
Decidability Results for Choreography Realization

Niels Lohmann and Karsten Wolf

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
����������	
��� �
��
����������������
������

Abstract. A service choreography defines a set of permitted sequences of mes-
sage events as a specification for the interaction of services. Realizability is a
fundamental sanity check for choreographies comparable to the notion of sound-
ness for workflows.

We study several notions of realizability: partial, distributed, and complete
realizability. They establish increasingly strict conditions on realizing services.
We investigate decidability issues under the synchronous and asynchronous com-
munication models. For partial realizability, we show undecidability whereas the
other two problems are decidable with reasonable complexity.

1 Introduction

A choreography describes the interaction of services. In the literature on services, this
term has been used for representing the behavior of a system composed of services
(“interconnected models”) or for the restriction of that behavior to the communication
events (“interaction model”). In this paper, we follow the second interpretation. To be
more precise, a choreography is typically understood as a specification of interaction
that can be used as a contract between organizations. This specification is later com-
pared to those interactions that implement the specification. If the implementation pro-
duces those interactions which are specified in the choreography, this implementation
realizes the choreography. Consequently, the question of realizability is a fundamental
sanity property for choreographies.

The realizability problem has several dimensions. The first dimension is concerned
with the notation in which the choreography is given. Several languages have been
proposed for choreography description, including WS-CDL [8], Let’s Dance [20], UML
collaboration diagrams [3], and BPMN 2.0 [14]. They all have in common that they
permit the specification of a regular set of sequences of message events. For covering
all these languages, we abstract from the syntactic sugar of these languages and assume
a choreography to be given in the shape of a finite automaton.

The second dimension for the realizability problem is the communication model
assumed. In this paper, we consider synchronous as well as asynchronous communi-
cation. In the asynchronous case, we do not assume that messages arrive in the same
order in which they have been sent. In the spectrum of reasonable communication mod-
els (cf. [10] for a survey), we thus consider the models with the tightest, respectively
loosest coupling between sender and receiver of a message. We do not consider FIFO
based models.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 92–107, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

Decidability Results for Choreography Realization 93

P1 P2
x

y
(a) collaboration

!x

P1

?y ?x

P2

!y

(b) partial realization of C1 (conversation !x!y?x?y is not realized)

?x

P2

!x

P1

!y

P2

?y

P1
(c) distributed realization of C2 (two tuples of peers)

x

y
P2

x

y
P1

(d) complete realization of C3

Fig. 1. Collaboration (a) and peer implementations for the partially realizable choreography C1 �

�!x!y?x?y� !x?x!y?y� (b), the distributedly realizable choreography C2 � �!x?x� !y?y� (c), and the
completely realizable choreography C3 � �x� y� (d)

In the third dimension of the realizability problem, we need to determine what it
exactly means for an implementation to conform to a choreography. Following earlier
considerations [12], we study three concepts: partial, distributed, and complete realiza-
tion. In a partial realization, the implementation produces some, but not necessarily
all sequences of message events specified in the choreography, cf. Fig. 1(b). Here, the
choreography is seen as a space of opportunities which need not be exhausted by the
implementation. Distributed choreography follows the same intention, but assures that
the choreography does not contain junk sequences which cannot be contained in any
realization. Hence, a choreography is distributedly realizable if there is a (possibly infi-
nite) family of implementations such that each specified sequence of the choreography
is realized in at least one of them, cf. Fig. 1(c). Complete realizability, in turn, requires
that all sequences specified in the choreography can be produced in a single implemen-
tation, cf. Fig. 1(d). The three concepts form a hierarchy; that is, complete realizability
implies distributed, and distributed implies partial realizability.

Contribution. We show that, for both considered communication models, partial realiz-
ability is undecidable whereas distributed and complete realizability are decidable. Our
undecidability results depend on a reduction of the famous undecidable Post correspon-
dence problem (PCP). The decision procedures for distributed and complete realizability
depend on standard language theoretic constructions such as projection, checking lan-
guage equivalence, and minimization of automata. Thus, despite exponential worst case
complexity, we may assume mature algorithms with reasonable run times.

Organization. After giving the formal definitions of our concepts (Sect. 2), we study
first partial (Sect. 3), then distributed (Sect. 4), and finally complete realizability (Sect. 5).
In each of the sections, we first present our results for synchronous communication in
full detail. Then, for space reasons, we just briefly discuss how these arguments need to
be modified in the asynchronous case. In Sect. 6 we discuss related work before Sect.7
concludes the paper and lists open problems.

94 N. Lohmann and K. Wolf

2 Basic Definitions

2.1 Interconnected Models and Interaction Models

Throughout this paper, fix a finite set of message channels M that is partitioned into
asynchronous message channels MA and synchronous message channels MS . From M,
derive a set of message events E :� !E � ?E � MS , consisting of asynchronous send
events !E :� �!x � x � MA�, asynchronous receive events ?E :� �?x � x � MA�, and
synchronization events. Furthermore, we distinguish a non-communicating event � � E.
For an event x � E, define channel(x) � a if x � a, x � ?a, or x � !a.

Definition 1 (Peer, collaboration). A peer P � [I�O] consists of a set of input message
channels I � M and a set of output message channels O � M, I�O � �. A collaboration
is a set �[I1�O1]� � � � � [In�On]� of peers such that Ii � I j � � and Oi �O j � � for all i � j,
and

�n
i�1 Ii �

�n
i�1 Oi.

A peer and a collaboration (cf. Fig. 1(a)) can be seen as a syntactic signature of a
service and a composition, respectively. The behavior itself (i.e., the order in which
messages are exchanged and when a peer terminates) is modeled by peer automata. A
peer automaton is a state machine whose transitions are labeled by message events or �.

Definition 2 (Peer automaton). A peer automaton A � [Q� Æ� q0� F�] is a tuple such
that Q is a set of states, Æ � Q
 (EI �EO ����)
Q is a transition relation, q0 � Q is an
initial state, F � Q is a set of final states, and 	 � �[I1�O1]� � � � � [In�On]� is a nonempty
set of peers. Thereby, EI :� �?x � x � MA �

�n
i�1 Ii� � (MS �

�n
i�1 Ii) are the input events

of A and EO :� �!x � x � MA �
�n

i�1 Oi� � (MS �
�n

i�1 Oi) are output events of A.
A implements the peers 	, and for [q� x� q�] � Æ, we also write q

x
�� q�. A is called a

single-peer automaton, if �	� � 1. A is called a multi-peer automaton, if �	� � 1 and 	
is a collaboration. A is called �-free if q

x
�� q� implies x � � for all q� q� � Q. A is called

deterministic if A is �-free and q
x
�� q� and q

x
�� q�� imply q�

� q��. A is called finite if
the number of states reachable from q0 is finite. An accepting run of A is a sequence of
events x1

 xm such that q0

x1
��

xm
��� q f with q f � F.

The interplay of peers is modeled by their composition. In case of asynchronous commu-
nication, pending messages are represented by a multiset. Denote the set of all multisets
over MA with Bags(MA), the empty multiset with [], and the multiset containing only
one instance of x � MA with [x]. Addition of multisets is defined pointwise.

Definition 3 (Composition of single-peer automata). Let A1� � � � � An be finite single-
peer automata (Ai � [Qi� Æi� q0i � Fi� �Pi�] for i � 1� � � � � n) such that their peers form
a collaboration. Define the composition A1 �

 � An as the multi-peer automaton
[Q� Æ� q0� F� �P1� � � � � Pn�] with Q :� Q1

 Qn
 Bags(MA), q0 :� [q01 � � � � � q0n � []],
F :� F1

 Fn
 �[]�, and, for all i � j and B � Bags(MA) the transition relation Æ

contains exactly the following elements:

– [q1� � � � � qi� � � � � qn� B]
�

�� [q1� � � � � q�
i � � � � � qn� B], if and only if

[qi� �� q�
i] � Æi (internal move by Ai),

Decidability Results for Choreography Realization 95

– [q1� � � � � qi� � � � � qn� B]
!x
�� [q1� � � � � q�

i � � � � � qn� B � [x]], if and only if
x � MA and [qi� !x� q�

i] � Æi (asynchronous send by Ai),

– [q1� � � � � qi� � � � � qn� B � [x]]
?x
�� [q1� � � � � q�

i � � � � � qn� B], if and only if
x � MA and [qi� ?x� q�

i] � Æi (asynchronous receive by Ai), and

– [q1� � � � � qi� � � � � q j� � � � � qn� B]
x
�� [q1� � � � � q�

i � � � � � q
�
j� � � � � qn� B], if and only if

x � MS , [qi� x� q�
i] � Æi, and [q j� x� q�

j] � Æ j (synchronization between Ai and A j).

The composition of two finite service automata may have an infinite number of states,
because we consider arbitrary multisets of asynchronous messages. In the remainder,
we only consider finite compositions.

2.2 Languages and Traces

The results in the next sections heavily rely on concepts of regular languages and traces.

Definition 4 (Automaton versus language). Let A � [Q� Æ� q0� F�] be a finite peer
automaton. For an accepting run �, define the event sequence of � as ��E (i.e., � without
�-steps). The language of A, denoted�(A), is the set of the event sequences of all accept-
ing runs of A. The other way round, if 	 is a set of peers and L is a regular language
over the alphabet

�
[I�O]�� I � O then �(L) is the minimal (regarding size of Q) finite,

deterministic, and �-free peer-automaton that implements 	 and has �(�(L)) � L.

Formal languages theory asserts that, for every nonempty regular language L, an au-
tomaton �(L) exists and is unique up to isomorphism. Throughout this paper, we only
consider regular languages and choreographies. This accords to many industrial and
academic choreography specification languages.

Definition 5 (Choreography). Let 	 � �[I1�O1]� � � � � [In�On]� be a collaboration. A
conversation of 	 is a word over the events of 	. A choreography for 	 is a nonempty
regular set of conversations of 	.

The individual realizability notions di�er in the amount of conversations which must
be realized by the peers. They all have in common that no new conversation must be
introduced. Hence, the projected peers need to be coordinated at design time such that
they do not produce unspecified conversations. The example choreographies in Fig. 1
show that this coordination can already be impossible even if two peers share message
channels. To characterize possible and impossible coordination, we first introduce dis-
tant message events. We call two message events distant if there exists no peer which
can observe both, for instance !x and !y in Fig. 1(b):

Definition 6 (Distant message events). Let 	 be a collaboration. Two message events
a� b � E are distant if and only if there exist no peer [I�O] � 	 such that
�channel(a)� channel(b)� � (I � O).

Several results in this article shall depend on the observation that no composition of peer
automata is able to enforce any order on concurrently activated distant events. That is,
if distant events subsequently occur in one order, they can also occur in the reverse

96 N. Lohmann and K. Wolf

order. An exception are related asynchronous send and receive events. They are distant
according to our definition but the send event always precedes the corresponding receive
event as long as no other message of this kind is pending. The following definition
formalizes this observation. Whether there are pending asynchronous message, can be
determined by a simple counting on the prefix of the sequence.

Definition 7 (Message counting, trace). For x � MA and an event sequence w, define
x̂(w) by the following induction scheme:

Base: For the empty sequence �, let x̂(�) � 0.
Step: Let x̂(wa) � x̂(w) � 1, if a � !x, x̂(wa) � x̂(w) � 1, if a � ?x, x̂(wa) � x̂(w), for

all other events a.

Let 	 be a collaboration. For a word w over the alphabet E, define the trace of w, �w��,
by the following induction scheme:

Base: Let w � �w��.
Step: For all distant events a� b such that there is no x � M with a � !x and b � ?x,

w1abw2 � �w�� implies w1baw2 � �w�� and, if x̂(w1) � 0, w1!x?xw2 � �w�� implies
w1?x!xw2 � �w��.

If 	 is clear from the context,we simply write �w� instead of �w��.

This concept is very similar to local traces [11]. If Ma � �, it coincides with
Mazurkiewicz traces [13] which have been intensely investigated [5]. By our definition
of composition, the message count functions x̂ will always return 0 for event sequences
of terminating runs and values greater than or equal to 0 for prefixes of terminating
runs.

Proposition 1 (Notation for languages). Let L1 and L2 be regular languages. Then
(1) the concatenation of L1 and L2, L1L2, (2) the complement of L1, L1, (3) the union of
L1 and L2, L1 � L2, (4) the di�erence of L1 and L2, L1 � L2, (5) iteration�Kleene star, L�

1,
(6) nonempty iteration, L�1 � L1L�

1, (7) projection to the letters appearing in the events
of 	, L1��, and (8) the shu�e product of L1 and L2, L1 �� L2, are regular.

3 Partial Realizability

Definition 8 (Partial realizability). Let C be a choreography for a collaboration
�P1� � � � � Pn�. The finite single-peer automata A1� � � � � An partially realize C if, for all i,
Ai implements �Pi� and � � �(A1 �

 � An) � C.

Example. The choreographyC1 in Fig. 1 is only partially realizable (e.g., by the peer au-
tomata depicted in Fig. 1(b)), because the conversation !x!y?x?y cannot be implemented
by peers without also producing the unspecified conversations !y!x?x?y or !y!x?y?x.
Only the conversation !x?x!y?y is realized.

Decidability Results for Choreography Realization 97

3.1 The Synchronous Case

In this subsection, we assume MA � �. We shall show that partial decidability is unde-
cidable for n � 4 and trivial for n � 3. We start with some simple observations about
partial realizability in presence of distant events.

Proposition 2. Let A1� � � � � An be finite single-peer automata whose collection of peers
forms a collaboration. Then for all sequences w over E, w � �(A1 �

 � An) implies
�w� � �(A1 �

 � An).

Proof. Follows directly from the definition of composition and distant events. ��

That is, realization cannot be finer than the level of granularity of traces. The other
way round, we can realize a single conversation w provided that the choreography con-
tains its whole trace �w�. This can be done by letting each peer automaton execute, in
sequence, those letters of w which occur in its set of peers. Formally:

Proposition 3. Let w be a sequence over E. Then �
��n

i�1 �(�w���i)
�
� �w�.

Proof. Follows directly from the definition of composition and distant events. ��

Joining these two observations, we obtain a characterization of partial realizability that
we shall use throughout the remainder of this section.

Lemma 1. A choreography C for a collaboration 	 is partially realizable if and only
if it contains a conversation w with �w� � C.

Proof. Implication: Assume C is partially realizable. Then exists at least one conversa-
tion w that is realized by peers and Proposition 2 states that �w� � C.
Replication: Assume there exists a conversation w with �w� � C. Then Proposition 3
states that the single-peer automata �(�w���1)� � � � ��(�w���n) realize �w� and, as � �

�w� � C, also partially C. ��

We are now ready to consider the case of at most three peers.

Theorem 1. Let C be a choreography for a collaboration with at most three peers.
Then C is partially realizable if and only if C � �.

Proof. Take an arbitrary conversation w in C and apply the construction of Prop. 3.
Observe further that there cannot be distant events, because each event is shared by two
peers. This means that the realized language is �w� which is clearly a nonempty subset
of C. ��

For the case of four or more peers, we show undecidability.

Theorem 2. Partial realizability is undecidable for choreographies that involve at least
four peers.

Undecidability is shown by reduction of the famous Post correspondence problem using
a proof pattern that is inspired by a proof in [15].

98 N. Lohmann and K. Wolf

Definition 9 (Post correspondence problem (PCP)). A Post system over alphabet X is
a finite set P � �[u1� v1]� � � � � [uk� vk]� of ordered pairs of words ui� vi � X�. A candidate
is a nonempty finite sequence i1

 in of indices i j � �1� � � � � k�. Candidate i1

 in is a
solution of Post system P if ui1

uin � vi1

 vin . The Post correspondence problem is
to decide for a given Post system P whether it has a solution.

In other words, the question is whether we can arrange the pairs (in arbitrary copies)
such that the concatenation of the left elements yields the same sequence as the concate-
nation of the right elements. Undecidability of PCP is a classical result in the theory of
computable functions.

In the sequel, we show that decidability of partial realizability would imply decidabil-
ity of PCP. Consequently, we start with a Post system P and construct a choreography
C for a collaboration such that P has a solution if and only if C is partially realizable;
that is, C includes �w� for at least one conversation w � C.

Message channels. Let X be the alphabet used in P and assume that X� :� �x� � x � X�
is another, disjoint alphabet of same size. For a sequence x1

 xm in X let (x1

 xm)� �
x�1

 x�m. Let k be the number of pairs in P and assume further, without loss of generality,
that none of X and X� contain elements from �1� � � � � k�. Set MS � X � X� � �1� � � � � k�
and MA � �.

Collaboration. We translate P into a collaboration with four peers P1 � [I1�O1]� � � � �
P4 � [I4�O4]. We set I1 � O2 � X��1� � � � � k�, I3 � O4 � X�, and O1 � I2 � O3 � I4 � �.
This means that two messages are distant if and only if one of them is in X � �1� � � � � k�
and the other is in X�.

Encoding of candidates. Consider the following encoding of an arbitrary candidate
i1

 in of P: w(i1

 in) � i1ui1 v�i1

 inuin v�in . That is, we have a sequence of blocks
where each block consists of a pair number, the left side of the pair, and the primed
version of the right side of the pair. If i1

 in is a solution, the projection of w(i1

 in)
to X yields the same sequence as its projection to X� (up to the “priming” of the letters
in X�). Letters in X do not commute, so the projection to X is the same for all members
of the trace �w(i1 � � � in)�. The same is true for the projection to X�. On the other hand,
letters of X� commute arbitrarily with letters in X and in �1� � � � � k�. This leads us to the
core observation for our construction.

Proposition 4. The sequence i1

 in is a solution of the Post system P if and only if the
trace �w(i1

 in)� contains a word of the language defined by the regular expression
(x1x�1 �

 � xnx�n � 1 �

 � k)�.

In other words, the letters of X and X� can be adjusted such that they can be compared
letter by letter (and the pair numbers occur somewhere in between).

Example. As an example, consider the Post system P � �[a� baa]� [ab� aa]� [bba� bb]�
with k � 3 pairs over the alphabet X � �a� b�. Define X�

� �a�� b�� and the peers P1 �

[�a� b� 1� 2� 3�� �], P2 � [�� �a� b� 1� 2� 3�], P3 � [�a�� b��� �], and P4 � [�� �a�� b��]. Con-
sider the candidate 3 2 3 1 and define the word w(3 2 3 1) � 3bbab�b� 2aba�a� 3bbab�b�

1ab�a�a�. The letters in this word can be reordered, and in the trace �w(3 2 3 1)� we can
find the word 3bb�bb�aa�2aa�bb�3bb�bb�aa�1aa�. By Prop. 4, we can conclude that the
candidate 3 2 3 1 is a solution, and indeed bba ab bba a � bb aa bb baa.

Decidability Results for Choreography Realization 99

Choreography. We want the choreography C to contain all sequences w on X � X� �

�1� � � � � k� except

(1) at least one sequence of the trace �w� if the word w cannot be reshu�ed to the
encoding of some candidate of P and

(2) at least one sequence of the trace �w� if the word projections of w to X and X� lead
to di�erent sequences.

At the same time we need to assure that,

(3) for any solution i1

 in of P, the trace of its encoding, �w(i1 � � � in)�, is indeed fully
contained in C.

The recognition of the faulty sequence w is facilitated by the fact that the respective trace
�w� contains all possible reshu�ings of w. These reshu�ings contain normal forms for
which the characterization of fault sequences is straightforward.

It is easy to see that a choreography that satisfies (1), (2), and (3) is indeed partially
realizable if and only if P has a solution. Hence, it remains to show that there are regular
languages L1 and L2 such that

– L1 contains at least one sequence of �w� if w cannot be reshu�ed to the encoding of
some candidate of P (1), but no sequence of �w(i1

 in)�, for any solution i1

 in
of P (3) and

– L2 contains at least one sequence of �w� if the projections of w to X and X� lead to
di�erent sequences (2), but no sequence of �w(i1

 in)�, for any solution i1

 in of
P (3).

We present L1 and L2 as expressions using the operations mentioned in Def. 1 which
proves regularity. Concerning L1, there can be two reasons for the incapability to reshuf-
fle a conversation to the encoding of any candidate. First, the projection of a word to
X � �1� � � � � k� may not correspond to a sequence of pair numbers and corresponding
left elements of pairs. As this projection is invariant under reshu�ing (no pair of letters
in X � �1� � � � � k� is distant to each other), removal of such words cannot compromise
condition (3). This is reflected in

L1 � L11 � L12 with L11 � (1u1 �

 � kuk)� ��X���

Second, the projection to X� may not deliver the (unique) sequence that fits to the pro-
jection to X � �1� � � � � k�. This, in turn, may be caused by (a) excess letters from X� after
having served all pairs or (b) the incapability to complement some iui with the unique
fitting v�i . We model L12 such that we detect the problem immediately subsequent to the
largest prefix that can be shu�ed into the correct encoding. Consequently, let

L12 � (1u1v�1 �

 � kukv�k)� (La � Lb)�

The two languages in the tail of this expression correspond to the mentioned problems.
Thus,

La � X�� and Lb �
k
�

j�1

�
ju j
�
(X�� � v�jX

��) �� (X � �1� � � � � k�)�
��
�

100 N. Lohmann and K. Wolf

For language L2, we only need to detect a single mismatch or excess letters in either
subalphabet. Let X � �x1� � � � � xm�. Then we set

L2 �
�
x1x�1 �

 � xmx�m � 1 �

 � k)� (X� � X�� � �

i� j
xi x

�
j(X � X� � �1� � � � � k�)�

�
�

For both languages L1 and L2, the construction transparently shows that they satisfy the
specified conditions. Hence, we may come to our final conclusion that

C :� (X � X� � �1� � � � � k�)� � (L1 � L2)

contains a word w with �w� � L if and only if the Post system P has a solution. This
concludes the proof of Theorem 2.

Example (cont.). For the example Post system, the following words are examples for
the defined languages:

– 1aba� 2ab�a� � L11 — this word uses pairs [ab� a]� [a� ba] � P.
– 3bbab�b�a� � L12 — the letter a� after pair [bba� bb] is too much.
– 2aba�b� � L12 — this word uses a pair [ab� ab] � P.
– 3bb�bb�aa�1ab�a�a� � L2 — no solution, because one a is not matched.

3.2 The Asynchronous Case

Assume now MS � �. We show that the arguments used in the synchronous case extend
to asynchronous communication. First, Propositions 2 and 3 hold in the asynchronous
case as well. For the latter proposition, observe in particular that events !x and ?x com-
mute only if a message x is pending before the execution of the considered event !x.
This is reflected both in the definition of composition and the definition of traces.

For the PCP reduction of a PCP instance P with k pairs, a topology with three peers
P1, P2, and P3. is suÆcient. Having distinct events for sending and receiving, we can
use MA � X � �1� � � � � k�. While the sending events take the role of X in the previous
subsection, the corresponding receiving events replace the primed letters above. Then
O1 � !X � �!1� � � � � !k�, I2 � ?X, I3 � �?1� � � � � ?k�, and I1 � O2 � O3 � �. We use the
same choreography as above, except for the fact that we assume P3 to receive messages
arbitrarily; that is, we shu�e the choreography used above with (�?1� � � � � ?k�)�. Send
and corresponding receive events are distant except for the case that no message of
shape x is pending. However, we can exploit that already a “monotonous” version of
PCP is undecidable:

Given a Post system �[u1� v1]� � � � � [uk� vk]�, is there a candidate i1

 in such that
ui1

uin � vi1

 vin and, for all j � n, vi1

 vi j � ui1

 uij .

Thereby,� denotes the prefix operator: the left pairs are always a prefix of the right pairs.
Undecidability can be observed from the standard reduction of the halting problem
for Turing machines to PCP. In this proof, the di�erence between the u-sequence and
the v-sequence is used for coding configurations of the Turing machine. That is, the
u-sequence is always ahead of the v-sequence which can only catch up after having
passed a terminating configuration of the machine.

Decidability Results for Choreography Realization 101

In the monotonous setting, the coding of a PCP solution satisfies the condition that
every receive event is preceded by suÆciently many send events. The reshu�ing to a
form where send and corresponding receive events are immediate neighbors is also not
blocked by inactivated receive events, Thus, the argument used in the synchronous case
extends to the asynchronous case.

Corollary 1. Partial realizability under the asynchronous communication model is un-
decidable if at least three peers are involved.

4 Distributed Realizability

Definition 10 (Distributed realizability). Let C be a choreography for a collaboration
�P1� � � � � Pn�. The set of tuples of finite single-peer automata �[A1 j� � � � � An j] � j � IN��

is distributedly realize C if, for i � 1� � � � � n and all j, (i) Ai j implements �Pi�, (ii) � �

�(A1 j �

 � An j) � C, and (iii)
�

j �(A1 j �

 � An j) � C.

Example. The choreography C2 in Fig. 1 is distributedly realizable: There exist two
tuples of peers (cf. Fig. 1(c)) such that every conversation of the choreography is im-
plemented. As the distant events !x and !y cannot be coordinated, C2 is not completely
realizable.

4.1 The Synchronous Case

Again assume MA � �. Distributed realizability can be rephrased using traces.

Theorem 3. A choreography C for a collaboration 	 is distributedly realizable if and
only if C �

�
w�C�w�.

Proof. If C �
�

w�C�w�, Prop. 3 proves distributed realizability. The other way round,
if there is some w � C with �w� � C, Prop. 2 shows that w cannot be covered by any
realization. ��

It remains to find an e�ective way to check whether C �
�

w�C�w�. This problem has,
however, already been solved in trace theory [5]:

Proposition 5. Let C be a choreography for a collaboration 	 and A � �(C) the
minimal deterministic automaton that accepts the language of C. C �

�
w�C�w� if and

only if, for all states q1� q2 of A and all distant events x and y, q1
xy
�� q2 implies q1

yx
�� q2.

��

Although we imported the result, we present the sketch of the proof for reasons of self-
containedness. Minimal deterministic automata are linked to the Nerode relation�L. For
a language L, let w1 �L w2 if, for all w, it holds that w1w � L if and only if w2w � L. The
main observation on the Nerode relation is that, in any automaton accepting L, q0

w1
��� q

and q0
w2
��� q implies w1 �L w2. For the minimal deterministic automaton accepting L,

the reverse holds as well: If w1 �L w2, q0
w1
��� q1 and q0

w2
��� q2 then q1 � q2. Applying

this observation to our problem, we see that, for all sequences w and distant events a
and b, we have wab �C wba thus proving the above result.

102 N. Lohmann and K. Wolf

4.2 The Asynchronous Case

As Propositions 2 and 3 extend to the asynchronous case (i. e., MS � �), so does Thm. 3.

Corollary 2. A choreography C for a collaboration 	 that uses only asynchronous
communication is distributedly realizable if and only if C �

�
w�C�w�.

The actual decision procedure requires some additional considerations, though. We start
with reminding that no messages are pending after termination. That is, for all terminat-
ing runs w and all messages x, x̂(w) � 0. This observation can be used for extending the
ˆ -notation to states of any automaton A that accepts C.

Lemma 2. Let C be a distributedly realizable choreography. Let A be an automaton
that accepts C. Assume that A does not have trap states; that is, states from which no
final state of A is reachable. For all sequences w1 and w2, if q0

w1
��� q and q0

w2
��� q then,

for all x � MA, x̂(w1) � x̂(w2).

Proof. Assume the contrary. As a final state is reachable from q, say by executing w,
both w1w and w2w are accepted in A. One of these sequences has an unbalanced number
of send and receive events for some x, violating the termination condition for composi-
tions and thus contradicting distributed realizability of C. ��

This observation yields a simple necessary condition for distributed realizability:

Corollary 3. Let C be a choreography and A an automaton that has no trap states and
accepts C. Then C is realizable only if the following system of equations has a unique
and nonnegative solution. In the system, for each state q of A and x � MA, q̂(x) is a
distinct variable and we impose the following equations.

– q̂(x) � 0, for all x � MA and all q � �q0� � F;

– q̂(x) � 1 � q̂�(x), if q
!x
�� q�;

– q̂(x) � 1 � q̂�(x), if q
?x
�� q�;

– q̂(x) � q̂�(x), if q
y
�� q�, y � !x, and y � ?x.

In the following considerations, we assume that C passed this sanity check and thus em-
ploy the solution q̂(x) of the presented system of equations. Reflecting the restrictions
for commutation of !x and ?x, we propose the following modification of Prop. 5.

Lemma 3. Let C be a choreography for a collaboration	 using asynchronous commu-
nication satisfying the condition established in Cor. 3 and let A � �(C) the minimal
deterministic automaton that accepts the language of C. C �

�
w�C�w� if and only if,

for all states q1� q2 of A and all distant events a and b:

– If there is no message x with a � !x and b � ?x then q1
ab
��� q2 implies q1

ba
��� q2

– If, for some message x, a � !x and b � ?x, and q̂1(x) � 0 then q1
ab
��� q2 implies

q1
ba
��� q2

Proof. Again, the proof relies on the relation between the Nerode equivalence and the
minimal deterministic automaton accepting C. Indeed, in all situations where the condi-
tions for a and b are satisfied, we have wab �C wba thus justifying the stated diamond
property in the automaton. In particular, condition q̂1(x) � 0 asserts that !x and ?x
commute. ��

Decidability Results for Choreography Realization 103

4.3 Complexity

Complexity depends on the assumptions to be imposed on the original representation
of C. From most relevant choreography description languages we are aware of, it is
easy to derive a finite automaton model for the choreography. Thus, we assume such an
automaton for C to be given. On the other hand, we do not assume this automaton to be
deterministic, let alone minimal. Thus, the costs for checking distributed realizability
comprise the e�orts for:

– transforming the given automaton into a minimal deterministic one. This involves
the well known power set construction for transforming a nondeterministic automa-
ton into a deterministic one which may cause exponential blow-up in the number
of states;

– checking the diamond property of Prop. 5 or Lemma 3 which can be done in linear
time with respect to the number of states of the automaton.

In the asynchronous case, we additionally need to solve the linear system of equations
of Cor. 3 which requires, for tis particular system of equations, only linear time as well.

As the most costly step, transformation into a deterministic automaton, is well stud-
ied in the area of compiler construction, we believe that existing standard solutions will
be suÆciently eÆcient for practice.

5 Complete Realizability

Definition 11 (Complete realizability). Let C be a choreography for a collaboration
�P1� � � � � Pn�. The finite single-peer automata A1� � � � � An completely realize C if, for all
i, Ai implements �Pi� and �(A1 �

 � An) � C.

Example. The choreography C3 in Fig. 1 is completely realizable: Every specified con-
versation is implemented by the peers in Fig. 1(d).

5.1 The Synchronous Case

Assume MA � �.

Theorem 4. A choreography C for a collaboration �P1� � � � � Pn� is completely realiz-
able if and only if it is completely realized by �(C�P1)� � � � ��(C�Pn),

Proof. If the automata �(C�Pi) (1 � i � n) completely realize C, nothing remains to
be shown. So assume C is completely realizable, say, by finite single-peer automata
B1� � � � � Bn. We show that C is also realized by the �(C�Pi) (i � 1� � � � � n).

We show first C � �
��n

i�1 �(C�Pi)
�
. Let w � C. Every automaton �(C�Pi) has w�Pi

as one of its accepting runs. Consequently, w can be realized using a suitable scheduling
of the events in

�n
i�1 �(C�Pi).

Next, we show C � �
��n

i�1 �(C�Pi)
�
. Let w � �

��n
i�1 �(C�Pi)

�
. When realizing w,

automaton �(C�Pi) executes w�Pi (i � 1� � � � � n). By construction of these automata, this
is only possible if there are conversations wi � C (i � 1� � � � � n) such that wi�Pi � w�Pi .

104 N. Lohmann and K. Wolf

As the composition of the Bi realizes at least the conversations in C, they realize all
the words wi (i � 1� � � � � n). In a run that produces wi, automaton Bi executes the event
sequence wi�Pi � w�Pi . Consider now a run where each of the Bi executes the event
sequence w�Pi in the order given by w. Globally, this run produces w. As the composition
of the Bi realizes at most the conversations specified in C, we finally conclude w � C.

��

In contrast to the simplistic automata used in the previous sections, the composition of
automata �(C�Pi) may contain deadlocks; that is, runs which cannot be extended in a
nonfinal state. We show, however, that this is the case only if all complete realizations
contain deadlocks.

Theorem 5. A choreography C for the collaboration �P1� � � � � Pn� is completely and
deadlock freely realizable if and only if it is completely and deadlock freely realized by
�(C�P1)� � � � ��(C�Pn),

Proof. In addition to the arguments in Thm. 4, it remains to be shown that every partial
run in �

��n
i�1 �(C�Pi)

�
can be extended to a terminating run if that is possible in any

complete realization B1 �

 � Bn of C. Let w1 be a partial run in �
��n

i�1 �(C�Pi)
�

that
does not end in a final state, thus w1 � C. Using the same argument as for Thm. 4, we
can show that w1 is also the event sequence produced by some run in B1�

�Bn which
cannot be a terminating run, because w1 � C. Thus, B1 �

 � Bn is able to extend the
run to a terminating run by executing an additional event sequence w2 (i.e., w1w2 � C).
As �

��n
i�1 �(C�Pi)

�
completely realizes C, w1w2 is also executable here. Since all the

�(C�Pi) are deterministic by definition, there is only one state that can be reached after
having executed w1. Hence, the unique state reached by the partial run w1 enables the
continuation w2 and thus cannot be a deadlock. ��

5.2 The Asynchronous Case

Under the asynchronous communication model (i. e., MS � �), it is clear that, as for
distributed realizability, the number of send and receive events must be balanced in ter-
minating runs. Hence, we may import Cor. 3 from the previous section as a necessary
condition for complete realizability. Assuming a choreography that meets this condi-
tion, the partial synchronization between send and corresponding receive events is fully
reflected in the choreography. This means that, repeating the arguments for Thm. 4, a
receive event is always activated in the composition of automata if that is locally the
case. Other than this, there are no significant di�erences in the argument, and we may
state:

Corollary 4. A choreography C for a collaboration �P1� � � � � Pn� using asynchronous
communication is completely realizable if and only if the conditions established in
Cor. 3 is satisfied and it is completely realized by �(C�P1)� � � � ��(C�Pn),

The same is true for the case of deadlock free realizability:

Corollary 5. A choreography C for the collaboration �P1� � � � � Pn� using asynchronous
communication is completely and deadlock freely realizable if and only if he condition
established in Cor. 3 is satisfied and it is completely and deadlock freely realized by
�(C�P1)� � � � ��(C�Pn),

Decidability Results for Choreography Realization 105

5.3 Complexity

Checking the condition of Cor. 3 can be done in linear time on any automaton repre-
senting C. The projection of C to an individual peer Pi amounts to replacing all events
distant to Pi by � and requires linear time for each Pi. The size of the composition
is at most the product of the sizes of the components. Checking language equivalence
is PSPACE-complete [7]. We have to leave open whether language equivalence can be
done more eÆciently in the case where C is checked against the composition of its
projections.

For the deadlock free case, the resulting components must be determinized and mini-
mized, with potential exponential blow-up, and the resulting composition must be checked
for deadlock freedom which requires linear time in the size of the composition.

6 Related Work

Realizability received much attention in recent literature, see [17] for a survey.

Complete realizability. Alur et al. [1] present necessary and suÆcient criteria to dead-
lock freely realize a choreography specified by a set of message sequence charts (MSCs).
Both synchronous and asynchronous communication is supported. Their proposed algo-
rithms are very eÆcient, but are limited to acyclic choreography specifications, because
the used MSC model does not support arbitrary iteration. Salaün and Bultan [16] investi-
gate complete realizability of choreographies specified by collaboration diagrams. The
authors express the realizability problem in terms of LOTOS and present a case study
conducted with a LOTOS verification tool. Their approach tackles both synchronous and
asynchronous communication (using bounded FIFO queues). Collaboration diagrams,
however, provide only limited support for repetitive behavior (only single events can be
iterated) and choices (events can be skipped, but complex decisions cannot be modeled).
Hence, the reduction of the PCP is not applicable. These restrictions also apply to the
results of Bultan and Fu [3] in which suÆcient conditions for complete realizability of
collaboration diagrams are elaborated. A tool to check the suÆcient criteria of [3,6] is
presented by Bultan et al. [2]. Using this tool, the authors showed that many collabora-
tion diagrams in literature are not completely realizable. In fact, most of these models
are, however, distributedly realizable. Realizability of conversation protocols by asyn-
chronously communicating Büchi automata is examined by Fu et al. [6]. The authors
define a necessary condition for complete realizability. One of the prerequisites, syn-
chronous compatibility, heavily restricts asynchronous communication. Kazhamiakin
and Pistore [9] study a variety of communication models and their impact on realizabil-
ity. They provide an algorithm that finds the “simplest” communication model under
which a given choreography can be completely realized.

Other realizability notions. Decker and Weske [4] study realizability of interaction
Petri nets. To the best of our knowledge, it is the only approach in which (complete
and partial) realizability is not defined in terms of languages. Instead, the authors re-
quire the peer implementations and the choreography to be branching bisimilar. This
results in a stronger realizability notion which needs further investigations with respect
to decidability issues.

106 N. Lohmann and K. Wolf

We defined distributed realizability in an earlier paper [12], and to the best of our
knowledge, this notion was not yet subject of other work. In the same paper, we showed
that complete, distributed, and partial realizability can be approached using an algo-
rithm to check for distributed controllability [18]. However, undecidability has been
shown for this problem recently [19]. This result as such did, however, not directly
imply undecidability of partial realizability.

7 Conclusion and Open Problems

We showed that partial realizability is undecidable if at least four (synchronous com-
munication), respectively three (asynchronous communication) peers are involved. The
result relies on the capability of expressing arbitrarily large chunks of distant, nonin-
terfering events. This observation could lead, in future work, to decidable subproblems.
Furthermore, the case of only two asynchronously communicating peers is left open.
Also the case of mixed communication models requires further investigation.

Distributed realizability is decidable. Realizability only depends on the question
whether the choreography is closed under the commutation of distant events. An appar-
ent follow-up question would be whether it is possible to cover all specified sequences
with finitely many implementations.

For complete realizability, we found the choreography projections to the respective
peers to be a canonical realization. If that projection does not realize, no one else does.
If the projections are transformed into deterministic automata, this result extends to the
problem of deadlock free complete realizability.

The decision procedures suggested by our arguments depend on automata minimiza-
tion, checking language equivalence, and other, trivially implementable checks. Hence,
we assume that the decision procedures can be turned into tools with acceptable behav-
ior on relevant instances.

Acknowledgment. We would like to thank Dietrich Kuske for a very helpful briefing
in trace theory.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Trans.
Software Eng. 29(7), 623–633 (2003)

2. Bultan, T., Ferguson, C., Fu, X.: A tool for choreography analysis using collaboration dia-
grams. In: ICWS 2009, pp. 856–863. IEEE (2009)

3. Bultan, T., Fu, X.: Specification of realizable service conversations using collaboration dia-
grams. SOCA 2(1), 27–39 (2008)

4. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg
(2007)

5. Diekert, V.: The Book of Traces. World Scientific Publishing Co., Inc., River Edge (1995)
6. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and verifica-

tion of reactive electronic services. Theor. Comput. Sci. 328(1-2), 19–37 (2004)

Decidability Results for Choreography Realization 107

7. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems
of equivalence. Inf. Comput. 86(1), 43–68 (1990)

8. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography De-
scription Language Version 1.0. W3C Candidate Recommendation (November 2005),
�

���������������������������

9. Kazhamiakin, R., Pistore, M.: Analysis of realizability conditions for Web service choreogra-
phies. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS,
vol. 4229, pp. 61–76. Springer, Heidelberg (2006)

10. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models in Web ser-
vice compositions. In: WWW 2006, pp. 267–276. ACM (2006)

11. Kleijn, H.C.M., Morin, R., Rozoy, B.: Event structures for local traces. Electr. Notes Theor.
Comput. Sci. 16(2) (1998)

12. Lohmann, N., Wolf, K.: Realizability is controllability. In: Laneve, C., Su, J. (eds.) WS-FM
2009. LNCS, vol. 6194, pp. 110–127. Springer, Heidelberg (2010)

13. Mazurkiewicz, A.W.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN
1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

14. OMG: Business Process Model and Notation (BPMN). FTF Beta 1 for Version 2.0, Object
Management Group (2009), �

���������	������������� !�"��

15. Sakarovitch, J.: The “last” decision problem for rational trace languages. In: Simon, I. (ed.)
LATIN 1992. LNCS, vol. 583, pp. 460–473. Springer, Heidelberg (1992)

16. Salaün, G., Bultan, T.: Realizability of choreographies using process algebra encodings. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 167–182. Springer, Hei-
delberg (2009)

17. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 1–16. Springer, Heidelberg
(2008)

18. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P. (eds.) ToP-
NoC II. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

19. Wolf, K.: Decidability issues for decentralized controllability of open nets. In: AWPN 2010.
pp. 124–129. CEUR Workshop Proceedings Vol. 643, CEUR-WS.org (2010)

20. Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Language for
Service Behavior Modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 145–162. Springer, Heidelberg (2006)

http://www.w3.org/TR/ws-cdl-10
http://www.omg.org/spec/BPMN/2.0

	Decidability Results for Choreography Realization
	Introduction
	Basic Definitions
	Interconnected Models and Interaction Models
	Languages and Traces

	Partial Realizability
	The Synchronous Case
	The Asynchronous Case

	Distributed Realizability
	The Synchronous Case
	The Asynchronous Case
	Complexity

	Complete Realizability
	The Synchronous Case
	The Asynchronous Case
	Complexity

	Related Work
	Conclusion and Open Problems

