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Abstract. Various algorithms have been proposed for the problem of
quality-driven service composition. They differ by the quality of the re-
sulting executable processes and by their processing costs. In this paper,
we study the problem of service composition from an economical point of
view and adopt the perspective of a Composition as a Service provider.
Our goal is to minimize composition costs while delivering executable
workflows of a specified average quality. We propose to dynamically se-
lect different composition algorithms for different workflow templates
based upon template structure and workflow priority. For evaluating our
selection algorithm, we consider two classic approaches to quality-driven
composition, genetic algorithms and integer linear programming with dif-
ferent parameter settings. An extensive experimental evaluation shows
significant gains in efficiency when dynamically selecting between differ-
ent composition algorithms instead of using only one algorithm.

Keywords: Quality-Driven Service Composition, Composition as a
Service, Dynamic Algorithm Selection.

1 Introduction

Over the last years, large scale, public registries for Web services have been
emerging. These include domain-specific registries (e.g. biology1, geospatial Web
services2) as well as general purpose registries such as Seekda!3 which currently
advertises over 28.000 Web services. Due to the large number of available ser-
vices, a common situation is that several services are able to fulfill the same
functionality. In order to select between them, non-functional properties such as
service availability and response time can be taken into account. This issue is at
the heart of quality-driven service composition [12] (QDSC). In QDSC, tasks of
an abstract workflow are associated with sets of functionally equivalent services
which differ in their non-functional properties. The goal is to select one service for
every task such that the aggregated quality properties of the workflow are opti-
mized while certain minimum requirements are fulfilled. Various algorithms have
1 http://www.biocatalogue.org/
2 http://services.eoportal.org/
3 http://webservices.seekda.com/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 513–522, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



514 I. Trummer and B. Faltings

been proposed for QDSC. Some of them produce optimal executable workflows
but have high resource requirements, others sacrifice optimality for efficiency. In
this paper, we propose to select different composition algorithms for different
workflow templates in order to maximize the overall performance. The selection
should consider structural properties of the template as well as workflow pri-
ority. Classifying workflow templates according to structural properties allows
to predict the behavior of composition methods more accurately. Considering
workflow priority allows to select high-quality composition algorithms for high-
priority workflows and high-efficiency algorithms for low-priority workflows.

The original scientific contributions of this paper are i) an algorithm that maps
workflow templates to composition algorithms, minimizing the overall processing
costs for a specified average target quality, and ii) an extensive experimental
evaluation of our algorithm in comparison to naive approaches. The remainder of
the paper is organized as follows. In Sect. 2, we present a motivating scenario, in
Sect. 3 the corresponding formal model. We review related literature in Sect. 4.
In Sect. 5, we describe our approach in detail, followed by the experimental
evaluation in Sect. 6. We conclude with Sect. 7.

2 Motivating Scenario

We adopt the perspective of a fictive Composition as a Service provider as de-
scribed and motivated by Rosenberg et al. [10] and Blake et al. [4]. Fig. 1 shows
an overview of the corresponding architecture. Clients are companies with a
portfolio of business processes corresponding to different products and services
(presumably more than one). Clients submit their whole portfolio as set of com-
position requests to the composition service. Every request is associated with
a specific workflow template, minimum requirements on the QoS of the exe-
cutable process, and a utility function weighting between different QoS of the
executable process. Clients subscribe and pay for regularly receiving executable
processes corresponding to their requests. It is necessary to repeat the compo-
sition regularly since the set of available services may change. We consider the
processing cost for the provider to be proportional to the running time of the
used composition algorithms (this is the case if an Infrastructure as a Service
offer like Amazon EC2 [1] is used). The 80/20 rule predicts strong variations
in the relative importance of different products and services in industry [8]. It
is plausible that this translates to different priorities of the workflows within
the portfolio. We will use the number of workflow executions per time unit as
priority measure while different measures could be applied as well. Clients spec-
ify the expected number for every workflow (eventually using a rough estimate
first and refining it later). The composition provider can exploit this information
and select computationally cheap composition algorithms for less frequently ex-
ecuted workflows. These cost savings can in part be passed on to the clients. We
assume that the composition provider has set a target average quality for the
resulting compositions and assigns requests to algorithms in order to minimize
the processing cost while guaranteeing this average quality.
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Fig. 1. Architectural overview

3 Formal Model

Our model is similar to the one presented by Zeng et al. [12] and makes the same
fundamental assumptions. QDSC starts from an abstract workflow W . Every
task of W is associated with a set of services which fulfill the required function-
ality. Those services expose different non-functional properties. We denote the
set of relevant quality properties by A and by QoS(s, a) the value of attribute
a ∈ A for service s. A binding is a function that maps every workflow task to
one service in its associated set. The selected binding will determine the aggre-
gated quality properties of the workflow as a whole. We denote by QoS(W, B, a)
the value of attribute a for workflow W and binding B. Zeng et al. [12] have
shown how to map QoS values to the interval [0, 1] such that 1 corresponds to
best quality. Hence, we have QoS(W, B, a) ∈ [0, 1]. Depending on the attribute
type, different aggregation functions must be used. Dumas et al. [7] classify QoS
attributes into additive, multiplicative, and attributes whose value is aggregated
over the critical path. We consider attributes where the value is aggregated as
sum (e.g. response time) or as product (e.g. reliability) over the tasks on the
(previously known) critical path.

In QDSC, the goal is to find a binding for a workflow such that (i) cer-
tain minimum requirements on the quality of the composite workflow are re-
spected, and (ii) a user-defined measure of optimality on the quality attributes
of the workflow is optimized. Assuming that the attributes in A are ordered
(A = {a1, a2, . . . , an}), we can express the quality requirements on the compos-
ite workflow as vector −→r = (r1, . . . , rn). A valid binding B must satisfy (1).

∀i ∈ {1, . . . , n} : QoS(W, B, ai) ≥ ri (1)

The ranking between different admissible bindings depends on the preferences
of the user. Some users will prefer having a lower response time even if this does
mean additional invocation costs, for other users it may be the inverse. Users
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specify their preferences via a vector of weights −→w = (w1, . . . , wn) where the
sum over all components is 1: |−→w | = 1. We define the utility of a binding B:

Utility(W, B,−→w ) =
∑

i∈{1,...,n}
wiQoS(W, B, ai) (2)

For a fixed set of available services, requirements and preferences, we define the
relative quality of a binding B by comparison with the optimal binding Bopt:

relQuality(B, W,−→r ,−→w ) =
Utility(W, B,−→w )

Utility(W, Bopt,
−→w )

(3)

We assume that workflows are associated with an expected number of executions
(during a specific time period) nExec. In our model, the number of executions
determines the relative importance between workflows in the same set. In sum-
mary, a composition request CR is defined by the tuple CR = (W,−→r ,−→w , nExec).
Clients submit sets of composition requests crSet = {CRi} and obtain a set of
pairs resultSet = {(CRi, Bi)} with corresponding bindings for every request.
The relative quality of a result set is the weighted average over the relative
quality of all included bindings weighted by the number of executions:

relQuality(resultSet) =
∑

i relQuality(Bi, Wi,
−→r i,

−→w i) · nExeci∑
i nExeci

(4)

4 Related Work

Among the most popular approaches for QDSC are integer linear programming
and genetic algorithms. We will use these two approaches in different config-
urations for evaluating our dynamic selection algorithm. An Integer Linear
Program (ILP) consists of a set of variables, a set of linear constraints and a
linear objective function. After having translated the QDSC problem into this
formalism, specific solver software such as CPLEX [2] can be used. Examples for
this approach include the work by Zeng et al. [12] and Ardagna et al. [3]. Canfora
et al. [5] introduced Genetic Algorithms (GA) for QDSC. Individuals of the
population correspond to different bindings, their genes to the workflow tasks and
the possible gene values to the available services. While GAs do not guarantee
to find the optimal solution, they can be more efficient than ILP-based methods
(which have exponential worst-case time complexity). By tuning parameters like
the number of iterations, the probability of finding a close-to-optimal solution
can be improved. Various other approaches have been applied to QDSC. Many
of them offer specific parameters for trading result quality for lower running time
(e.g. [6,11]). Such parameters can be leveraged by our selection algorithm for
reducing the composition effort for low-priority workflows.

5 Approach for Selecting Composition Algorithms

In this section we will present an algorithm that maps composition requests to
composition methods. The goal is to guarantee an average quality for the result
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set while minimizing the composition cost. In Sect. 5.1, we describe a preliminary
filtering for composition methods, in Sect. 5.2 the selection algorithm.

By Methods we designate the set of composition methods. Every method
refers to a specific algorithm with a specific parameter setting (e.g. genetic algo-
rithm with population size 50 chromosomes and 100 generations). For selecting
between different methods, we characterize them by the delivered average rela-
tive quality (see (3)) and invocation cost. However, the behavior of composition
methods depends on the properties of the composition request (e.g. the running
time of an ILP method correlates with the number of workflow tasks). We as-
sume that requests can be classified such that the behavior does not vary too
much for requests within the same class. RequestClasses designates the set of
classes, class(cr) the class of a request cr. We characterize methods for specific
classes using the functions Ecost (expected cost) and ErelQ (expected relative
quality)—data can be gained by experiments with representative request sets:

Ecost : Methods× RequestClasses −→ N (5)
ErelQ : Methods× RequestClasses −→ [0, 1] (6)

5.1 Initialization: Filtering Composition Methods

During initialization, each request class is assigned to a set of recommended
composition methods. The result is the function

efficientMethods : RequestClasses → P(Methods) (7)

Initially, all methods are considered efficient for all request classes. Then, two
filtering steps are performed for each request class separately based upon the
experimental data. First, composition methods have to be filtered out that risk
to produce workflows of too low quality. We only consider average quality during
our dynamic selection, therefore this step is important—having single bindings
of very bad quality within the result set may dissatisfy clients even if the average
quality is good. Further, methods can be filtered out for certain request classes
if they are dominated by other methods, meaning that they have higher cost
and deliver lower average quality. Filtering out dominated methods diminishes
the search space for the dynamic selection and improves therefore the efficiency.

5.2 Mapping Composition Requests to Composition Methods

Every time that a new set of composition requests is submitted by the client,
the requests in the set have to be mapped to composition algorithms based upon
their relative importance and request class. This mapping has to be done effi-
ciently since the mapping time adds as overhead to the total processing time.
Our goal is to minimize the processing cost of the request set while the minimum
requirements on the average quality must be met. We will show how our mapping
problem can be reformulated as multi-choice 0-1 knapsack problem (MCKP) [9].
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Algorithm 1. Select and execute composition methods for request set
1: function TreatRequestSet(crSet, efficientMethods, Ecost, ErelQ, tQ)
2: // Transform selection problem into multi-choice 0-1 knapsack
3: weightLimit← 0
4: for all cr = (W,−→r ,−→w , nExec) ∈ crSet do
5: optM(cr)← argmaxm∈efficientMethods(class(cr))(ErelQ(m, class(cr)))
6: mckItems(cr)← ∅
7: for all m ∈ efficientMethods(class(cr)) \ {optM(cr)} do
8: costSavings← Ecost(optM(cr), class(cr))− Ecost(m, class(cr))
9: qualityLoss← ErelQ(optM(cr), class(cr))− ErelQ(m,class(cr))

10: newItem← (m, qualityLoss · nExec, costSavings)
11: mckItems(cr)← mckItems(cr)∪ {newItem}
12: end for
13: weightLimit← weightLimit + nExec · (ErelQ(optM(cr), class(cr))− tQ)
14: end for
15: mckSelected← approximateKnapsack(crSet, mckItems,weightLimit, ε)
16: // Use approximated solution and call corresponding composition methods
17: resultSet← ∅
18: for all cr ∈ crSet do
19: if mckSelected(cr) =⊥ then
20: binding ← Execute(optM(cr), cr)
21: else
22: (m, qualityLoss, costSavings)← mckSelected(cr)
23: binding ← Execute(m, cr)
24: end if
25: resultSet← resultSet ∪ {(cr, binding)}
26: end for
27: return resultSet
28: end function

This problem is NP-hard but can be approximated efficiently using a fully poly-
nomial time approximation scheme (FPTAS). Such an approximation scheme
guarantees polynomial running time and a close-to-optimal solution. If the op-
timal utility value for a given problem instance is Popt, then the approximation
scheme finds a solution with utility value at least P such that Popt −P ≤ ε ·Popt

where ε can be chosen. The running time grows polynomial in 1
ε and in the size

of the problem. We use the MCKP FPTAS by Lawler [9] for our implementation.
Alg. 1 is executed every time a client submits a set of composition requests. It

takes as input the submitted request set crSet, the set of recommended methods
for every request class efficientMethods, the characteristics of the available
methods ErelQ, Ecost, and the targeted relative quality of the result set tQ. In a
first phase, the algorithm reformulates the problem of selecting optimal methods
for every composition request as MCKP. The classes correspond to the different
requests that have to be treated. Items within a specific class are associated with
composition methods. Selecting an item for a class symbolizes the choice of the
associated composition method for treating the request corresponding to that
class. The item weight corresponds to the quality loss in comparison with the
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optimal method, weighted by the number of executions. The total weight limit
is proportional to the total number of executions of all workflow templates in
the request set. It integrates the distance between target quality tQ ∈ [0, 1] and
the expected quality of the best method for every request. We want to minimize
the processing cost, a solution to the MCKP is optimal once it maximizes the
aggregated profit. Therefore, item profits correspond to cost savings that can be
realized by choosing the associated method instead of the optimal one.

The item associated with the optimal method has weight and profit 0. This
is equivalent to selecting no element in the class. Therefore, we do not integrate
these items and interpret an empty selection for a class as selection of the optimal
method for the corresponding request. The algorithm uses the auxiliary function
approximateKnapsack which implements the FPTAS proposed by Lawler [9].
The functions takes as input the set of item classes, the sets of items for every
class, the weight limit and the accuracy ε (Lawler’s algorithm works with integer
weights hence we round weights to percent). It returns a function that assigns
classes to selected items or to ⊥ if no item was selected. The algorithm uses
the auxiliary function Execute(m, cr) which executes m on cr and returns the
produced binding. The set of pairs between bindings and requests is returned.

Example 1. Let crSet = {cr1, cr2} with cl1 = class(cr1) and cl2 = class(cr2),
we have nExec = 10 for both requests. Assume that methods m1 and m2 are effi-
cient for cl1 with ErelQ(m1, cl1) = 0.9, ErelQ(m2, cl1) = 0.8, Ecost(m1, cl1) =
10, and Ecost(m2, cl1) = 5. Only m1 is efficient for cl2 with ErelQ(m1, cl2) =
0.95 and Ecost(m1, cl2) = 5. Our algorithm generates item set {(m2, 1.0, 5)} for
knapsack class cl1 and ∅ for cl2. The weight limit is 2.5 for tQ = 0.8.

6 Experimental Evaluation

In this section, we experimentally evaluate our dynamic selection approach. In
subsection 6.1, we benchmark two classic algorithms for QDSC—integer linear
programming and genetic algorithms—in different configurations for different
classes of composition queries. The experimental data we obtain in subsection 6.1
forms the input for our selection algorithm that we evaluate in subsection 6.2.

We implemented a test suite in Java that randomly generates composition
requests including workflow templates and available services. We treat workflows
with between 5 and 45 tasks. We considered 8 quality attributes for services: two
additive attributes that depend on all tasks, two that depend only on critical
tasks, two multiplicative attributes that depend on all tasks, and two that depend
only on critical tasks. The QoS properties of services were chosen with uniform
random distribution. We considered 50 functional categories and generated 100
services for every category. Workflow tasks were randomly assigned to functional
categories. The probability that a task belongs to the critical path for one of
the quality attributes that depend only on critical tasks was 50%. The quality
weights were chosen randomly as well as the quality requirements which were
chosen with uniform distribution between 0.01 and 0.5. The number of workflow
executions for every single request was chosen out of a Pareto distribution as
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(b) Workflows with 31 to 45 tasks

Fig. 2. Characteristics of composition methods for different request classes

motivated before. For implementing the ILP based algorithm, we used IBM
ILOG CPLEX 12.1 [2] as solver. We set the thread count to 1 and used the
default parameters otherwise. For the GA composition approach, we use the
same Java libraries and settings as Canfora et al. [5]. However, we vary the
number of generations between 10 and 200. The approximation algorithm for
the MCKP was implemented in Java as well. All experiments were executed on
a 2.53 GHz Intel Core Duo processor with 2.5 GB RAM running Windows 7.

6.1 Benchmarking and Filtering Composition Methods

In this section, we characterize different configurations of the two composition
algorithms. We partitioned requests into 3 classes, based upon the number of
workflow tasks (5 − 15, 16 − 30, and 31 − 45 tasks). Note that a more fine-
grained partitioning could additionally consider different request properties like
the strength of the quality requirements. For every class we generated 100 test
cases (corresponding to a randomly generated registry and workflow request).
We executed every method 10 times for every test case and take the arithmetic
average execution times. Fig. 2 shows the characteristics of different composition
methods within the cost-quality space. For determining the relative quality, we
compared with the optimal solution produced by ILP. We benchmark GA with
different numbers of generations (10, 50, 100, and 200).

We make the following observations. i) The only case of dominance between
different methods occurs for small workflows: ILP dominates GA 200 since it
delivers better quality at lower cost. ii) The running time of the GA-based
methods is approximately proportional to the number of generations and the
average number of tasks. The growth of composition time for the ILP approach
is over-proportional such that “GA 200” is not dominated anymore for large
workflows. iii) For the same number of generations, the relative quality of the
genetic algorithms slightly decreases when the number of workflow tasks grows.
iv) The standard deviation was always below 1% (of average value) for the
relative quality while reaching up to 9% for the running time.
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6.2 Evaluating Selection Algorithms

We compare our near-optimal selection approach with ε = 0.1 to a naive al-
gorithm. Both variants work with the data from the previous subsection. The
naive approach selects for a given request cr and target average quality tQ
the composition method m ∈ efficientMethods(class(cr)) which has mini-
mum expected cost among the methods that deliver the required target quality
ErelQ(m, class(cr)) ≥ tQ. Fig. 3 shows the results of our comparison with 5%
confidence intervals. We generated and solved 100 request sets and report the
arithmetic average times. We compare the two selection algorithms for request
sets of different size (20 and 50 requests) and different quality requirements (from
tQ = 0.9 to tQ = 0.99). Our criterion is the total processing time per request set.
For the near-optimal selection strategy, we divide the time into time required
to map requests to algorithms and time required for executing the selected al-
gorithms. We observe the following. i) The processing time increases for higher
number of requests and increasing quality requirements. ii) The time for the
selection phase accounts only for between 0.2% and 4% of the total processing
time for the near-optimal selection. iii) Our selection approach takes only 40%
(37%) of the time of the naive approach for 20 requests per set (50 requests per
set) and for tQ = 0.9, 40% (41%) for tQ = 0.95, and 71% (70%) for tQ = 0.99.
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We verified that the relative quality of the result sets (rounded to percent) pro-
duced by our approach always met the specified bounds. Fig. 4 shows how many
requests the different selection approaches assigned to the different composition
methods. ILP is the dominant method for high target quality (tQ = 0.99) while
GAs dominate for lower quality (tQ = 0.9). Our approach is able to select more
low-cost composition methods which explains the higher efficiency.

7 Conclusion

In this paper, we classify existing composition algorithms in terms of running
cost and expected quality. We dynamically assign different workflow templates
to different composition algorithms based upon template structure and relative
importance. Our experimental evaluation shows that our approach reduces com-
position cost significantly while introducing little overhead.
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