
Adaptation of Web Service Interactions

Using Complex Event Processing Patterns

Yéhia Taher, Michael Parkin, Mike P. Papazoglou,
and Willem-Jan van den Heuvel

European Research Institute for Service Science, Tilburg University, The Netherlands
{y.taher,m.s.parkin,mikep,wjheuvel}@uvt.nl

Abstract. Differences in Web Service interfaces can be classified as sig-
nature or protocol incompatibilities, and techniques exist to resolve one
or the other of these issues but rarely both. This paper describes com-
plex event processing approach to resolving both signature and protocol
incompatibilities existing between Web Service interfaces. The solution
uses a small set of operators that can be applied to incoming messages
individually or in combination to modify the structure, type and number
of messages sent to the destination. The paper describes how CEP-based
adapters, deployable in CEP engines, can be generated from automata
representations of the operators through a standard process and presents
a proof-of-concept implementation.

1 Introduction

Web services allow the integration of distributed software through standard in-
terface definition languages, transport mechanisms and aspects such as security
and quality of service. Web Service interfaces (i.e., WSDL, BPEL, etc.) define
the messages and protocol that should be used to communicate with the ser-
vice [7]. However, if two services wish to interact successfully, they must both
support the same messages and protocol through the implementation of compat-
ible WSDL and/or BPEL documents. Unfortunately, this is difficult to achieve
in practice; Web Services are often developed independently and follow different
standards or approaches in constructing their interfaces and Web Service com-
positions will often use them in ways that were not foreseen in their original
design and construction [3,2]. Therefore, it is likely that most Web Services will
be incompatible as services will not support the same interface.

This is a short paper describing a general approach to resolving differences
between Web Services protocols through the use of Complex Event Processing
(CEP [4]) technology. Specifically, we extend our previous work [10,11] to show
how a small set of general operators can be used to match the messages from one
service with those of another. By using a continuous query engine running within
a CEP platform, we demonstrate signature and protocol adaptation between
Web Services in a proof-of-concept implementation.

This paper is structured as follows: Section 2 describes our CEP-based ap-
proach to signature and protocol adaptation; Section 3 introduces the opera-
tors used to resolve differences in Web Service protocols; Section 4 presents the

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 601–609, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

602 Y. Taher et al.

CEP solution and a proof-of-concept implementation; Section 5 compares related
work; Section 6 contains conclusions and our plans for future work.

2 Approach

Incompatibilities between Web Service protocols can be classified as either [2,3]:
1. Signature Incompatibilities arise due to the differences between services
in expected message structure, content and semantics. In Web Services, XML
schema provides defines a set of ‘built-in’ types to allow the construction of
complex input and output message types from these primitives. This flexibility
in constructing message types in XML often means that a message from one Web
Service will not be recognized by another and, therefore, there is a requirement
to provide some function that maps the schema of one message to another [6].
2. Protocol Incompatibilities are found when Web Services wish to inter-
act but are incompatible because they support of different message exchange
sequences. For example, if two services perform the same function, e.g., accept
purchase orders, but Service A requires a single order containing one or more
items while Service B expects an order message for each item, there is a mis-
match in their communication protocols that must be resolved in order for them
to interoperate. To solve these incompatibilities, there are two approaches: a) to
force one of the parties to support the other’s interface, or b) to build an adapter
that receives messages, converts them to the correct sequence and/or maps them
into a desired format and sends them to their destination. However, both of these
solutions are unsatisfactory; imposing the development of an interface for each
target service can lead to an organization having to maintain a different client
for each service it uses, and the implementation of bespoke ad-hoc point-to-point
adapters is costly and not-scalable.

Our solution is to automate the generation of adapters so the process is repeat-
able and scalable and remove the necessity to build costly bespoke adapters. Our
approach for generating adapters is described in [9], which presents an algorithm
for detecting signature and protocol incompatibilities between two Web Service
protocol descriptions (i.e., interfaces) and a CEP-based mediation framework
to perform protocol adaptation practically. This paper completes the mediation
framework by showing how the incompatibilities found between two Web Service
protocols, classified according to a set of basic transformation patterns by the
algorithm in [9], can be transformed into configurable automata operators which
are used to generate adapters.1 In Section 3 we describe the operators required
for each transformation pattern then in Section 4 show how they are used to
generate CEP adapters and deployed to a CEP engine.
Complex Event Processing technology can discover relationships between
events through the analysis and correlation of multiple events and triggers and
1 Adapters are therefore the components that resolve sets of incompatibilities found

between two services and are aggregations of predefined operators who’s purpose is
to resolve individual, specific incompatibilities.

Web Service Interaction Adaptation Using CEP Patterns 603

take actions (e.g., generate new events) from these observations. CEP does this
by, for example, modeling event hierarchies, detecting causality, membership
and/or timing relationships between events and abstracting event-driven pro-
cesses into higher-level concepts [4]. CEP platforms allow streams of data to
run through them to detect conditions that match the continuous computational
queries (CCQs, written in a Continuous Computation language, or CCL) as they
occur. As a result, CEP has an advantage in performance and capacity compared
to traditional approaches: CEP platforms typically handle many more events
than databases and can process throughputs of between 1,000 to 100k messages
per second with low latency. These features make a CEP platform an excellent
foundation for situations that have real-time business implications.

In the context of Web Services, events occur when SOAP messages are sent
and received. Therefore, CEP adaptation requires the platform to consume in-
coming messages, process them and send the result to its destination. However,
a CCQ written for a particular adaptation problem is similar to the bespoke
adapter solution described earlier. To offer a universal solution and a scalable
method for Web Service protocol adaptation, we automate the generation and
deployment of CCQs to transform incoming message(s) into the required output
message format(s) using the predefined set of transformation operators.

3 Operators

[3] describes five basic transformation patterns that can reconcile protocol mis-
matches. We have developed an operator for each of these patterns that can
be applied individually or in combination to incoming messages to achieve a
transformation in both the structure, type and number of messages sent to the
destination — i.e., to resolve both signature and protocol incompatibilities.

The operators developed for each of the transformation patterns are: Match-
make, which translates one message type to another, solving the one-to-one
transformation; Split, a solution for the one-to-many pattern, which separates
one message sent by the source into two or more messages to be received sepa-
rately; the Merge operator is the opposite of the Split operator (i.e., it performs
a many-to-one transformation) and combines two or more messages into a single
message; the Aggregate operator is used when two or more of the same message
from the source service interface correspond to one message at the target ser-
vice and is a solution for the one+-to-one transformation; finally, Disaggregate
performs the opposite function to Aggregate operator.

Following [9], the operators are represented as configurable automata. Tran-
sitions between states represent both observable and non-observable actions.
Observable actions describe the behavior of the operator vis-à-vis the service
consumer and provider, i.e., an action is observable if it is a message consump-
tion or transmission event. Unobservable actions describe the internal transitions
of the operator, such as the transformation of a messages contents, and are per-
formed transparently to the source and target services.

Transitions caused by observable actions are denoted as <a,?/!m,a’>, where
a is the starting state and a’ the end state following the consumption (?) or

604 Y. Taher et al.

!(CheckOut)
?(Item List)

One Item One+-to-One

e1

e2

e’1

e’2

Aggregate
Operator

?(One Item)

a0

a1

?(CheckOut)

Item List :=
Aggregation (OneItem[n])

a2

a3

!(Item List)

Source Service Target Service

Fig. 1. The Aggregate Operator

transmission (!) of message m. An unobservable action is denoted as <a, ψ,
a’>, where a and a’ are the start and end states following internal action ψ.

For reasons of space it is not possible to describe all five operators in de-
tail and we have chosen the Aggregate operator to illustrate how they work.
Figure 1 shows the operator to resolve one+-to-one incompatibilities between
services, e.g., when a customer submits a purchase order for each item but the
retailer expects a list of all items together. To resolve this incompatibility the
aggregate operator consumes and stores ?OneItem messages until it receives
the message (?CheckOut) indicating all messages have been sent. The oper-
ator aggregates the stored messages into a list of items message using Item-
List=Aggregation(OneItem[n]) and forwards the new message using !(ItemList).

4 CEP-Based Adaptation

4.1 General Principles

The adaptation of interactions between source and target services is specified
using automata, therefore deploying them as CEP adapters requires their trans-
lation into continuous queries. To do this, we modeled message consumption and
transmission actions as events. For each message type consumed or transmitted
we create an input or output stream. A continuous query subscribes to the input
stream of messages it wants to adapt and publishes the adapted message(s) to
the corresponding output stream(s). For convenience, we name the input/output
stream the same name as the message it consumes or transmits. This method
allows a CEP engine to intercept messages exchanged between two services, to
detect patterns of incompatibilities and implement corresponding adaptation
solution, i.e., combinations of the operators encoded as continuous queries.

4.2 Conceptual Architecture

Figure 2 illustrates the conceptual architecture of the CEP implementation that
translates the adapter specified in automata into continuous queries, i.e., via
Automata → Continuous Queries. This includes the creation of input and out-
put streams for the continuously running queries in the CEP engine, waiting for
messages arriving through input streams.

Web Service Interaction Adaptation Using CEP Patterns 605

Service A

SOAP/HTTP

Service B

SOAP/HTTP

Automata of the
Adapter

Automata → Continuous Query

Continuous
Query

SOAP Message
Interceptor

CEP EngineSOAP → Event Event → SOAP

Deployed In

Fig. 2. Conceptual CEP Adaptation
Architecture

CEP Engine

Input
Wrapper

Output
Wrapper

Input
Wrapper

Output
Wrapper

SOAP Interceptor

Runtime Environment

CCL Generator

Adaptor Generator

Incompatibility
Detector

Resolution
Operator

Templates

Provider
Service

Automaton

Incompatibility
Patterns

Customer
Service

Automaton

Automaton Adapter

Incompatibilities

Design-time
Envrionment

Service A Service B

SOAP/HTTP SOAP/HTTP

Fig. 3. Architectural Framework for the
CEP Solution

In the second step, the SOAP Message Interceptor’s role is to control the
exchange of messages between the two services. Upon receipt of a message, the
Interceptor sends it to the input stream with the same name (through SOAP →
Event). The message received is published as an event and is consumed by the
query that subscribes to the input stream. The message(s) produced as a result
of applying the operators is published to the corresponding output stream. Once
on the output stream, the message is consumed by the SOAP message interceptor
(through Event → SOAP) and sent to the target.

Figure 4 shows the transformation of the Aggregation automata to a contin-
uous query. First, an input stream and a window to store messages arriving on
the input stream are created for action ?(m1) and an input stream is created
for action ?(m2). The aggregation query is then specified: it subscribes to the
window where messages from action ?(m1) are stored and to the input stream
for action !(m2) actions. After an !(m2) action, messages in the window with the
same correlation criteria as new message are aggregated into a single message,
the input messages are removed and the result is published to the output stream.

Figure 5 shows a concrete example where messages arriving through the input
stream Order In are stored in the window Order Win. When the message arrives
through CheckOut In indicating order number #03203 is complete, messages in
Order Win with the same order number (#03203, the correlation criteria) are
aggregated into a single message. The final message, containing Item1 and Item2,
is published to Order Out.

4.3 Proof of Concept

This section illustrates the practical generation and deployment of CEP-based
adapters using model transformation. It has two stages: the design phase mod-
els the adapter using operator automata through the use of an incompatibility
detection process to produce a platform independent model, whilst the transfor-
mation phase takes the platform independent model to produce the adapter as
a CCQ for a CEP engine, i.e, a platform specific model.

606 Y. Taher et al.

a0 a1 a2 a3

Aggregation
Query

Source 2

Source 1 M1 M1

M2

Window

m Target

Subscribe

Subscribe

Publish

OutputStream: m
Schema: Type(m)

InputStream: M2
Schema: Type(M2)

InputStream: M1
Schema: Type(M1)

?(m2) m = F(m[n]) !(m)

Create Specify Create

?(m1):C

Fig. 4. Aggregate Translation

 INSERT INTO OutputStream PayAdrs_Out
 SELECT XMLTRANSFORM(SOAPBody, XMLPARSE($FAgregation))
 From Window Order_Win, InputStream Validation_In
 Where Order_Win.Order_ID=Validation_In.Order_ID

TimeStamp

Order_ID

Order_Items

TimeStamp

Order_ID

Order_Items

07:32:01

#03203

item1

 INSERT INTO Window Order_Win
 SELECT * From InputStream Order_In;
 Order_Out

07:45:21

#03203

item1, item2

TimeStamp

Order_ID
07:45:21

#03203

CheckOut_In

Order_In

07:32:06

#03203

item2

ItemX#0124307:32:09
Item2
Item1

Order_Item
#03203

Order_ID

#0320307:32:06
07:32:01

TimeStamp07:32:09

#1243

itemX

Window: Order_Win

Fig. 5. Aggregate Flow

Figure 3 shows the framework for the automatic generation of adapters. If two
incompatible services, A and B, wish to communicate, at design-time an adaptor
can be generated for the runtime CEP engine by classifying the incompatibili-
ties between two service interfaces (using the method described in [9]) and using
them to construct the adapter using resolution operator templates (described in
Section 3). The resulting adapter is converted into the CEP engine’s continu-
ous computation language (CCL) that is deployed at run-time within a SOAP
message interceptor to provide a message serialization/deserialization capability.

The Design Time Environment is used to instantiate the template operators
described in Section 3 so they can be used in a specific Web Service protocol
adaptation. The design-time tools can be used to develop strategies for dealing
with complex adaptation situations by allowing the composition of the template
operators. In these cases, the designers of the adaptation must identify what
adaptations are required between two services and use a graphical user interface
(the Design Tool shown) to wrap the corresponding composition of operators
in a map. Maps are exported to the CCQ code generation tool that includes a
compiler to produce a CEP execution-time module (i.e., the CCQ) which is then
loaded into the CEP execution engine.

Web Service Interaction Adaptation Using CEP Patterns 607

The Run Time Environment contains a CEP platform with a continuous
query engine and a set of SOAP message integration layers to allow it to send
and receive messages to and from Web Services. The continuous query engine
provides the capability for the system to receive, process, correlate and ana-
lyze SOAP messages against a CCQ. However, since Web services communicate
through the use of SOAP messages, intermediate adapters are required to pro-
vide entry and exit points to the engine. These intermediate adapters are of two
types: input and output wrappers. An input wrapper receives SOAP messages
from the source’s service interface and transforms it to the representation appro-
priate for the CEP engine and then sends it to the engine. Similarly, an output
wrapper receives events produced by the engine and transforms it to a SOAP
message before forwarding the message to the target service.

4.4 Demonstration and Experimentation

A demonstration of our prototype can be seen at: http://www.youtube.com/watch?
v=g05ciEPZ Zc.

5 Related Work

As [3] describes, there are many commercial tools to achieve Web Service sig-
nature mediation and solve signature incompatibilities, including: Microsoft’s
Biztalk mapper2, Stylus Studio’s XML Mapping tools3, SAP’s Exchange In-
frastructure (XI) Mapping Editor4 and Altova’s MapForce5. Academic research
also exists in resolving signature incompatibilities through the use of seman-
tic web technology (i.e., OWL), such as that described in [5] that presents a
“context-based mediation approach to [. . .] the semantic heterogeneities between
composed Web services”, and the Web Service Modeling Ontology (WSMO)
specification [8] that provides a foundation for common descriptions of Web
Service behavior and operations. This research does not attempt to resolve the
associated problem of protocol incompatibility, however.

Active research is also being performed into the adaptation of web service
protocols, although all work we have surveyed does not tackle both problems
of signature and protocol incompatibility and all use different approaches to
the CEP-based technique presented. For example, although [3] presents medi-
ation patterns together with corresponding BPEL templates, a technique and
engineering approach for semi-automatically identifying and resolving identify-
ing protocol mismatches and a prototype implementation (the Service Mediation
Toolkit), it does not solve the signature adaptation problem. Similarly, [2] “dis-
cusses the notion of protocol compatibility between Web Services” and [1] again
only “focusses on the protocol mismatches, leaving data mismatches apart” —
2 http://www.microsoft.com/biztalk/en/us/default.aspx
3 http://www.stylusstudio.com/xml_mapper.html
4 http://www.sdn.sap.com/irj/sdn/nw-xi
5 http://www.altova.com/mapforce/web-services-mapping.html

http://www.youtube.com/watch?
http://www.microsoft.com/biztalk/en/us/default.aspx
http://www.stylusstudio.com/xml_mapper.html
http://www.sdn.sap.com/irj/sdn/nw-xi
http://www.altova.com/mapforce/web-services-mapping.html

608 Y. Taher et al.

i.e., they present solutions to protocol mismatches and do not tackle the asso-
ciated problem of signature incompatibility. Our chosen approach solves both
signature and protocol incompatibilities.

6 Conclusion

Web service incompatibilities are found in either their message signatures or
protocols. This paper presents an CEP approach to adapt Web Service inter-
actions and resolve these conflicts. Using predefined operators represented as
configurable automata allows us to automatically CEP generate adapters capa-
ble of intercepting incoming messages sent between services and adapting their
structure, type and number into the desired output message(s). Our future work
will be in two areas: (i) performing extensive testing on real services, and (ii)
developing tools to assist service designers to generate adapters.

Acknowledgment. The research leading to these results has received funding
from the European Community’s Seventh Framework Program [FP7/2007–2013]
under grant agreement 215482 (S-CUBE). We thank Marie-Christine Fauvet,
Djamal Benslimane and Marlon Dumas for their comments and contributions
on earlier stages of this work.

References

1. Ardissono, L., Furnari, R., Petrone, G., Segnan, M.: Interaction Protocol Media-
tion in Web Service Composition. International Journal of Web Engineering and
Technology 6(1), 4–32 (2010)

2. Dumas, M., Benatallah, B., Nezhad, H.R.M.: Web Service Protocols: Compatibility
and Adaptation. IEEE Data Engineering Bulletin 31, 40–44 (2008)

3. Li, X., Fan, Y., Madnick, S., Sheng, Q.Z.: A Pattern-Based Approach to Proto-
col Mediation for Web Services Composition. Information & Software Technol-
ogy 52(3), 304–323 (2010)

4. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman (2001)

5. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.:
A Context-Based Mediation Approach to Compose Semantic Web Services. ACM
Transactions on Internet Technology (TOIT) 8(1), 1–23 (2008)

6. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F.: Semi-Automated Adap-
tation of Service Interactions. In: Proceedings of the 16th International Conference
on World Wide Web, pp. 993–1002 (2007)

7. Papazoglou, M.: Web Services: Principles & Technology. Pearson Education (2008)
8. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,

A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied
Ontology 1(1), 77–106 (2005)

9. Taher, Y., Aı̈t-Bachir, A., Fauvet, M.C., Benslimane, D.: Diagnosing Incompat-
ibilities in Web Service Interactions for Automatic Generation of Adapters. In:
Proceedings of the 23rd International Conference on Advanced Information Net-
working and Applications (AINA 2009), pp. 652–659 (2009)

Web Service Interaction Adaptation Using CEP Patterns 609

10. Taher, Y., Marie-Christine, F., Dumas, M., Benslimane, D.: Using CEP TEchnol-
ogy to Adapt Messages Exchanged by Web Services. In: Proceedings of the 17th
International Conference on the World Wide Web (WWW 2008), Beijing, China,
pp. 1231–1232 (April 2008)

11. Taher, Y., Nguyen, D.K., van den Heuvel, W.J., Ait-Bachir, A.: Enabling Inter-
operability for SOA-Based SaaS Applications Using Continuous Computational
Language. In: Proceedings of the 3rd European ServiceWave Conference, Ghent,
Belgium, pp. 222–224 (December 2010)

	Adaptation of Web Service Interactions Using Complex Event Processing Patterns
	Introduction
	Approach
	Operators
	CEP-Based Adaptation
	General Principles
	Conceptual Architecture
	Proof of Concept
	Demonstration and Experimentation

	Related Work
	Conclusion

