A Service Model for Development and Test Clouds

Debdoot Mukher;j ee!, Monika Gupta1 s
Vibha Singhal Sinha', and Nianjun Zhou?

1 IBM Research — India
{debdomuk, monikgup, vibha.sinha}@in.ibm.com
2 IBM TJ Watson Research Center
jzhou@us.ibm.com

Abstract. A Development & Test Cloud (DTC) enables IT service enterprises to
host standardized configurations of just about any tool-set on cloud — the hosted
software need not be designed for multi-tenancy and they may come from a multi-
tude of vendors. However, since most enterprise software are available only under
perpetual licenses, DTCs cannot become truly pay-per-use — customers of a DTC
have to upfront purchase software licenses. This paper proposes a service model
for a DTC vendor wherein the vendor purchases software licenses and recovers
the cost from its clients based on their period of usage. Our model allows the ven-
dor to maximize returns from a purchased license by using it in multiple projects
separated in time. We set up an optimization problem to decide how best a DTC
operator can invest in buying software licenses such that it gets maximum op-
portunity to resale purchased licenses. We conduct empirical studies to validate
the feasibility and usefulness of our approach. Also, we enlist characteristics of
tool-sets that make them profitable for the DTC vendor.

1 Introduction

Even as the economy recovers from the downturn, IT services enterprises continue to
cut down on all forms of operational expenditure so that receding profit margins of ser-
vices contracts do not affect their balance sheets adversely. All large companies with
massive, geographically distributed workforces are upset with burgeoning IT support
costs, under-par utilization of hardware resources and sub-optimal management of soft-
ware licenses. Again, they wish to improve productivity of their personnel by equip-
ping them with the latest developer toolsets, which often require advanced hardware
configurations to run effectively. A cloud based service delivery environment addresses
the above issues and offers many interesting possibilities toward shaping the next gen-
eration IT services enterprise. Using a high performance cloud platform for hosting
development and test environments, not only reduces IT infrastructure and support
costs drastically but also helps to streamline delivery by provisioning pre-configured,
standardized toolsets and leads to significant improvements in developer productivity.
Moreover, it empowers lines-of-businesses (LOBs) in an enterprise with extreme agility
to contend changing market realities; they can easily scale up or scale down their IT in-
frastructure because they do not incur any capital expenditure to own hardware/software
but simply pay a price as per their usage.

A Development & Test Cloud (DTC) comes across as a unique offering specifi-
cally designed to ensure application development and maintenance activities can move

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 523 2011.
(© Springer-Verlag Berlin Heidelberg 2011

524 D. Mukherjee et al.

to the cloud. A DTC is a service environment that can automatically provision pre-
configured, integrated sets of software on hardware configurations chosen by the user
(See our technical report [I5] for details on DTC use-cases, architecture and benefits). It
can turn-around defect-free, ready-to-use development and testing environments within
minutes; thus results in faster time-to-market of deliverables as well as lower idle times
for project personnel. Initial pilots [7U5] of Development & Test Clouds have shown
drastic reduction in provisioning overheads, elimination of configuration defects and
improvement in developer productivity. However, current DTC implementations force
their customers to upfront purchase licenses for most software. Very seldom, one finds
software being rented in a pay-per-use manner — mostly limited to cases where the
software comes from the cloud vendor itself. This poses a serious issue for enterprise
application development since service engagements typically leverage software com-
ing from a multitude of technology vendors. Clearly, in such a scenario, the promises
of lower software costs and easier scaling of usage levels will not be realized — the
licenses have to be purchased at the same rates as they are available for lifelong stan-
dalone use. Hence, the adoption of DTCs may be hit. In fact, a 451 Group reporﬂ and
Lori [4] point out that old models of software licensing are entirely incompatible with
cloud computing environments and this fact proves to be a severe roadblock for greater
cloud adoption.

In this paper, we propose a service model whereby the DTC vendor purchases all
software licenses and recovers the cost from its clients based on their period of usage.
Our model allows the vendor to maximize returns from a purchased license by using it
in multiple projects separated in time. We set up an optimization problem to decide how
best a DTC operator can invest in buying software licenses such that it gets maximum
opportunity to resale purchased licenses. Also, we empirically study characteristics of
tool-sets that can lead to profitable DTC hosting.

The main contributions of the paper include:

1. Design of a service model for a DTC operator that optimally transforms costs in-
curred in buying software licenses to pay-per-use prices. The model guides the DTC
vendor to purchase a set of software so that it can maximize returns (Section[2)).

2. Empirical evaluation of the DTC service model to demonstrate its feasibility and
an evaluation of heuristics that can decide whether a toolset is a preferred candidate
for stocking in a DTC (Section [3).

2 DTC Service Model

We propose a service model for a Development & Test Cloud (DTC) offering that helps
a DTC vendor to decide which software appliances@ to stock on a DTC and how to

! http://www.informationengineer.org/2010/02/06/the-45 1 -groups-cloud-computing-outlook-
for-2010.html

2 An appliance is a common set of software that when installed and tuned to a certain configura-
tion can support development and testing activities across service engagements of a particular
kind. For example, SOA engagements may always use an integrated appliance consisting of
certain software from Websphere stack.

A Service Model for Development and Test Clouds 525

price them (per unit usage) in order to run the operations most profitably. We suggest
the following scheme whereby the DTC provider purchases licenses and the end-users
pay a just fee per their usage:

1. A DTC provider purchases licenses of different kinds of software and collects the
same in license pools.

2. Every time an appliance is provisioned for a client, each software in the appliance
is assigned with a license available in its pool. A fee for license usage, which com-
puted as per the proposed model, is bundled into the appliance cost. The user may
have to pay a premium price (higher than the fixed rate, possibly close to the license
cost) only if there are no licenses available in the pool for a particular software.

3. The licenses are returned back to the pool after the appliances get de-provisioned.

Now, the DTC vendor wishes to keep just enough licenses in the pool to serve demand
for appliances at any point of time. Also, it is desirable that a license once purchased
finds use in several projects over the course of time. Greater license reuse across projects
separated in time will bring down the fees paid by the end-user and enhance the DTC
vendor’s profitability. Thus, we have the following problem:

Problem Definition: How can the DTC enterprise effectively invest a fixed
amount of capital to buy licenses of software present in common appliances
and then appropriately price the appliances in a pay-per-use model, based on
available demand forecasts?

At first sight, one may relate the above problem to the standard problem of inventory
management [6] — how much goods do you stock in your inventory so that you do
not run out of materials when you need them? Turns out, the drivers for these two
problems are quite different! The reason for maintaining an inventory of goods is to
avoid shortage costs. The time taken to refill stock after placing an order is generally
significant, thus replenishment is ordered in advance. For purposes of our problem,
it can be assumed that an order for a new license is served instantaneously and thus,
shortage costs are not applicable. However, the strategy of purchasing licenses every
time a provisioning request arrives is not optimal. We want licenses to be reused to
increase profitability; therefore, we wish to invest in purchase of only those licenses
for which we expect sufficient future demand. Again, buying licenses in advance may
help save money if price increases are common. We set up an optimization problem to
determine the number of licenses of each kind of software that should be purchased in
order to maximize the return on investment for the DTC vendor. Solving such a problem
also helps us ascertain the price that can be set for each appliance or software usage.

We consider a finite set, A = {a1, @a,...a,}, composed of appliances that are
sought after in typical service engagements. An appliance is a set of software, o; =
{S1,S2,...Sm}, with pre-built configurations commonly used in a particular form of
engagement. It is assumed that engagements using a certain appliance, «;, have similar
duration. If not, new appliances are created in A such that we enforce the standard devi-
ation of durations of all projects using a single appliance to be small. Furthermore, we
conjecture that solutioning teams in service enterprises have the engagement pipeline
data, which gives demand forecasts for each engagement type.

526 D. Mukherjee et al.

Our service model works with the following inputs:
A, : Mean project duration of engagements using a;
D; : Demand for «a; as a function of time
T : Time period for which all price calculations are made
F : Capital that may be invested in license purchase during time interval [0, 7]

We introduce the notion of a license unit for an appliance. One license unit for ¢;
includes one license each for every software .S; contained in it. Again, in our model,
time ¢ can take up discrete values in the time interval [0, T']. In practice, a time period
T of a quarter or a year may be discretized in terms of the different weeks or months in
them. Suppose,

X : Number of license units of «; purchased att = 0
L;(t) : Number of license units of «; available in pool at time ¢
Ui (t) : Number of license units of «; taken out of pool for use in projects starting at time ¢

As mentioned before, at any point of time, license units move out from the pool
and get assigned to projects. Again, the license pool gets augmented by licenses from
projects that have just ended. Thus, we can write:

L;(t) — Ui(t), 0<t <A ()]

Li(t) + Ui(t — A;) = Ui (t), t >4,
Li(t+1) =
Xi s t=0

Solving the above recurrence relation we get:

t—1

Xi — Z Ut(t,), t>A;
/I —
Lit) = P 6)
Xi — Z Ut(f,/), 0<t <Ay
t/=0

Now, we can only assign license units for an appliance only if there is demand for that
appliance and there exist free units in its pool. Therefore, U, (t) < min[L;(¢), Di(t)]. The
cost C; of a license unit for appliance «; is calculated as sum of license prices for
each software S; € «;. Now, the returns derived by the DTC each time an appliance is
used in a project are directly proportional to the cost of the appliance. We formulate an
optimization problem in Equation[3lthat seeks to maximize such returns. The constraints
are: license purchases are limited to as many units as are permitted by the available
capital, F'; and existence of both demand and unassigned license units.

T
mazx. Y, C; Y, U;(t)
Vi o t=1

s.t. Y Cixi <F 3)
Vi

"Ui(t) < Li(t) Vit € {1,2,...T}
Ui(t) < Di(0) Vit € {1.2,...T}

The optimization problem contains n(7" + 1) variables; where n is the number of
appliances and T is the upper limit of the discrete time interval that we consider.
For example, the variables for «; are: x;, U;(1),U;(2),...,U;(T). All variables take
up integer values only; so the problem is NP-complete like all integer programming
problems.

A Service Model for Development and Test Clouds 527

Pricing Appliances: Once we solve the optimization problem in Eqn.[3, we can ascer-
tain the price for using an appliance per unit time. This is computed by amortizing the
total costs spent on licenses and configuration over the period of time when instances
of that appliance find use. Additionally, support charges may be bundled; if support is
important.

X . A Configuration Cost + C'; x4
Price of «; per unit time = € X 4)

T
Ai Y Ut)

3 Experiments and Results

In this section, we experimentally show that our model is tractable and also validate its
usefulness. Further, we design statistical tests to derive indicators that can help a DTC
vendor to choose profitable appliances to stock in the cloud. First, we discuss the data
and the setup used in our experiments and then we present the emprirical studies.

3.1 Experimental Data and Setup

Our service model is designed to source its inputs from the forecasted deal pipeline
and the archives of financials for recent projects. Since, such data is highly confidential
we resort to data synthesis to create data-sets for the purposes of this paper. Wherever
possible we try to mimic real samples coming from services enterprises which engage
in application development and maintenance. Table [Tl shows how the different levers in
our model are simulated for our evaluation (See [5] for further details).

To solve the integer linear program described in Equation 3] we used an IP solver
engine called Gurobi available within a commercial optimization and simulation pack-
ageﬁ. All experiments were run on a machine with a configuration — 2.16 GHz, 2 GB
RAM, Windows XP. The entire experimental data-set as well as the solution set-up in
MS-Excel is available for download.

3.2 Study 1: Feasibility and Effectiveness of the DTC Service Model

Goals and Method: This study seeks to demonstrate the feasibility and validity of
our approach on synthesized practical data-sets. We solve the optimization problem in
Equation 3] on several data-sets that are produced as per Table[Il We vary the number
of appliances and the available capital to generate different data-sets for this study.

After solving the optimization problem, we obtain values for the number of license-
units to be purchased, x;, as well as the weekly allocations, U;, for each appliance, ;.
Now, in order to quantify the value of our approach stemming from license reuse across
projects, we compute the Overall-Potential score defined below:

T
Z C; Z U’L(t) - Z Cixi
Overall-Potential (%) = "¢ 7! vi

x 100
; Cixi

3 http://www.solver.com
* http://researcher.watson.ibm.com/researcher/files/in-debdomuk/dtc-data.zip

528 D. Mukherjee et al.

Results and Analysis: Table [2| list various details of the solutions obtained to our op-
timization problem for 5 data-sets with different combinations of available capital, F’
and number of appliances, n.

Every run of the IP solver completes within 15 seconds and ends up with a glob-
ally optimal solution. The fact that the Left-Over capital (F — Z Cix;) 1s always less

than the lowest license-unit cost available in the data-sets mdlcate the no more license
allocations are possible beyond what is obtained in the solutions. Unsatisfied Demand
points to cases where no allocations where possible despite presence of demand. Non-
zero values for unsatisfied demand show that there were no trivial solutions to the IP.

Table 1. Data-set Parameters Table 2. Validating Feasibility and Effectiveness
g y
Time 54 weeks n 20 50 100 100 100
Period, T') F $0.5mn $5 mn $2 mn $5 mn $10 mn
BV:::;': | g?;‘;f“;]‘iﬁm Variable 1100 2750 5500 5500 5500
: ‘ (=n[T + 1))
gf';;g‘““’ f‘s fO]ﬁ?(’)“S] Time taken 5.45 9.23 13.6 127 13.28
respectively. (in secs)
License-Unit Random from Total 11088550 27654900 22558400 35874900 49131000
Objective
Cost, C; [$500, $3000].
Project Uniformly from IéefthIV§r $ 200 30 0 250 0
Duration {2.4,6,8, 12, apital(in $)
A; (weeks) 16,20, 24, 32, Unsatisfied 23 16.6 66.9 46.1 24.4
' > 54} Demand (%)
Overall- 2117 453 1028 617.5 391

Potential (%)

Our approach yields high values of Overall-Potential in all cases. This under-
scores the significant financial benefits that can stem from optimal license management
and license resale in DTC environments. Overall-Potential subsides as we add
availability of capital in our experiments. With less capital, our solution always allo-
cates licenses to the most profitable appliances. When we add more capital, the solution
serves relatively less profitable appliances, so the average potential decreases.

3.3 Study 2: Identifying Profitable Appliances

Goals: Optimal solutions to Equation[3]indeed help a DTC provider to decide the cor-
rect amount of stock to keep for each appliance. However, in many practical scenarios,
one needs to decide whether an appliance is a good candidate to stock on cloud without
complete information of the other appliances in contention. It is often desirable to be
able to independently form an opinion on an appliance’s profitability simply by study-
ing its characteristics — either in isolation or with respect to high level trends observed
in other appliances. This study aims to identify some characteristics of an appliance
that can possibly serve as indicators of profitability. We organize the study in terms of
3 research questions; each of which tries to evaluate a parameter in our service model
on whether its value can throw some light upon the preferredness of the appliance.

— RQ1: Investigate the effect of project duration, A;, on an appliance’s profitability.

— RQ2: Investigate the effect of cost of a license-unit, C;, on an appliance’s
profitability.

A Service Model for Development and Test Clouds 529

— RQ3: Investigate the effect of demand function, D;, on an appliance’s profitability.

Method: We empirically evaluate the dependence of different parameters in our service
model, A;, C; and D;, on a quantitative measure of an appliance’s profitability — the
Profit-Potential (PP) of an appliance:

T
C; Z U,,(t) - Cixi
t=1

Profit-Potential (%) = = o x 100
iXi

In the context of any solution to our service model, the Profit-Potential for an ap-

pliance signifies the degree of license re-sale that can be effected for the appliance in the
solution. Of course, greater the re-sale, higher is the profit. Now, for each RQ, we empir-
ically measure the correlation of the parameter in question with Profit-Potential.
We analyse every parameter in isolation, i.e., while studying the effect of a param-
eter, we generate the data such that the other parameters take identical values in all
appliances being monitored. Next, we perform statistical tests to decide whether the
correlation is significant at 0.01 level. If the correlation is found to be significant, then
we conclude that the parameter is indicative of an appliance’s profitability.

Statistical Analysis and Results: To address all 3 research questions, we create sam-
ples of data pertaining to 100 appliances. Table 3 shows the values taken up by differ-
ent model parameters in the three cases and also summarizes the experimental results.
For RQ1, we measure the correlation between the project-duration and the observed
Profit-Potential for appliances to be -0.632, which is significant at 0.01 level.
Since, the project duration demonstrates a strong negative correlation we can conclude
that lower project duration means greater profitability for the DTC vendor. The result
is intuitively true since lower the project duration, greater are the chances of license re-
sale. For RQ2, we measure the correlation between the cost of a single license-unit and
the observed Profit-Potential for appliances to be -0.17. Such a value for corre-
lation is not significant, thus we cannot make conclusive statements about the effect of
license-unit cost on appliance’s profitability. For RQ3, we wish to determine whether
uniformity in demand is good for profitability of an appliance. Thus, we measure the
correlation between the standard-deviation of weekly demand for appliances across the
one year period and the observed Profit-Potential for appliances to be -0.382,
which is significant at 0.01 level. Since, lower deviation in demand leads to greater
profitability, we can conclude that uniform demand for an appliance augurs well for the
DTC vendor.

In summary, appliances that find use in projects having smaller durations and appli-
ances having uniform demand functions are better prospects for stocking in a DTC.

4 Related Work

License management for cloud computing environments has been recognized as an open
problem in literature. The 451 group report® and [4] identified restrictive license terms
to be a major threat to cloud adoption. Dalheimer et. al. [2] propose GenLM, a license
management framework that allows ISVs to manage their license usage in a distributed

530 D. Mukherjee et al.

Table 3. Identifying Profitable Appliances

RQ1 RQ2 RQ3

Weekly Demand, D; (t) 10 10 Gaussian with p, o
from [5, 10] and [0,5] resp.
License-Unit Cost, C; 1000 Random from
[$500, $3000] 1000

Project Duration, A; {2,4,6,8,12, 16, 20, 6 weeks 6 weeks

24, 32, 54} weeks.
Available Captial, F' $10000000 $2000000 $2500000
Time Period, T’ 54 weeks 54 weeks 54 weeks
Study Variable, X A; C; o(D;)
Pearson’s-Correlation(X, PP) -0.632 -0.17 -0.382
Significance at 0.01 level Yes No Yes

world. The main idea of GenLLM is to attach the license not to a node or a person but
to issue licenses for the input datasets, thus allowing users to buy a per-job license and
run the job on any suitable resource. However, such a model is only applicable for web
applications and does not suit standalone software that run on desktops.

Cacciari et. al. [1] propose elasticLM - Licence as a Service (LaaS) for creating
and managing software licenses. The framework enables a user to negotiate terms and
policies with a license provider service to be able to procure a license token to execute
an application. [8l9] discuss issues related to implementation of license management
systems for Grid environments. But, none of these address how a LaaS can be run
profitably.

5 Conclusions

We note that unavailability of enterprise software under usage based pricing models
can potentially affect adoption of a Development & Test Cloud (DTC) — a delivery
platform that promises revolutionary cost advantages and efficiency improvements for
an IT service enterprise. As a counter, we propose a novel service model wherein the
DTC acts as a proxy to help transform software costs from perpetual licensing to pay-
per-use. We suggest that a DTC can centrally buy all software licenses and maintain
them in license pools. All software present in an image are assigned licenses from
the pools whenever a new instance is provisioned; the licenses return back to their
respective pools on deprovisioning of the instance. We set up an optimization problem
that can determine how many licenses for every software should a DTC buy in order to
meet the forecasted demand in the most effective yet profitable manner. Our empirical
studies show that it is feasible to obtain optimal solutions to the service model. Also,
we find that stocking appliances that are used in projects with a small duration and the
ones that exhibit uniform demand can lead to greater profitability of the DTC vendor.

References

1. Cacciari, C., D’Andria, F., Gozalo, M., Hagemeier, B., Mallmann, D., Martrat, J., Peréz, D.,
Rumpl, A., Ziegler, W., Zsigri, C.: Elasticlm: A Novel Approach for Software Licensing in
Distributed Computing Infrastructures. In: 2nd IEEE International Conference on Cloud Com-
puting Technology and Science, pp. 67-74 (2010)

& W

e}

A Service Model for Development and Test Clouds 531

. Dalheimer, M., Pfreundt, F.: GenLM: License Management for Grid and Cloud Computing

Environments. In: 9th IEEE/ACM International Symposium on Cluster Computing and the
Grid, pp. 132-139 (2009)

. IDC and Flexera. Inc. 2010 Key Trends in Software Pricing & Licensing Survey (2010)
. MacVittie, L.: Cloud Computing’s Other Achilles’ Heel: Software Licensing (2009)
. Mukherjee, D., Gupta, M., Sinha, V.S., Zhou, N.: Development & Test Cloud: A

Next Generation Service Delivery Platform. IBM Technical Report No. RI11007 (2011),
http://domino.research.ibm.com/library/cyberdig.nsf/index.html

. Silver, E., Pyke, D., Peterson, R., et al.: Inventory management and production planning and

scheduling, vol. 2. Wiley, New York (1998)

. Singh, A., Hung, E., Balepin, 1., et al.: IBM Technology Adoption Program Cloud Sandbox

Internal Pilot (2009)

. Dornemann, K., Freisleben, B.: Licensing the Use of Grid Services, Citeseer (2007)
. Dong, X., et al.: Floating License Sharing System in Grid Environment. In: 1st International

Conference on Semantics, Knowledge and Grid, p. 96 (2005)

http://domino.research.ibm.com/library/cyberdig.nsf/index.html

	A Service Model for Development and Test Clouds
	Introduction
	DTC Service Model
	Experiments and Results
	Experimental Data and Setup
	Study 1: Feasibility and Effectiveness of the DTC Service Model
	Study 2: Identifying Profitable Appliances

	Related Work
	Conclusions

