sliding windows: k. 
Output: prediction model: gepModel. 

begin 
   1. subwinSet ← subWinGenerate(w,k)  
   2. dataSubSet ← DataSplit(D,T) 
   3. For each subwin in subwinSet 
   4.    trainingSet ← Select(subwin, dataSubSet) 
   5.    TrainSets ← TrainSets + trainingSet 
   6. For each trainset in TrainSets 
   7.    gepScore ← gepPrediction(trainset) 
   8. gepModel ← the model with the highest gepScore 
   9. return gepModel 
end. 

In Algorithm 1, Function subWinGenerate(w,k) in Step 1 generates all candidate 
sliding windows, which satisfy Constraint (i) and (ii), based on the size of sliding 
window (w) and the maximal number of sub-sliding windows (k). For each data to be 
taken as a target value in training set, Function DataSplit(D,T) in Step 2 divides the 
data before it into several time-partitions. From Step 3 to Step5, for each candidate 
sliding window, Function Select(subwin, dataSubSet) generates the training samples 
by selecting data from dataSubSet based on sliding window subwin. Each generated 
training set is evaluated by GEP in Step 7. Then the most accurate model (good 
sliding window) evolved by GEP will be used for prediction.  
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Proposition 1. Given a sliding window W = {w1, w2, w3, …, wk}, k > 1 and |W| = M. 
Let NC(W) be the number of sub-sliding window combinations satisfying the 
Constraints (i) and (ii). Then NC(W) < (M+2)k-1.  

Proof. We prove Proposition 1 by induction. 

Basis: When k = 2, W = {w1, w2}, |w2| = M - |w1|. As |w1| ∈ {0, 1, 2, ..., M}, NC(W) = 
(M+1) < (M+2) as desired. 

Inductive steps: Assume NC(W) < (M+2)n-1, when k = n. That is, W = {w1, w2, …, wn}. 
For k = n + 1, let W = W’ ∪ wn+1, where W’ = {w1, w2, w3, …, wn }. As |W’| = M - 
|wn+1|, NC(W’) < (M - |wn+1| + 2)n < (M + 2)n. The number of combinations between 
W’ and w1 is (M + 1). Thus, NC(W) < (M + 2)n · (M + 1) < (M + 2)(n+1) = (M + 2)k. 

Thus, it holds for k = (n + 1) and this completes the proof. 

Proposition 1 shows that the number of sub-sliding window combinations is increased 
in polynomial space. Thus, the calculation-step in Algorithm 1 generates training sets 
for prediction in polynomial time. 

Algorithm 1 describes the process of generating the training sets followed by 
applying GEP method to evolve the best model for prediction. In this work, we call 
this process as Training set selection problem. 

Intuitively, the training set selection problem is more difficult than finding the 
minimal attribute reduction of decision table, which is a NP-hard problem proved by 
Wong S K M and Ziarko W [18]. From Reference [19], we have following lemma.  

Lemma 1. The problem of subset sum is NP-complete. 

Theorem 1. The problem of training set selection is NP-hard.  

Proof. The basic idea of proof is proving that the subset sum problem is polynomial 
time Turing-reducible to training set selection problem.  

Given an integer set C = {c1, c2, …, cn}, construct a training set DT as follows. 

DT = 
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 where aij ∈ {c1, c2, …, cn} ∪ {0}, and m ≥ 2n.  

Suppose the mother function: 

f(x) = b0 + b1x + b2x
2 + …+ bnx

n – dt 

where x ∈ [1 - ε, 1 + ε], ε is a predefined small positive number, dt is the target value 
in prediction. Without loss of generality, we assume both training data and dt are 
integers, since we can expand all non-integer values to integers synchronously. 

We now apply GEP to train f(x) over DT to optimize f(x), so that |f(x)| < 1. The 
values of (b0, b1, b2, …, bn) are fetched from DT in training process.  

When x = 1,  

|f(1)| = |b0 + b1 + b2 + …+ bn – dt| < 1 
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As all values of b0, b1, b2, …, bn and dt are integers, the value of |f(1)| is an integer. 
However, the only integer that is less than 1 is 0, so |f(1)| = 0. Then, b0 + b1 + b2 + …+ 
bn = dt. This shows that the subset sum problem is reduced to this problem. 

By Proposition 1, the size of DT, generated in our proposed method, is increased in 
polynomial space. The training set for prediction can be generated in polynomial 
time. Moreover, based on [9], GEP can evolve f(x) to the optimize-target in 
polynomial time. Finally, the subset sum problem can be reduced to training set 
selection problem in polynomial time. The problem of training set selection is NP-
hard. 

4 Experimental Study 

4.1 Real-World Positive Pathogens Prediction 

To evaluate the performance of our GEP-based sliding window mining method, we 
implement all proposed algorithms in Java. The experiments are performed on an 
Intel Pentium Dual 1.80 GHz (2 Cores) PC with 2G memory running Windows XP 
operating system. We apply our proposed method to the real-world diarrhea syndrome 
monitoring data, which is provided by the department of health statistics, Sichuan 
University. There are four viruses, calicivirus, rotavirus, adenovirus and astrovirus, 
related to diarrhea syndrome, so these four viruses are pathogens of diarrhea 
syndrome. The monitoring data contains the numbers of cases that are positive to 
virus test for these four pathogens in every month of Year 2009 and Year 2010. Since 
the data is sensitive, we skip over the semantic details and formulate the data formally 
as follows. Let D be the monitoring data of any related pathogen. Suppose D = {di | 1 
≤ i ≤ 24}, where di is the number of positive pathogen cases in one month. In D, d1 is 
the data of January in 2009, and d24 is the data of December in 2010. In our work, we 
just consider the effectiveness of the proposed method in the real-world positive 
pathogens prediction, instead of the meaning of predicted data.  

As the observation time period of diarrhea syndrome monitoring data is one year, 
the monitoring data can be divided into two time-partitions, p1 and p2, at most based 
on Algorithm 1. Take d24 as an example, the first time-partition p1 contains data in 
Year 2010, and the second time-partition p2 contains data in Year 2009. 

Table 1. Parameters for GEP Evolution 

Parameter value Parameter value 
Population size 100 One-point recombination rate 0.4 
Number of Generations 10000 Two-point recombination rate 0.2 
Linking function + Gene recombination rate 0.1 
Function set {+, –, *, / } IS transposition rate 0.1 
Number of genes 3 IS elements length 1, 2, 3 
Gene head size 8 RIS transposition rate 0.1 
Selection operator tournament RIS elements length 1, 2, 3 
Mutation rate 0.04 Gene transposition rate 0.1 
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The proposed method is applied to the monitoring data to generate the training sets 
for GEP prediction. The size of sliding window is set as 6. In considering the 
requirement of diarrhea syndrome analysis and the total number of monitoring data is 
small, for each pathogen, we take the last monitoring data, d24, as the test value in the 
experiments. Let W be the sliding window. There are two sub-sliding windows, w1 
and w2, satisfying w1 ⊆ p1 and w2 ⊆ p2. The proposed method generates different 
combinations of w1 and w2, as well as corresponding training sets. For each training 
set, we run GEP 10 times independently, and record the average training accuracy and 
prediction accuracy, which are measured in absolute error. Table 1 lists the GEP 
related parameters in our experiments. 

Table 2 to Table 5 lists the experiment results. As the size of sliding window is set 
as 6, the available sub-sliding window combinations include (|w1|=6, |w2|=0), (|w1|=5, 
|w2|=1), (|w1|=4, |w2|=2) and (|w1|=3, |w2|=3). We take the combination (|w1|=6, |w2|=0) 
as the baseline sliding window, for it is the traditional time-adjacent sliding window. 
The highest average accuracies of training and test are in bold font. As the main 
purpose of this experiment is verifying the effectiveness of the method to discover 
good sliding window for GEP prediction, without loss of generality, we apply the 
basic GEP method on each training set. We believe that more accurate prediction 
results can be got by some improved GEP methods, such as the methods in [16, 17].  

Table 2. The experimental results on positive calicivirus prediction when |W| = 6 

 (|w1|=6, |w2|=0) (|w1|=5, |w2|=1) (|w1|=4, |w2|=2) (|w1|=3, |w2|=3) 
Training Accu. 96.21 89.72 93.08 82.60 
Test Accu. 135.67 98.89 104.10 45.67 

Table 3. The experimental results on positive rotavirus prediction when |W| = 6 

 (|w1|=6, |w2|=0) (|w1|=5, |w2|=1) (|w1|=4, |w2|=2) (|w1|=3, |w2|=3) 
Training Accu. 102.82 109.39 116.68 107.22 
Test Accu. 222.89 357.33 330.75 290.57 

Table 4. The experimental results on positive adenovirus prediction when |W| = 6 

 (|w1|=6, |w2|=0) (|w1|=5, |w2|=1) (|w1|=4, |w2|=2) (|w1|=3, |w2|=3) 
Training Accu. 18.34 18.77 17.18 16.04 
Test Accu. 10.56 12.73 14.75 5.13 

Table 5. The experimental results on positive astrovirus prediction when |W| = 6 

 (|w1|=6, |w2|=0) (|w1|=5, |w2|=1) (|w1|=4, |w2|=2) (|w1|=3, |w2|=3) 
Training Accu. 14.79 13.69 14.21 12.85 
Test Accu. 44.78 56.80 58.17 32.11 

From Table 2 to Table 5, we can see that for predicting the positive pathogens of 
calicivirus, rotavirus, adenovirus and astrovirus, different sub-sliding window 
combinations get different training and test accuracies. The highest training accuracy 
and test accuracy can be got when the combination of sub-sliding windows is (|w1|=3, 
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|w2|=3), while for predicting the positive pathogens of adenovirus, the highest training 
accuracy and test accuracy are got when the combination of sub-sliding windows is 
(|w1|=6, |w2|=0). Thus, better sliding window for prediction, compared with traditional 
time-adjacent sliding window, can be discovered by our proposed method. Moreover, 
in the case of time-adjacent sliding window is good for prediction our method also 
can find it, such as predicting the positive pathogens of rotavirus. 

For each training set generated by the good sliding window, we increase the 
number of evolution generations as 30000, and run GEP 10 times independently. 
Then more accurate prediction results can be got as list in Table 6. 

Table 6. The prediction accuracy of GEP-based method evolving 30000 generations 

 calicivirus rotavirus adenovirus astrovirus 
Test Accu. 38.17 217.80 3.83 18.50 

As shown in above tables (from Table 2 to Table 6), we can see that it is necessary 
and effective to apply the proposed method to diarrhea syndrome related pathogens 
prediction to discover good sliding windows, which can improve the prediction 
accuracy .  

4.2 Synthetic Data Prediction 

As there are only two years real-world diarrhea syndrome monitoring data available, 
in order to demonstrate that the proposed sliding window mining method is effective 
for long-term monitoring data, we copy the calicivirus monitoring data 10 times to 
simulate the 20-years monitoring data. We apply the proposed method to the 
simulated data to generate the training sets for GEP prediction. The size of sliding 
window is set as 7. The maximal number of sub-sliding window (k) is set as 2, since 
we simulate the data by the 2-years monitoring data. The sliding window includes the 
data, which equal to the values of the target data, in the case of k equals to 3.  

For each dataset generated by sliding windows that enumerated by the proposed 
method, we keep the last 12 data as the test set, and run GEP on the rest data 10 times 
independently. The GEP related parameters are kept the same as shown in Table 1. 
Table 7 lists the average training and prediction accuracies of GEP model per data 
under each sliding window, which is composed by different sub-sliding windows.  

Table 7. The experimental results on simulated data when |W| = 7 

 (|w1|=7, |w2|=0) (|w1|=6, |w2|=1) (|w1|=5, |w2|=2) (|w1|=4, |w2|=3) (|w1|=3, |w2|=4) 
Trai. Accu. 19.14 20.93 18.86 17.89 19.59 
Test Accu. 22.80 26.50 22.25 20.40 25.25 

Table 7 shows the model with the highest accuracy, evolved by GEP, is got when 
the combination of sub-sliding windows is (|w1|=4, |w2|=3). Besides combination 
(|w1|=4, |w2|=3), the model evolved under the combination (|w1|=5, |w2|=2) is more 
accurate than the one evolved under time-adjacent sliding window, i.e. the 
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combination (|w1|=7, |w2|=0). The combinations (|w1|=6, |w2|=1) and (|w1|=3, |w2|=4) are 
not suitable for prediction compared with other combinations.  

In addition, compared with Table 2, we can see that the performance on synthetic 
dataset is better than the one on real dataset. We analyze the reason lies that for 
synthetic dataset analysis, there are more data are taken as the training set, which 
improve the accuracy of evolved model. After all, from the experimental results on 
the synthetic data, we can see that mining good sliding window is helpful for GEP to 
evolve accurate models. 

5 Discussions and Conclusions 

Positive pathogens prediction is the basis of pathogenic spectrum analysis, which is a 
meaningful work in public health. Different form traditional methods that may fail to 
develop adequate models due to the nonlinear dynamic behavior of time series, or the 
lack of adaptation of the methods, GEP can develop the model without making many 
assumptions. As a result, applying GEP to positive pathogens prediction is desirable. 
However, traditional time-adjacent sliding window may not be suitable for GEP 
evolving accurate prediction model. Based on analyzing the characteristics of diarrhea 
syndrome, we propose a heuristic method to mine good sliding window for generating 
training set, which is used for GEP evolution. Furthermore, we prove the problem of 
training set selection is NP-hard. The experimental study on real-world positive 
pathogens prediction shows that our proposed method is necessary and effective for 
diarrhea syndrome related pathogens prediction.  

There are many works worth to be deeply analyzed in the future. For example, how 
to add the environment factors in good sliding window mining, how to describe the 
relationships among previous data, and how to evaluate the candidate sliding 
windows in a fast way. Moreover, we will consider applying the proposed method to 
other applications in public health, and other domains, such as economics and finance.  
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