
Tools for Performance Evaluation of Computer Systems:
Historical Evolution and Perspectives

Giuliano Casale1, Marco Gribaudo2, and Giuseppe Serazzi2

1 Imperial College London, London SW7 2AZ
g.casale@imperial.ac.uk

2 Politecnico di Milano, I-20133 Milan, Italy
{gribaudo,serazzi}@elet.polimi.it

Abstract. The development of software tools for performance evaluation and
modeling has been an active research area since the early years of computer sci-
ence. In this paper, we offer a short overview of historical evolution of the field
with an emphasis on popular performance modeling techniques such as queuing
networks and Petri nets. A review of recent works that provide new perspectives
to software tools for performance modeling is presented, followed by a number
of ideas on future research directions for the area.

1 Introduction

Since the early years of computing, software tools have been used to evaluate and im-
prove system performance. This has been soon recognized as fundamental in a num-
ber of phases of a computer system’s life-cycle, namely design, sizing, procurement,
deployment, and tuning. However, due to the inherent complexity of the systems be-
ing evaluated and the novelty of the computing field, effective performance evaluation
tools took several years to appear on the market. Simulation was the first technique used
extensively for evaluating the performance of hardware logic of single components ini-
tially, and of entire systems later, see [26] for a review. The introduction of simulation
languages in the 60s, such as Simscript [23] and GPSS [17], was a milestone since
several tools oriented to the simulation of computer systems and networks appeared
shortly afterwards on the market. In the early 70s, two simulation packages oriented to
computer performance analysis, namely Scert [14,15] and Case, were among the first
to reach commercial success. It must be pointed out that, due to its dominant position in
the computer market from the 60s to the 80s, almost all tools were developed for model-
ing systems and network technologies developed by IBM. Features of all generations of
IBM systems, such as 360s and MVS, were deeply analyzed through simulation mod-
els and with other new analysis techniques that were becoming available. Other types
of tools such as hardware monitors [4], i.e., electronic devices connected to the sys-
tem being measured with probes and capable of detecting significant events from which
performance indexes can be deduced, were also used in the 70s. These did not reach a
great diffusion due to their high costs, the difficulty of use, and the huge effort required
to adapt them to different systems and configurations.

In those years, models started to emerge as a new way to evaluate single components
and system architectures. Among the various problems approached were the evaluation

K.A. Hummel et al. (Eds.): PERFORM 2010 (Haring Festschrift), LNCS 6821, pp. 24–37, 2011.
c© IFIP International Federation for Information Processing 2011

Tools for Performance Evaluation of Computer Systems 25

of time-sharing supervisors, I/O configurations, swapping, paging, memory sizing, and
networks of computers. The commercial interest in simulation modeling tools declined
once efficient computational algorithms for analytical modeling appeared thanks to the
pioneering work of Buzen [3]. Analytical techniques became rapidly popular because
of their relatively low cost, general applicability, and easy and flexibility of use with
respect to simulation. Such techniques are still popular today and have been the subject
of several books and surveys [20,9,12,37]. BEST/1 [8] was the first tool implementing
analytical techniques being marketed commercially with great success. Rapidly, tens of
tools for analytical modeling appeared on the market. Over the years, as soon as a new
analytical technique has been discovered a new tool implementing it has been devel-
oped. Thus, we have now performance evaluation tools based on Queuing Networks,
Petri Nets, Markov Chains, Fault Trees, Process Algebra, and many other approaches.
Hybrid and hierarchical modeling techniques have been introduced in the 70s and 80s
to analyze very large and complex systems. Starting from the 90s, due to the increase of
the state spaces needed to represent models of modern systems, simulation has become
again a fundamental tool for model evaluations. This has been also a consequence of
the dramatic increase of computational power in the last two decades, which has made
simulation a more effective computational tool than in the past.

Several tools were designed specifically to solve particular class of problems. For
example, SPE.ED [35] is a tool focused on the solution of the problems typical of Soft-
ware Performance Engineering [36]. More recently, in the security domain, the AD-
VISE method has been introduced to quantitatively evaluate the strength of a system’s
security [22].

In spite of this long historical evolution, there is a lack of surveys covering the history
and current perspectives of the performance tool area. The aim of this paper is to fill
this gap and provide an up-to-date review and critique of current software tools for
performance modeling. We point to [5] for a special issue on popular open source tools
developed in academia in recent years. In this work, we first offer an overview of recent
developments, many of which not covered in [5], focusing in particular on Markov
chains (Section 2), Queueing Networks (Section 3), Petri Nets (Section 4), Fault Trees
(Section 5) and Process Algebras (Section 6). In Section 7 we instead discuss trends and
new perspectives in software performance tools architectures. Finally, Section 8 gives
final remarks and concludes the paper.

2 Markov Models

Due to limited space, we here give only a brief overview on tools for Markov modeling
and we focus next on higher-level modeling languages such as queuing networks or
Petri nets.

Markov chains have been extensively used since the beginnings of performance
evaluation as the fundamental technique to analyze stochastic models. The power of
Markov chains derives from the ease of conditioning probabilities, which depends only
on the current active state of the chain. In addition to basic discrete-time Markov chains
(DTMCs) and continuous-time Markov chains (CTMCs), the performance evaluation
community has intensively investigated the use of absorbing processes, such as phase-
type (PH-type) distributions, to represent the statistical properties of measurements

26 G. Casale, M. Gribaudo, and G. Serazzi

and for transient analysis of performance models. Although PH-type distributions and
Markov-modulated processes are very active research areas, we here focus only on
DTMCs and CTMCs.

Due to their historical importance, many tools exist for the analysis of DTMCs and
CTMCs which have been developed both by performance engineers and
numerical experts. A comprehensive review of modern numerical techniques for the
analysis of Markov chains can be found in [37]. Popular tools include MARCA1, Mo-
bius2, SHARPE3, SMART4, and PRISM5. Such tools include exact and approximate
Markov chain solvers, such as the Kronecker-based solution methods proposed in [2].
Advanced techniques for state space generation and storage are also available such as
multiway decision diagrams (MDDs), matrix diagrams, and symbolic state-space gen-
eration. MDD are an extension of the binary decision diagrams (BDD), a data structure
capable of detecting redundancy and similarity in the state space of a model, allowing
to reduce significantly the memory requirement to store the states. A discussion on such
techniques can be found in [7].

3 Queuing Network Models

Queuing network models (QNMs) have been intensively used for the last three decades
to study the effects of resource contention on scalability of computer and communica-
tion systems [1,21]. In their basic formulation, a QNM is composed by a set of resources
visited by jobs belonging to a set of classes. Each job places a service demand, following
some statistical distribution, at each visited resource, and the busy period of a resource
depends on the contention placed by other jobs that simultaneously request service. The
objective of the study is to compute performance metrics such as server utilizations or
job response time distributions. Due to the lack of analytical solutions for general mod-
els, a number of approximation methods have been defined in the past, but there is still
a lack for widely-applicable analytical approximation tools. In this context, simulation
has become important in many practical applications to estimate performance metrics
of QNMs, although analytical tools remain fundamental in several contexts, such as
optimization studies which require the fast solution of hundreds of thousands models.

Queuing network modeling has a long history and has been addressed by several
commercial packages such as BEST/1 [8], RESQ [30], QNAP [28], CSIM [32], and
a variety of academic tools such as Tangram-II6, JINQS7, SHARPE8, Java Modelling
Tools9, LQNS10, and several others11. A recent collection of research papers on some

1 http://www4.ncsu.edu/˜billy/MARCA/marca.html
2 http://www.mobius.illinois.edu/
3 http://people.ee.duke.edu/˜kst/
4 http://www.cs.ucr.edu/˜ciardo/SMART/
5 http://www.prismmodelchecker.org/
6 http://www.land.ufrj.br/tools/tangram2/tangram2.html
7 http://www.doc.ic.ac.uk/˜ajf/Research/manual.pdf
8 http://people.ee.duke.edu/˜kst/
9 http://jmt.sourceforge.net

10 http://www.sce.carleton.ca/rads/lqns/
11 http://web2.uwindsor.ca/math/hlynka/qsoft.html

http://www4.ncsu.edu/~billy/MARCA/marca.html
http://www.mobius.illinois.edu/
http://people.ee.duke.edu/~kst/
http://www.cs.ucr.edu/~ciardo/SMART/
http://www.prismmodelchecker.org/
http://www.land.ufrj.br/tools/tangram2/tangram2.html
http://www.doc.ic.ac.uk/~ajf/Research/manual.pdf
http://people.ee.duke.edu/~kst/
http://jmt.sourceforge.net
http://www.sce.carleton.ca/rads/lqns/
http://web2.uwindsor.ca/math/hlynka/qsoft.html

Tools for Performance Evaluation of Computer Systems 27

of the above academic tools can be found in [5]. It is interesting to point out that, al-
though the networking community has traditionally relied on queueing theory, popular
tools such as NS-212 have been used quite rarely to simulate QNMs. Indeed, NS-2 and
other networking tools are well suited for the description of network components and
protocols, but this is usually a level of detail that is excessive for the abstractions used
in QNMs. More recently, the OmNet++ framework has tried to invert this trend by pub-
lishing several tutorials for QNM analysis13. In spite of the large number of tools avail-
able, the techniques used for QNM simulation are quite similar: they all implement the
classic discrete-event simulation paradigm, where a calendar of events, often based on
a priority queue, is maintained in order to process chronologically arrival and departure
of jobs from the resources. A variety of papers and books provide help to the developer
of such tools to implement the most complex tasks, such as statistical analysis, transient
filtering, rare event simulation, and implementation of preemptive disciplines such as
processor sharing [10,13,29,27].

More recently, new interesting techniques have been integrated in academic and
commercial tools in order to analyse QNMs. We here try to survey for the first time
these emerging ideas.

Ψ2 is a tool14 for steady-state analysis of QNMs that is based on perfect simula-
tion theory. The fundamental ideas of this new simulation approach is to consider the
Markov process underlying the queuing network and first identify a set of representa-
tive events such as job arrivals or end of service. A transition function Ψ(x, e) is then
defined to represent the evolution of the current network state x as a function of each
possible event e. The perfect simulation technique applies in its original form to the
case where all events e are monotonous, i.e., such that for each pair of states (x,x′)
for which a partial ordering x ≤ x′ exists it is Ψ(x, e) ≤ Ψ(x′, e) for all events e. If
such monotonicity condition is satisfied, a case which can be verified for large classes
of queuing networks, Ψ2 can simulate the model efficiency by an adaptation of the
coupling-from-the-past (CFTP) algorithm. This algorithm involves an iteration that es-
timates steady state by randomization of the recent trajectories of the system prior to
reaching the steady-state. The computational costs of the techniques grows linearly with
the state space size, therefore significantly improving over the cubic or quadratic costs
of a direct numerical solution of the infinitesimal generator.

Opedo15 is a recent tool for the optimization of performance and dependability
models. This tool shows a rare case of a complex framework built upon open-source
modeling tools such as OmNet++, Java Modelling Tools, APNN16, and the techniques
developed in papers such as [2]. The fundamental idea is to define a black-box interface
to describe the output of existing modeling tools and develop a numerical framework
for parameter optimization that is based only on black-box descriptions. Opedo uses
a number of nonlinear search techniques to estimate a local optimum, such as pattern
search and response surface methodologies, or a global optimum, such as evolutionary

12 http://www.isi.edu/nsnam/ns/
13 http://www.omnetpp.org
14 http://psi.gforge.inria.fr/
15 http://www4.cs.uni-dortmund.de/Opedo/
16 http://www4.cs.uni-dortmund.de/APNN-TOOLBOX/

http://www.isi.edu/nsnam/ns/
http://www.omnetpp.org
http://psi.gforge.inria.fr/
http://www4.cs.uni-dortmund.de/Opedo/
http://www4.cs.uni-dortmund.de/APNN-TOOLBOX/

28 G. Casale, M. Gribaudo, and G. Serazzi

algorithms and Kriging methods. Integrated frameworks of this type appear promising
especially in the context of software performance engineering where the first studies
for large automatic software tuning based on performance models have recently ap-
peared [24]. Such frameworks automatically search for a set of design parameters that
can ensure desired levels of responsiveness in an application.

Mathworks SimEvents17 is a commercial extension of the MATLAB/Simulink
simulator to support QNMs. Simulink has traditionally focused on simulation of
continuous-time dynamical systems based on a number of ODE integrators, therefore
the integration of SimEvents inside this framework allows to combine discrete simula-
tion models with continuous-state simulation. Another interesting feature is that the tool
description proceeds through the block diagram notations that are popular in control
theory, therefore strongly emphasizing the input/output behavior of each component in
the simulation. Another advantage of such tool over existing QNM simulators is that it
can natively combine finite-state machines and flow charts which are useful for integra-
tion with hardware system and complex process models, respectively. Finally, another
advantage is the robustness of the Simulink simulator, which is used in real-time critical
industrial applications and therefore is affected by very few software bugs due to the
high maturity level of the tool.

Another direction explored recently is the idea of considering fast queuing network
approximations at the stochastic process level by means of linear programming. An ad-
vantage of these approaches over simulation is that linear programming can accurately
describe hundreds of thousands or even millions of state probabilities. In the lp-rBm
technique in [31], a queuing network can be described as a multidimensional reflected
Brownian motion (rBm), which is extremely powerful to represent non-exponential
distributions. Linear programming is used to approximate the equilibrium of the rBm
which is not available in closed-form. The MAPQN Toolbox18 applies to closed mod-
els with general service time distributions. A number of necessary balance equations
between the state of the queue is formulated, leaving equilibrium probabilities as un-
known. This returns estimates that are provable bounds on the exact solution.

The wide availability of tools for QNMs suggests that much has been already done in
support of the development and application of these models outside pure research. How-
ever, a number of additional extensions may be considered that are still lacking in the
performance community. First, most tools seem to lack a software regression support
in order to validate successive releases on a set of representative models. While these
regressions are easy to define, it is harder to find in the literature detailed published so-
lutions for reference models, especially for models with a mixtures of complex features
(e.g., non-preemptive multiclass priorities, forking, finite capacity regions). This ap-
pears a limitation that the literature should address, since individual groups are currently
not sharing their best practices and useful case studies with the rest of the community.

Next, with the exception of few packages such as SMART, Java Modelling Tools,
or Opedo, it appears that analytical results have been poorly integrated and exploited in
current tools, possibly with the exception of the class of product-form models.
While there exist indeed limitations to the accuracy of some approximations, it is a

17 http://www.mathworks.com/products/simevents/
18 http://www.cs.wm.edu/MAPQN/

http://www.mathworks.com/products/simevents/
http://www.cs.wm.edu/MAPQN/

Tools for Performance Evaluation of Computer Systems 29

contradiction in terms that the largest body of work of the performance modeling com-
munity is at all effects marginalized from the software implementation and distribution.
Larger research families, such as the linear algebra or parallel computing communities,
have addressed these problems by creating public repositories to share standard im-
plementations of important algorithms. Unfortunately, no similar experience has been
attempted (at least to the best of the authors’ knowledge) in the performance evalua-
tion community. New recent attempts are trying to correct this issue19, however more
cooperation is needed in our community to promote the success of such initiatives.

4 Petri Nets

Petri Nets (PN) are a graph based formalism, capable of visually describing system
characterized by parallelism and synchronization. A Petri Net can be seen as a bipartite
graph, where nodes are dived into two classes called places and transitions. For an
historical review of Petri Nets, the reader can refer here 20. Applications of Petri Nets to
performance evaluation, mainly rely on their stochastic version (SPN - Stochastic Petri
Nets and its generalization (GSPN - Generalized Stochastic Petri Nets). For a tutorial
on GSPNs, the interested reader can refer to [19]. A large number of tools are available
for GSPNs, e.g., GreatSPN21, SMART, PIPE222.

Petri Nets are usually analyzed in steady state or in transient, either by discrete event
simulation or by numerical techniques. In the latter case, the state space of the model is
computed and its temporal evolution is mapped to a CTMC. Performance indexes are
then obtained from the transient or steady state solution of the obtained CTMC.

Beside steady state and transient analysis, the bipartite graph structure of the model
allows several analysis to be performed without explicitly generating the state space.
Such analysis allows the determination of invariants, bounding properties, and ability
to fire transitions. Petri nets are supported by several tools, each one having its own
characteristics for what concerns the analysis techniques and for the capability of ver-
ifying different types of structural properties. A reference to the tools supporting PNs
analysis can be found here23

Throughout the years, several new types of PNs have been devised to simplify the
study of computer systems. Each type of PN has its own benefits and it is supported by
some specific tools. In the following we will briefly summarize some of the PN families
that are currently used to address real-world modelling problems.

The GreatSPN tool supports Stochastic Well-formed Nets (SWNs) [6], an important
extension to Colored Petri Nets (CPNs) [18]. CPNs improves the concept of marking
of place by adding attributes to the tokens. Attributes are called colors, and belong to
specific classes called types. Each token has associated a set of types that defines its at-
tributes. When a transition fires, it removes some of the tokens from its input places, and

19 http://www.perflib.net
20 http://www.informatik.uni-hamburg.de/TGI/PetriNets/history/
21 http://www.di.unito.it/˜greatspn/index.html
22 http://pipe2.sourceforge.net/
23 http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/
quick.html

http://www.perflib.net
http://www.informatik.uni-hamburg.de/TGI/PetriNets/history/
http://www.di.unito.it/~greatspn/index.html
http://pipe2.sourceforge.net/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

30 G. Casale, M. Gribaudo, and G. Serazzi

collects their attributes into variables. At the same time, the firing of a transition inserts
tokens into its output places. The attributes of the generated token are computed as func-
tions of the variables collected from the input places. CPNs are important because they
allow to use colors to model different types of objects and to model object-dependent
behavior in a compact way. SWNs are CPNs where the functions that changes the
color of the tokens have special forms. SWN have several interesting properties that
allows some analysis to be performed on a reduced symbolic representation of the state
space of the model. This allows to significantly reduce the size of the state space, thus
increasing the size of the model that can be considered.

As observed in Section 2, the SMART tool has been one of the first tools to encode
the state space of the CTMC underlying a GSPN using the MDD and to encode the
transition matrix using the Matrix Diagram technique. When applied to PNs, the tool
can exploit some of the structural properties of the networks to better organize the MDD
levels, and to significantly reduce the time required to compute the state space of the
model.

The TimeNET24 tool has been one of the first tools to support Non-markovian
Stochastic Petri Nets (NMSPNs) [38]. These type of PN allow transitions to fire fol-
lowing general non-exponential firing time distributions. In this case transitions are
characterized by an extra parameter, the memory policy, used to define what happens
when a transition, after being disabled, becomes enabled again. Three different policies
are possible: prd (preemptive repeat different) when a new sample for the distribution
is computed every time, prs (preemptive resume) when the transition continues its ac-
tivity by firing after the remaining time, and pri (preemptive repeat identical) when,
after each time a transition gets enabled, it restarts its activity but maintains the sam-
pled firing time. Non-exponential transition can be solved by approximation as PH-type
distributions, or by explicitly considering a memory variable in either the time domain
or in the transformed domain.

The Oris25 and Romeo26 tools support Timed Petri Nets (TPNs). TPNs assigns inter-
vals to timed transitions. Each transition fires after a time that belongs to the associated
interval. Nothing is assumed about the distribution of the firing time of a transition, for
this reason TPN allows non-determinism, and are particularly suited for Real-time ap-
plications. TPN tools transform a TPN model in a set of possible evolution region, each
one described by a Difference Bounds Matrices (DBM). Performance indexes are then
computed directly from the DBM set.

Fluid Stochastic Petri Nets, Continuous Petri Nets and Hybrid Petri Nets, add a
new kind of place, the fluid place which contains a continuous marking. The three
formalisms are very similar and differs only for small technical details. Even if fluid
formalisms have been widely studied in the literature, very few tools actually consider
them. One example is the FSPNedit tool [11], which allows for both simulation and
numerical analysis of FSPNs. Analytical solution of FSPNs is performed by comput-
ing transforming the model into a set of partial derivatives differential equations, and
then by computing performance indexes from the solution of the PDEs. Simulation is

24 http://www.tu-ilmenau.de/fakia/TimeNET.timenet.0.html
25 http://www.stlab.dsi.unifi.it/oris/
26 http://romeo.rts-software.org/

http://www.tu-ilmenau.de/fakia/TimeNET.timenet.0.html
http://www.stlab.dsi.unifi.it/oris/
http://romeo.rts-software.org/

Tools for Performance Evaluation of Computer Systems 31

performed using the time-scale transformation, since dependency on fluid values makes
the system non-homogeneous.

Although MDD-based technique have significantly reduced the memory require-
ments for encoding the CTMC underlying a GSPN, allowing models with billions of
states to be stored in few kilobytes and to be generated in fractions of seconds, the
probability vector still have to be encoded directly. This actually limits the maximum
number of states and thus the complexity of the models that can be addressed. Some
research has already been done on techniques to encode the probability vector, but none
has provided satisfactory results yet.

For what concerns the use of non-exponential transitions, the current approach tends
to increase significantly the state space, limiting thus the number of non-Markovian
activities that can be included in a model. Several techniques have been devised to
describe the state space of a non-Markovian system using MDD. So a solution to the
encoding of the probability vector should also help in allowing the use of an extended
number of non-exponential transitions in NMSPNs models.

5 Fault Trees

Fault trees (FTs) is a formalism specifically devised for reliability analysis, and orig-
inally created at Bell Labs in the 60s. A fault tree contains a root node called the top
event, and several leaves called basic event. Basic events are connected to the top event
by arcs that traverse a series of intermediate nodes called gates. Gates usually cor-
respond to boolean operations (the classical and, or and not), but might also contain
extended primitives like the “m out of n”. Basic events of a FT usually represent the
occurrence of a faulty condition (such as the breaking of a component). The top event
determines the state of the entire system, which might be compromised whenever one
or more of its components fails. Due to their simplicity and their popularity, there exists
many tools that can address the solution of FTs. A short list of available tools can be
found here27.

In most cases, the user can assign a probability distribution to the basic event and
the tool computes the probability distribution of the top event. If the basic events are
independent, the exact distribution can be computed with simple algebraic operations.
Difficulties arises when considering correlation among events, repair from faulty states,
and cascade of events. In such case FTs are usually analyzed resorting to discrete event
simulation, or by mapping them to other formalism such us GSPNs.

One of the most recognized tool is SHARPE, already introduced in Section2, which
can perform several different analysis over given FTs. SHARPE also supports other
similar formalisms like Reliability Block Diagrams, and Reliability graphs. The former
characterize processes with a block diagram that explicitly shows the introduced redun-
dancy. The latter describe systems with a graph where the failure rates are associated
with edges. In this case, the required condition is that there exists a path from one node
(called the source) to another node (called the sink). SHARPE solves the proposed mod-
els analytically by characterizing the FT with exponential polynomial distributions, and
then by exploiting the analytical properties of such distributions.

27 http://www.enre.umd.edu/tools/ftap.htm

http://www.enre.umd.edu/tools/ftap.htm

32 G. Casale, M. Gribaudo, and G. Serazzi

The tool RADYBAN [25] exploits the analogies between fault trees and another
probabilistic formalism: the Bayesian Networks (BAs). BAs are used to represent un-
certain knowledge in probabilistic environments, and can be suited to perform reliability
analysis. It is possible to prove that BAs can be more powerful than FTs, and that they
can be suited to model more advanced features like noisy gates (that is gates that do not
perform their and, or, not task deterministically).

6 Process Algebras

Process Algebras are a class of performance evaluation formalisms that describes mod-
els using a simple text-based representation. Even if the term was coined in the 80s,
studied that lead to the definition of this formalism started in the early 70s. A nice his-
torical introduction to Process Algebra can be found here28. In particular the modeling
technique split a system into several interacting components. Each component can per-
form a set of actions, and then evolve to perform other activities. Usually the evolution
of each component is represented by a very simple grammar such as:

S ::= α.S1 | S1 + S2 | CS , (1)

where α.S is the prefix operator that tells that component S evolves to component S1

after performing action α, S1 + S2 is the choice operator that tells that component
S can evolve to either S1 or S2, and CS is a constant used to address a sequence of
components. Components can then be composed in models, using another very simple
grammar such as:

P ::= P1 ��L P2 | P/L | S.
Operator P1 ��L P2 is the cooperation of P1 and P2 over the set of actions L. In order
to perform one action in set L, the two components P1 and P2 have to synchronize,
and the action is executed simultaneously. Operator P/L is called hiding, and simply
prevents the resulting component to synchronize on actions belonging to the set L, by
making such actions private (or internal).

In performance evaluation, particular dialects of Process Algebra that associate tim-
ing to events are used. Two common timed extensions of Process Algebra are PEPA
(Performance Evaluation Process Algebra) and EMPA (Extended Markovian Process
Algebra). For example, PEPA modifies the grammar presented in Equation 1 to S ::=
(α, r).S1 | S1 + S2 | CS , by adding a rate r to actions (that now are denoted as (α, r)).
Each action is executed after an exponential distributed time with rate r.

Process algebras are supported in several tools such as ipc/Hydra29, PEPA - Work-
bench30, Two towers31, and Mobius. Usually analysis is performed by enumerating the
states that can be reached by the model (exploiting symmetries and creating symbolic
states to reduce the size of the state space), and by creating a CTMC or a Generalized
Semi-Markov Process (GSMP) to study the evolution of the model.

28 http://www.win.tue.nl/fm/0402history.pdf
29 http://www.doc.ic.ac.uk/ipc/
30 http://www.dcs.ed.ac.uk/pepa/tools/
31 http://www.sti.uniurb.it/bernardo/twotowers/

http://www.win.tue.nl/fm/0402history.pdf
http://www.doc.ic.ac.uk/ipc/
http://www.dcs.ed.ac.uk/pepa/tools/
http://www.sti.uniurb.it/bernardo/twotowers/

Tools for Performance Evaluation of Computer Systems 33

The PEPA-Workbench tool, beside offering the possibility to analyze a model using
CTMC or discrete event simulation, it allows the use of new approximations based on
fluid interpretation and differential equations [16].

Several application-domain specific derivation of Process Algebra have been pro-
duced. For example the tool BioPEPA-workbench32, supports an interesting extension
of PEPA called BioPEPA, that defines a grammar that is suited for describing the
processes that models the chemical reaction happening in biochemical system.

7 Architectures, Trends and Expectations

Several important trends are leading the current researches, such as the conjunction
of qualitative (mostly model checking) and quantitative analysis, and the scalability
and the parallelization of tools. Due to space constraint, instead of briefly considering
several aspects, we focus on a single specific trend: tool inter-operability.

Following basic software engineering principles, the internal structure of modern
performance tools is often organized around a clear separation of concerns. Separate
software modules implement scientific algorithms, user interfaces, managers for per-
forming repeated cycles of experiments, and primitives for generating, storing, and pos-
sibly simulate the models. Both in academia and industry, such modularization helps in
separating and organizing the activity of scientific programmers (or students) involved
in the development of the different parts of the code. On the other hand, this has been
hardly combined with software reuse, since most performance groups opted to develop
their own libraries instead of creating a public framework for sharing their work with
the community.

We believe that such practices does not follow modern trends of software engineer-
ing, especially of the open source community that has promoted in recent years the
sharing and reuse of software artifacts. In particular, major steps have been done to-
wards software integration by means of standardized programming libraries (e.g., the
Java Platform) and data exchange languages (e.g., XML). These technologies create
interesting opportunities also to improve the way performance tools are defined.

A proposal for leveraging on these technologies that we describe in this section is
to define a new family of performance meta-tools that could help the integration of the
software artifacts available in the performance community. The general structure of a
performance meta-tool, referred to as p-platform, is outlined in Fig. 1. Each layer of a p-
platform describes a typical concern of a performance modeling study and we propose
to organize the interaction between different submodules by means of layers, commu-
nicating through standardized meta-languages. In particular we suggest the use of XML
as a possible implementation of a meta-language used to describe the interfaces between
the layers. The ability of integrate different performance tools into a public framework
would substantially improve the robustness and scale of current performance tools. It
would also give the ability to users to select the components that best fit the goals of
the performance study. The number of components required in the analysis is not fixed
and depends on the objectives. Furthermore, the component of a layer can be skipped,

32 http://homepages.inf.ed.ac.uk/stg/software/biopepa/

http://homepages.inf.ed.ac.uk/stg/software/biopepa/

34 G. Casale, M. Gribaudo, and G. Serazzi

XML Interface

GUI &
Model Definition

Languages

Experiment
Manager

Queueing
Networks

Petri
Nets

Fault
Trees

High-level
Modeling

Languages

Stochastic
Process Algebra

Transient
Analysis

What-if
Analysis

Equilibrium
solution

Model
Validation

Solution
Techniques

Simulation Approximate
Bounds

Exact
Product Form

Markov
chains

Optimization
Objectives

Drag&Drop of
Components

Model definition
with Wizards

Languages for
model description

Computational
Infrastructure

Cloud Grid WebSingle
Server

Fluid & Hybrid
Models

XML Interface

XML Interface

XML Interface

Fig. 1. Main components of the architecture of a performance meta-tool, referred to as p-platform

for example one may evaluate a Markov model without using any high-level modeling
language. According to the p-platform description, main steps of a performance study
would be:

1. analysis of the intended use of the model based on the study’s objectives; identifica-
tion of the best technique to be used to describe the problem and its characteristics;

2. identification of the solution algorithm required to produce the type of results
needed, e.g., equilibrium or transient values, exact or approximate solutions;

3. design of the experiment to be undertaken through the manager module, e.g, what-
if, single run, optimization technique;

4. selection of the computing infrastructure to be used to run the numerical or
simulation algorithms, single server, cluster, cloud, web, etc.

Tools for Performance Evaluation of Computer Systems 35

Although the principles outlined are simple, to the best of the authors’ knowledge inte-
gration via XML has been poorly adopted by current performance modeling tools. The
only notable exceptions are the Java Modelling Suite which coordinates data exchange
between modules using XML files, the ongoing performance interchange format project
PMIF [33,34], and the Petri Net Markup Language PNML33 which is supported by a
growing number of PN tools. A possible explanation for this is that the majority of the
tools have been developed started from the 80s, therefore according to the software en-
gineering principles of the time. We believe that open release of the source code through
open platforms such as Sourceforge would represent a first step in the right direction of
helping external groups provide ideas, report bugs, and discuss in forums the issues we
have outlined in this section.

8 Conclusions

In this paper, we have reviewed past and present efforts towards implementing software
tools to support performance evaluation activities. Our analysis has revealed the area to
be still very active, with a number of new simulation and analysis techniques still be-
ing proposed for classic models such as queuing networks and Petri nets. We have also
argued that the recent advent of standardized data exchange languages such as XML
opens new opportunities towards integrating existing community efforts into larger per-
formance evaluation frameworks. To support this idea, we have outlined a performance
meta-tool architecture, named p-platform, that provides high-level intuition on the basic
blocks needed to define such frameworks.

Acknowledgement. The authors wishes to thank the anonymous reviewer for the valu-
able comments that helped to improve the quality of the paper. The work of Giuliano
Casale has been supported by the Imperial College Junior Research Fellowship.

References

1. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks
of queues with different classes of customers. Journal of the ACM 22(2), 248–260 (1975)

2. Buchholz, P., Ciardo, G., Donatelli, S., Kemper, P.: Complexity of memory-efficient kro-
necker operations with applications to the solution of markov models. INFORMS Journal on
Computing 12(3), 203–222 (2000)

3. Buzen, J.P.: Computational algorithms for closed queueing networks with exponential
servers. Comm. of the ACM 16(9), 527–531 (1973)

4. Carlson, G.: A user’s view of hardware performance monitors. In: Proc. IFIP Congress,
vol. 71, pp. 128–132. North-Holland (1971)

5. Casale, G., Muntz, R.R., Serazzi, G.: Tools for computer performance modeling and reliabil-
ity analysis. ACM Performance Evaluation Review 36(4) (2009)

6. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets
and symmetric modeling applications. IEEE Transactions on Computers 42(11), 1343–1360
(1993)

33 http://www.pnml.org/

http://www.pnml.org/

36 G. Casale, M. Gribaudo, and G. Serazzi

7. Chung, M.-Y., Ciardo, G., Donatelli, S., He, N., Plateau, B., Stewart, W., Sulaiman, E., Yu,
J.: A comparison of structural formalisms for modeling large markov models. In: Proc. of
IPDPS, vol. 11, p. 196 (2004)

8. Buzen, J.P., et al.: Best/1 - design of a tool for computer system capacity planning. In: Proc.
of the 1978 National Computer Conf., pp. 447–455. AFIPS Press (1978)

9. Ferrari, D., Serazzi, G., Zeigner, A.: Measurement and Tuning of Computer Systems.
Prentice-Hall (1983)

10. Fishman, G.S.: Statistical analysis for queueing simulations. Management Science 20(3),
363–369 (1973)

11. Gribaudo, M.: Fspnedit: a fluid stochastic petri net modeling and analysis tool. In: Proc. of
Tools of Aachen 2001, pp. 24–28 (2001)

12. Reiser, M., Haring, G., Lindemann, C. (eds.): Dagstuhl Seminar 1997. LNCS, vol. 1769.
Springer, Heidelberg (2000)

13. Heidelberger, P., Welch, P.D.: A spectral method for confidence interval generation and run
length control in simulations. Comm. of the ACM 24(4), 233–245 (1981)

14. Herman, D.J.: Scert: a computer evaluation tool. Datamation 13(2), 26–28 (1967)
15. Herman, D.J., Ihrer, F.: The use of a computer to evaluate computers. In: Proc. Conf. 1964

SJCC, Washington DC, pp. 383–395. Spartan Books (1964)
16. Hillston, J.: Fluid flow approximation of pepa models. In: QEST 2005, pp. 33–42, 19–22

(2005)
17. IBM. General purpose systems simulator iii user’s manual. Technical Report Form H20-

0163, IBM (1965)
18. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use, 2nd

edn. Springer, Heidelberg (1997)
19. Kartson, D., Balbo, G., Donatelli, S., Franceschinis, G., Conte, G.: Modelling with General-

ized Stochastic Petri Nets. John Wiley & Sons, Inc., New York (1994)
20. Kleinrock, L.: Queueing Systems, Theory, vol. 1. John Wiley & Sons, New York (1976)
21. Lavenberg, S.S.: A perspective on queueing models of computer performance. Performance

Evaluation 10(1), 53–76 (1989)
22. LeMay, E., Unkenholz, W., Parks, D., Muehrcke, C., Keefe, K., Sanders, W.H.: Adversary-

driven state-based system security evaluation. In: MetriSec 2010: Proceedings of the 6th
International Workshop on Security Measurements and Metrics, pp. 1–9. ACM, New York
(2010)

23. Markowitz, H.M., Hausner, B., Karr, H.W.: Simscript: a simulation programming language.
Prentice Hall (1963)

24. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software ar-
chitecture models for performance, reliability, and cost using evolutionary algorithms. In:
WOSP/SIPEW, pp. 105–116 (2010)

25. Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: Radyban: A tool for reliability
analysis of dynamic fault trees through conversion into dynamic bayesian networks. Reli-
ability Engineering and System Safety 93(7), 922–932 (2008); Bayesian Networks in De-
pendability

26. Nielsen, N.R.: Computer simulation of computer system performance. In: Proc. of ACM
National Meeting, pp. 581–590 (1967)

27. Pawlikowski, K.: Steady-sate simulation of queueing processes: A survey of problems and
solutions. ACM Computing Surveys 22(2), 123–168 (1990)

28. Potier, D., Veran, M.: The markovian solver of QNAP2 and examples. In: Hasegawa, T., et
al. (eds.) Computer Networking and Perf. Eval., pp. 259–279. North-Holland, Amsterdam
(1986)

29. Sauer, C.H., Chandy, K.M.: Computer Systems Performance Modeling. Prentice-Hall (1981)

Tools for Performance Evaluation of Computer Systems 37

30. Sauer, C.H., McNair, E.A., Kurose, J.F.: The research queueing (RESQ) package, version 2:
Introduction and examples. Technical Report IBM rep. no. RA 138, IBM (1982)

31. Saure, D., Glynn, P., Zeevi, A.: A linear programming algorithm for computing the stationary
distribution of semi-martingale reflecting brownian motion (under submission)

32. Schwetman, H.: CSIM Reference Manual (1988)
33. Smith, C., Llado, C.: Performance model interchange format (pmif 2.0): Xml definition and

implementation. In: Proc. of QUEST 2004. IEEE Press (2004)
34. Smith, C., Lladó, C., Puigjaner, R.: Performance model interchange format (pmif 2): A com-

prehensive approach to queueing network model interoperability. Perform. Eval. 67(7), 548–
568 (2010)

35. Smith, C.U., Williams, L.G.: Performance Engineering Evaluation of CORBA-Based Dis-
tributed Systems with SPE•ED. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) TOOLS
1998. LNCS, vol. 1469, pp. 321–335. Springer, Heidelberg (1998)

36. Smith, C., Williams, L.: Performance Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison-Wesley (2001)

37. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton Univer-
sity Press, Princeton (1994)

38. Trivedi, K.S., Bobbio, A., Ciardo, G., German, R., Puliafito, A., Telek, M.: Non-markovian
petri nets. In: SIGMETRICS 1995/PERFORMANCE 1995, pp. 263–264. ACM, New York
(1995)

	Tools for Performance Evaluation of Computer Systems:
Historical Evolution and Perspectives
	Introduction
	Markov Models
	Queuing Network Models
	Petri Nets
	Fault Trees
	Process Algebras
	Architectures, Trends and Expectations
	Conclusions
	References

