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Abstract. In Service-oriented Architectures, business processes can be
realized by composing loosely coupled services. The problem of QoS-
aware service composition is widely recognized in the literature. Exist-
ing approaches on computing an optimal solution to this problem tackle
structured business processes, i.e., business processes which are composed
of XOR-block, AND-block, and repeat loop orchestration components.
As of yet, OR-block and unstructured orchestration components have not
been sufficiently considered in the context of QoS-aware service compo-
sition. The work at hand addresses this shortcoming. An approach for
computing an optimal solution to the service composition problem is
proposed considering the structured orchestration components, such as
AND/XOR/OR-block and repeat loop, as well as unstructured orches-
tration components.

Keywords: Service composition, Quality of Service, Optimization,
Structured and unstructured orchestration components.

1 Introduction

To support and enable agile business processes, the Service-oriented Architecture
(SOA) paradigm is often recommended [1]. One of the key features of SOA is
that (IT-supported) business processes and, respectively, workflows are realized
by composing loosely coupled services – a practice known as service composi-
tion. These services autonomously provide a more or less coarse-/fine-grained
functionality [2]. Following the vision of the Internet of Services, multiple ser-
vice providers offer various services at different service marketplaces. If multiple
services, which are equally appropriate to accomplish certain tasks, are available
at service marketplaces, enterprises can choose to compose those services which
meet cost and Quality of Service (QoS) constraints best. This service composi-
tion problem (SCP), which forms an optimization problem, is widely recognized
in the literature and has been discussed by several authors, e.g. [3,4,5,6,7]. An
optimal solution to the SCP constitutes an execution plan, i.e., a set of selected
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services, which achieves an efficient business process execution with respect to
specified cost and QoS requirements.

As real world business processes do not solely consist of structured orchestra-
tion components, it is necessary to account for complex structures when com-
posing services. However, existing approaches aiming at computing an optimal
solution to the SCP consider complex structures only insufficiently. They usu-
ally examine all execution paths resulting from conditional branchings or repeat
loops, which leads to significant drawbacks, cf. Section 2. Our approach does not
need every possible path of a business process to be examined separately and,
thus, does not need all execution paths to be known. We are able to account for
OR-blocks. Moreover, our approach goes beyond structured orchestration com-
ponents by considering unstructured components, viz. unstructured Directed
Acyclic Graphs (DAG1). To the best of our knowledge, DAGs have not been
addressed previously in the context of QoS-aware service composition.

Thus, the work at hand significantly extends the related work in the field
of computing optimal solutions to the SCP. We initially formulate the SCP
as a non-linear optimization problem and transform it into a linear one. The
linear optimization problem is then optimally solved by applying Integer Linear
Programming (ILP) techniques from the field of operations research [8,9].

The remainder of the paper is structured as follows: In Section 2, we distinguish
our approach fromrelatedwork.The orchestrationmodels and components consid-
ered in the work at hand are introduced in Section 3. We discuss QoS aggregation
functions in Section 5 after having presented the applied system model in Section 4.
Based on the aggregation functions, the SCP is formulated as an optimizationprob-
lem in Section 6 and our solution to this problem is evaluated in Section 7. Finally,
Section 8 draws conclusions and outlines next steps in our research.

2 Related Work

As already mentioned, the SCP is widely recognized in the literature. A survey
of current approaches to the SCP can be found in [7]. The related work in this
area can be broadly divided into two groups: heuristic suboptimal SCP methods,
e.g., [5,10,11,12,13,14], and optimal SCP methods, e.g., [4,6,15,16].

In [10], the authors present and evaluate (basic) heuristic algorithms, such as
greedy and pattern-wise selection. A hill-climbing approach is proposed in [5]. In
the same vein, [11,12,13] tackle the optimization problem with genetic algorithms.
In all the above cases, the input orchestration is assumed to be structured.

As for optimal SCP methods, the common approach is to analyze every pos-
sible execution path. Zeng et al. [15] compute an optimal solution for every
execution path. They require a merging step afterwards to account for situa-
tions where different services have been selected for the same task in different
execution plans. Thus, it is not guaranteed that the merged execution plans
still provide the optimal solution as the authors do not consider probabilities of
XOR-blocks for the optimization. Anselmi et al. [4] consider all possible execu-
tion paths in a single optimization problem; however, they consider probabilities
1 In the following, we omit explicitly stating that DAG components are unstructured.
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for the different execution paths only in the objective function. Thus, they fail to
integrate probabilities into the process restrictions, which leads to a worst-case
analysis. In other words, the result of ignoring probabilities regarding different
branchings for the process restrictions is that, effectively, only the worst path of
an XOR-block is considered although all possible execution paths are required
to be integrated into the optimization. Our approach allows probabilities for the
specification of process restrictions to be considered. This enables an average-
case analysis in addition to the worst-case analysis. In [6], Huang et al. consider
only one execution path for the optimization – the worst one. Hence, they also
fail to consider probabilities of conditional branchings. Ardagna et al. [16] do
not consider conditional branchings at all, but they account for repeat loops,
cf. Section 3.2. They unfold the cyclic structure and consider all the resulting
execution paths. Similar to Anselmi et al., Ardagna et al. integrate all execu-
tion paths into a single optimization problem. Thus, the number of constraints
grows with the number of considered repeated executions. Furthermore, such an
approach does not allow for limiting behavior considerations for a repeat loop.

The work at hand addresses computing an optimal solution to the SCP. In
contrast to the related work mentioned above, we do not need to identify all
possible execution paths of a given orchestration model. Our approach allows
for the consideration of probabilities when specifying constraints for conditional
branchings. Thus, we account for all execution possibilities directly. Further-
more, we can perform limiting behavior considerations regarding repeat loops.
In addition, our approach accounts for OR-blocks and DAGs. In the next section,
we provide a detailed description of all the considered orchestration components.

3 Orchestration Models and Components

3.1 Orchestration Models

Fig. 1. An orchestration model

An (orchestration) model is a directed
graph consisting of edges (n1, p, n2),
such that n1 and n2 are nodes (the
source and target of the edge) and p is
the edge probability, i.e., probability
of taking the edge assuming that the
execution of the orchestration model
has reached node n1. Nodes in an or-
chestration model are of two types:
tasks and gateways. Tasks represent
units of work that are accomplished
by atomic services. Gateways encode
the routing logic of the orchestration
model. Gateways are of three types,
cf. [17]: XOR gateways represent conditional branching (XOR-split) or merg-
ing of exclusive branches (XOR-join). AND gateways represent parallel forking
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(AND-split) or synchronization points (AND-join). OR gateways represent mul-
tiple choice (OR-split) or general synchronizing merge (OR-join). A split gateway
is the one with a single incoming edge and multiple outgoing edges, while a join
gateway is the one with multiple incoming edges and a single outgoing edge.

We expect all orchestration models to be well-formed. A well-formed orches-
tration model meets the following requirements: (i) An orchestration model has
a single source node, i.e., a node with no incoming edges, and a single sink node,
i.e., a node with no outgoing edges. (ii) Every node is on a path from the source
to the sink. (iii) Every task node has at most one incoming and at most one
outgoing edge. (iv) Every gateway is either a split or a join. (v) The sum of
the probabilities attached to the outgoing edges of an XOR-split gateway is 1.
(vi) The sum of the probabilities attached to the outgoing edges of an OR-split
gateway is larger or equal to 1. (vii) An edge whose source is neither an XOR-
nor an OR-split gateway has a probability of 1. Fig. 1 shows a well-formed
orchestration model using BPMN notation (without edge probabilities).

3.2 Orchestration Components

An orchestration model can be parsed into a hierarchy of (orchestration) compo-
nents, each with a single entry and single exit node. Such orchestration compo-
nents constitute logically independent units of work in the orchestration model.
The result of the parsing procedure is a parse tree, which is the containment
hierarchy of orchestration components of the orchestration model.

B1

(a) P1

R1

P2

(b) B1 (c) P2

a

(d) B2 (e) B3 (f) B4

Fig. 2. Orchestration components

The Refined Process Structure Tree (RPST) is a technique for workflow graph
parsing [18,19], i.e., for discovering the structure of a workflow graph. The RPST
of an orchestration model is the set of all its canonical orchestration components.
An orchestration component is canonical, if it does not overlap (on edges) with
any other orchestration component of the orchestration model.

Fig. 3. DAG component R1

The set of all canonical orchestration com-
ponents of a model clearly forms a hierarchy
that can be represented as a tree. The parent
of an orchestration component is the smallest
component that contains it. The root of the
tree captures the entire orchestration model.
A leaf of the tree is an edge of the model.
Orchestration components can be classified
based on their structure, cf. [19] for details. In
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the following, we assume that orchestration models are composed of the follow-
ing structural classes of orchestration components: sequence, AND-block, XOR-
block, OR-block, repeat loop, and DAG. Fig. 2 shows all structured orchestration
components of the model in Fig. 1. Note that in the following, when referring
to a component, we abstract from the internal logic of its child components (see
boxes with dotted borderlines in Fig. 1). In the figure, P1 and P2 are sequences,
B1 is an AND-block, B4 is an XOR-block, B3 is an OR-block, and B2 is a
repeat loop component. Finally, Fig. 3 shows the only DAG component of the
orchestration model.

4 System Model

This section describes the system model. We label the set of all tasks with I,
i � I = �1, ..., i#�. Referring to Fig. 1, the task numbers i correspond to the iden-
tifiers of the tasks, i.e., to “a”, “b”, etc. The order of the task numbers is not im-
portant as long as the respective sets are defined properly. Each task is required
to be accomplished by exactly one service j � Ji = �1, ..., j#

i �. Whether or not
service j is selected for task i is indicated by the decision-variables xij � �0,1�.
In this work, we take execution time e (duration to execute a service in seconds),
reliability r (probability of successful service execution), and throughput d (num-
ber of service requests the service is able to serve within a certain time interval)
as QoS parameters, as well as cost c (charge for a service invocation in cent
considering a pay-per-use pricing model) into account. With these parameters –
in fact, even with a subset of these parameters – the aggregation types summa-
tion, multiplication, and min/max-operator are covered. Thus, the integration
of further QoS parameters into the optimization problem is straightforward. We
label bounds for the QoS parameters with be, br, bd, bc.

Regarding branchings, the set L of paths is specified as L = �1, ..., l#�. Thereby,
l � L indicate the path numbers within a branching. To give an example, we refer
to Fig. 2(b). There are two paths l within the AND-block, thus L = �1,2�. In
order to distinguish multiple sets of paths from each other, we utilize additional
indices, i.e., La, Lx, Lo, Lg for AND/XOR/OR-blocks and DAGs, and refer to
them as branching La, Lx, etc. The set IW L � I represents the set of tasks
within a branching and IW l � IW L the set of tasks within path l � L. The re-
maining tasks, which are not located within a branching, are covered in the set
IS = I � (IW l � l � L). The probability of executing a certain path l is indicated
by pl. When it comes to repeat loops, we label the probability that a task i
is repeated with ρi. To give an example for such a repeat situation, assume a
task that tries, e.g., to initialize a resource. The probability that the resource is
initialized, is indicated by 1−ρi. In case we require the resource to be initialized,
we have to repeat the initialization until we achieve that aim.

The above described system model is used to develop the aggregation func-
tions which are proposed in the next section.

5 Aggregation Functions

In this section, we describe QoS aggregation functions. These functions are re-
quired to specify the objective function and the constraints of the SCP. In order
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to aggregate the QoS values of the considered candidate services for the whole
orchestration model, the regarded orchestration components as well as the re-
spective aggregation type of each QoS parameter have to be taken into account.
Table 1 indicates aggregation functions for sequence, AND-block, and XOR-
block. In a sequence, the QoS of all services has to be aggregated according
to the respective aggregation type. Regarding an AND-block, we have to take
the path with the highest aggregated execution time – the critical path – into
account for execution time. For the other QoS parameters, all services within
the AND-block are aggregated. For the XOR-block, we perform an average-case
analysis by considering possible paths l according to their probabilities pl in
contrast to a worst-case analysis, where the worst of the alternative paths is
considered for service selection. Further details on these aggregation functions
are available in [20]. For the sake of clarity, we define es, ea, ex, etc. in Table 1
to represent the respective aggregation functions in Section 6.

Table 1. Aggregation Functions

QoS Sequence AND-block XOR-block

e es �= �
i�IS
�

j�Ji

eijxij ea �=max
l�L
( �

i�IW l

�

j�Ji

eijxij) ex �= �
l�L

pl �
i�IW l

�

j�Ji

eijxij

c cs �= �
i�IS
�

j�Ji

cijxij ca �= �
l�L
�

i�IW l

�

j�Ji

cijxij cx �= �
l�L

pl �
i�IW l

�

j�Ji

cijxij

r rs �= �
i�IS
�

j�Ji

rijxij ra �= �
l�L
�

i�IW l

�

j�Ji

rijxij rx �= �
l�L

pl �
i�IW l

�

j�Ji

rijxij

d ds �=min
i�IS
( �

j�Ji

dijxij) da �=min
l�L
(min

i�IW l

( �

j�Ji

dijxij)) dx �= �
l�L

pl min
i�IW l

( �

j�Ji

dijxij)

Regarding repeat loops, we propose to perform limiting behavior considera-
tions taking the mentioned probability ρi into account. Thus, we exchange eij

for e�ij =
1

1−ρi
eij , cij for c�ij =

1
1−ρi

cij , and rij for r�ij =
(1−ρi)rij

1−ρirij
, cf. [20] for further

explanations. Throughput dij is not affected by a repeat loop.
The application of these aggregation functions implies a sequential arrange-

ment of the process steps within a split and join [20]. To overcome this shortcom-
ing and in order to account for recursive interlacings of the regarded patterns,
we propose to abstract from the interlacing by adding a new service, which re-
places the interlacing [21]. This new service as well as the computation of its
QoS parameters is then considered for the optimization.

In the following, we propose aggregation functions to account for an OR-block
and for a DAG component.

5.1 OR-Block

Regarding the pattern multi-choice (OR-split), not only one (as in XOR-block)
and not necessarily all (as in AND-block), but any subset of paths can be exe-
cuted. In an OR-block, the execution of one, two, three, etc. or even all paths
is allowed. In fact, it is also possible that none of the alternative paths are exe-
cuted. All the selected paths are executed in parallel. When combined with an
OR-join (as assumed here), a synchronizing merge is carried out. Note that it
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is not known before execution which of the alternative paths will be executed
– leading to different aggregation functions when considering the average- or
worst-case. In the average-case, only started paths are considered for QoS aggre-
gation, whereas in the worst-case, all paths are executed in parallel. In the latter
case, the aggregation functions for an AND-block, cf. Table 1, can be applied.

Regarding the average-case, we have to consider the started paths. Therefore,
we are required to take all possible combinations of paths l into account. Let
L = �1, ..., l#� be the set of all paths l. If only one path is started, we have
�l

#

1
	 possibilities to select one of them; if two paths are to be started, there

are �l
#

2
	 alternative paths. For three paths, it would be �l

#

3
	 and so on and

so forth. Altogether, we have h# 
= �l�L �
l#

l
	 possible combinations. We define

H = �1, ..., h#�, h � H , as the set that contains an index number h for every
possible path combination. In addition, Lh = �l � l � L � h � H� specifies the set
containing the selected paths for path combination h.

To make this clear, we refer to Fig. 2(e). As there are two alternative paths
after the OR-split (executing g or h), l# = 2 and L = �1,2�. There are �2

1
	 = 2

possibilities to select exactly one path and �2
2
	 = 1 possibility to select exactly two

paths. Adding these possibilities leads to h# 
= �l�L �
2
l
	 = �2

1
	 + �2

2
	 = 3 possible

path combinations. H would be H = �1,2,3�, and the sets Lh are the following:
L1 = �1�, L2 = �2�, L3 = �1,2�.

We label the probability that a certain combination h of paths is executed with
ph. Thereby, p0 represents the probability that none of the paths l is executed.
We assume p0 + �h�H ph = 1. For the sake of simplicity and in order to make
sure that the execution does not reach a deadlock situation, we set p0 = 0. As
the selected paths are executed in parallel, the aggregation functions are based
on the functions for an AND-block. We extend these functions by integrating
the selection of the respective paths l. The resulting aggregation functions for
an OR-block component are depicted in (1) to (4).

eo 
= 

h�H

ph max
l�Lh
( 

i�IW l



j�Ji

eijxij) (1)

co 
= 

h�H

ph 

l�Lh



i�IW l



j�Ji

cijxij (2)

ro 
= 

h�H

ph �
l�Lh

�
i�IW l



j�Ji

rijxij (3)

do 
= 

h�H

ph min
l�Lh
( min
i�IW l

(

j�Ji

dijxij)) (4)

5.2 Directed Acyclic Graph

In order to account for DAGs, we firstly identify all possible runs of a DAG
component. A run is a (potentially concurrent) execution path in the DAG along
with the probability of the occurrence of this run. Thus, the original DAG can be
rewritten in the form of a XOR-block that combines all possible runs – with their
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Fig. 4. (a) R1 with rewritten OR-splits, and (b) runs of R1 combined in a XOR-block

respective aggregated probabilities. An algorithm to compute runs is given in [22]
but only considers DAG components composed of XOR and AND gateways and,
therefore, has to be extended to account for OR gateways. To this end, every
OR-split is transformed into an XOR-split followed by AND-splits according to
the path combinations H as described in Section 5.1. To illustrate this, consider
the DAG component shown in Fig. 4(a), which is the transformed version of
the DAG presented in Fig. 3. Having removed OR-splits, we can now compute
runs with a slightly modified version of the algorithm in [22], so as to replace
OR-joins by AND-joins where required. Fig. 4(b) presents the XOR-block with
the runs computed for R1. At this stage, we can apply our aggregation functions
for XOR-block from Table 1.

As the tasks in each of the identified runs and the execution paths of the
XOR-block respectively, are not arranged sequentially, we again apply our recur-
sive pattern interlacing technique to abstract from the complex N-structure [23]
within the runs. This way, we create one new service jrun for each path l of the
outer XOR-block. To compute the QoS values for each of these new services,
we apply the aggregation functions for an AND-block from Table 1 and specify
erun, crun, rrun, drun in (5)–(8). Please note that we ignore the complexity of the
respective N-structures for the QoS parameters c, r, d by applying the respective
functions for AND-blocks, as each of the services is executed only once. This is
indicated by utilizing La instead of L for the set of paths within the N-structure.
Regarding the execution time e, the path with the highest aggregated execution
time has to be taken into account, as the paths are executed in parallel, cf. [20]
for additional explanations.

erun 
= max
l�L
( 

i�IW l



j�Ji

eijxij) (5)

crun 
= 

l�La



i�IW l



j�Ji

cijxij (6)
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rrun 
= �
l�La

�
i�IW l



j�Ji

rijxij (7)

drun 
= min
l�La

(min
i�IW l

(

j�Ji

dijxij)) (8)

Having performed this “abstraction” step, we utilize the aggregation functions
for XOR-block from Table 1 to aggregate the QoS for each path within the XOR-
block according to its respective probability. This is done in (9)–(12) resulting
in the aggregation functions for the DAG considered here (indexed with g).

eg 
= 

l�L

plerunl
(9)

cg 
= 

l�L

plcrunl
(10)

rg 
= 

l�L

plrrunl
(11)

dg 
= 

l�L

pldrunl
(12)

6 Optimization Problem

As mentioned in the introduction, the SCP describes the problem of selecting and
composing those services (from sets of services equally appropriate to accomplish
certain tasks) which meet cost and QoS constraints best. In this section, we
describe the steps to model the SCP as a linear optimization problem. We,
therefore, initially formulate a non-linear optimization problem in Section 6.1
based on the aggregation functions presented in Section 5. In order to obtain the
linear optimization problem, in Section 6.2, we conduct adaptations of Model 1
from Section 6.1. Finally, in Section 6.3, we additionally describe a heuristic
solution method based on our approach.

6.1 Non-linear Optimization Problem

In order to formulate the non-linear optimization problem in Model 1, we specify
an objective function in (13), which is aimed at minimizing the overall cost of
the selected services, as well as a set of restrictions for the aggregated QoS values
in (14)–(19). We perform an average-case analysis by applying the aggregation
functions described in Section 5. For readability reasons, we utilize variables ea,
ca, ra, etc. in Model 1 to represent these aggregation functions. Regarding repeat
loops, we exchange the QoS parameters e, c, r for the adapted expression e�, c�,
r�, as described in Section 5; i.e., if there is a loop at task i, then the respective
QoS values of the candidate services ji appropriate to realize task i are adjusted.
Otherwise, the respective QoS values are not modified.

Model 1 depicts the optimization problem in a general form to account for
sequences, repeat loops, AND/XOR/OR-blocks, and DAGs that are not inter-
laced. In (14)–(17), the restrictions for the regarded QoS parameters are specified
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Model 1. Generic Service Composition Problem
Objective Function

minimize F (x) = cs + ca + cx + co + cg (13)
so that

es + ea + ex + eo + eg � be (14)

cs + ca + cx + co + cg � bc (15)

rs ċ ra ċ rx ċ ro ċ rg � br (16)

min (ds, da, dx, do, dg) � bc (17)

�

j�Ji

xij = 1 ∀i 
 I (18)

xij 
 �0,1� ∀i 
 I,∀j 
 Ji (19)

by aggregating the considered aggregation functions and restricting them to be
lower/greater or equal to the respective bounds be, bc, br, bd for the QoS param-
eters. For reasons of clarity, we omit defining es, ea, etc. in Model 1, but it has
to be noted that their respective equations (from Table 1) are also part of the
optimization problem and, therefore, of Model 1. Restriction (18) ensures that
every task is accomplished by exactly one service and restriction (19) indicates
the integrality restriction.

In order to account for the orchestration model shown in Fig. 1, we utilize
the identified orchestration components, cf. Fig. 2 and Fig. 3, and formulate the
respective optimization problem in Model 2. Regarding Fig. 2(a) and Fig. 2(b),
we apply the aggregation functions for an AND-block. As the orchestration com-
ponents R1 and P2 do not belong to the structural class “sequence” (as required
for the application of the AND-block formulae), we abstract from their actual
structure by creating new services jR1 and jP2 and use these services for the
optimization, i.e., we apply the mentioned AND-block aggregation function for
jR1, jP2 in (21)–(24).

Model 2. Optimization Problem for Orchestration Model in Fig. 1
Objective Function

minimize F (x) = cR1 + cP2 (20)

max(eR1, eP2) � be (21)

cR1 + cP2 � bc (22)

rR1 ċ rP2 � br (23)

min(dR1, dP2) � bd (24)

�

j�Ji

xij = 1 ∀i 
 I (25)

xij 
 �0,1� ∀i 
 I,∀j 
 Ji (26)
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In order to calculate the QoS for jP2, we apply the aggregation functions for
an OR-block (B3) and XOR-block (B4) in (27)–(30) with respect to Fig. 2(c).

eo + ex = eP2 (27)

co + cx = cP2 (28)

ro ċ rx = rP2 (29)

min(do, dx) = dP2 (30)

In order to account for DAG R1 in Fig. 3, we compute the corresponding choice
component as described in Section 5.2 and apply the respective aggregation
functions in (5)–(12) to calculate the QoS for jR1. We thereby utilize e�ij , c�ij ,
and r�ij to account for the repeat loop at B2. In analogy to Model 1, the equations
for the aggregation functions eo, ex, etc. as well as (27)–(30) and (5)–(12) are
part of the optimization problem, but are omitted in Model 2 for clarity reasons.

6.2 Linearization of the Non-linear Optimization Problem

In (16), (17), (23), (24), the decision-variables xij are multiplied and aggregated,
respectively, using the min/max-operator, i.e., the decision-variables are aggre-
gated in a non-linear way. As we aim to solve the SCP by applying ILP, we have
to adapt these non-linear aggregations.

Regarding the max-operator, e.g., in (21), or in the aggregation function for
AND-blocks in Table 1, it has to be noted that if the maximum of a set has
to be lower or equal to an upper bound, each element of this set has to fulfill
this constraint. Thus, we exchange the term with the max-operator for a new
variable, e.g., emax

a , and restrict each element in the max-operator to be lower
or equal to emax

a . To make this clear, we exemplify the linearization of ea, cf.
Table 1, in (14) for Model 1. Here, we exchange ea for emax

a and add restriction
(31) to Model 1. To replace the min-operator, we analogously specify variables
dmin and add appropriate restrictions for each min-operator in (17) to Model 1,
cf. [21].



i�IW l



j�Ji

eijxij � emax
a ∀l � L (31)

To linearize restrictions (16), (23), where the decision-variables are multiplied
with each other, we utilize the approximation in (32) for the aggregation of QoS
parameters r, which is very accurate for parameter values zij that are very close
to 1, such as reliability. We thereby avoid having to multiply the reliabilities of
the alternative services and allow for summing up the respective approximated
reliabilities instead. This way, we avoid the multiplication of decision-variables in
all aggregation functions with respect to the QoS parameter r leading to linear
aggregation functions and restrictions. For further details, we refer to [20].

�
i�I



j�Ji

zijxij � 1 −

i�I

(1 − 

j�Ji

zijxij) (32)
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j�Ji

zijxij = 1 −

i�I

(1 − 

j�Ji

zijxij) + ε (33)

Applying the described linearization steps results in a linear optimization
problem in Models 1 and 2. An optimal solution can be computed by applying
ILP, if a solution exists. But, as we have utilized the approximation in (32)
instead multiplying the reliabilities of the alternative services, we inserted an
error into the optimization problem. The larger the set of tasks I, the higher
is this error. Thus, in order to ensure that our approach actually computes the
optimal solution, we compute the value of this error, labeled with ε, for the
current solution and account for this error by considering its value explicitly in
(33). Afterwards, we recompute the optimal solution taking (33) into account.
If the resulting execution plan does not change, we obviously found the optimal
solution. Otherwise, we recalculate the error and recompute the optimal solution
taking this new error into account. This way, we run the optimization at least
two times, but in the end, we guarantee that the solution is the optimal one.

6.3 Scalability

Applying our approach, computing the optimal solution to the SCP requires
increased computational effort with a growing number of tasks and candidate
services per task. To address scalability issues, we propose to relax the integrality
restrictions (19) and (26), and to compute a solution by applying mixed integer
linear programming (MILP) without considering the error ε. This probably re-
sults in an invalid solution to the SCP with no explicit indication which service
to select for a certain task, as the decision-variables xij may contain values be-
tween 0 and 1 and not exactly 0 or 1. Afterwards, in order to obtain a valid but
probably not optimal solution, i.e., xij � �0,1�, we apply a heuristic selection
strategy. Based on the values of the decision variables xij , we randomly select
services which satisfy the constraints. The performance of this heuristic solution
method compared to the optimal solution is depicted in Fig. 5 and Fig. 6.

Alternatively, we could interpret the xij values as probabilities to select re-
spective services for the accomplishment of a certain task. This way, if a business
process is executed not only once but multiple times (as is assumed to be the
normal case), the business process execution can be seen as realization of a ran-
dom experiment – selecting respective services based on their probabilities –
with minimal average cost satisfying the constraints in average.

7 Evaluation

As a proof of concept, we implemented our approach to the SCP using the linear
programming solver CPLEX2. In order to evaluate the efficiency and the solution
quality of our approach, i.e., the time for computing the execution plan and its

2 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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cost, we conducted a series of experiments to compare our approach, which
we label with ILP, to the heuristic solution method mentioned in the previous
section and to a BruteForce algorithm, which iterates through all possible service
combinations. Thus, BruteForce computes the optimal solution per definitionem.
Our proposition to interpret the values of the decision variables as execution
probabilities corresponds to the label MILP in Fig. 5 and Fig. 6. The experiments
were performed on an Intel Core 2 Quad processor at 2.66 GHz, 4 GB RAM,
running Microsoft Windows 7.

In order to evaluate the influence of the number m of candidate services ji

per task i, we varied m in Fig. 5(a) and Fig. 6(a) from 2 to 40 with step 2 for the
orchestration model in Fig. 1, which is composed of the orchestration components
sequence, AND-block, XOR-block, OR-block, repeat loop, and DAG. Regarding
the influence of the number n of tasks, we varied n from 2 to 40 with step 2
considering 10 candidate services per task. The resulting orchestration models
thereby only comprise of sequences.
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Fig. 5. Evaluation of computation time
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Fig. 6. Evaluation of cost

Regarding the efficiency of our ILP approach, we observe that the computation
time increases with the number of tasks and candidate services. However, the
computation time remains lower than 100 msec. For the heuristic approach as
well as for MILP, the computation times increase only slightly. As indicated in
Fig. 5(a) and Fig. 5(b), the computation time using the BruteForce algorithm is
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greatly increasing. Regarding Fig. 5(a), BruteForce requires 63,883.92 msec for
m = 4, which is not displayed in Fig. 5(a). For n = 4 and n = 6, which would be
the next plots for BruteForce in Fig. 5(b), the algorithm requires 209.62 msec
and 29,261.48 msec, respectively.

With respect to the solution quality, the ILP approach computes an optimal
solution, which is indicated in Fig. 6(a) and Fig. 6(b) by comparing the cost of
the ILP solution to the cost of BruteForce. As the MILP algorithm does not
create integer values for the decision variables, it must not be compared to ILP
regarding cost.

The evaluation results show that ILP requires more time than the heuristic
method for computing a solution, but the heuristic does not achieve the solu-
tion quality of ILP, i.e., the cost for execution plans computed by the heuristic
are always higher than cost for execution plans computed by ILP. Compared
to the BruteForce algorithm, which also computes the optimal solution, ILP’s
computation time is rather small.

8 Conclusion

The problem of selecting services based on their QoS – the QoS-aware SCP –
is widely recognized in the literature and has been discussed recently by several
authors. In the work at hand, we addressed the SCP for orchestration models
composed of sequences, AND-blocks, XOR-blocks, OR-block, repeat loops, and
DAGs, which has, to date, been insufficiently considered in the literature, cf.
Section 2. We thereby aim to compute an optimal solution to the SCP. In our
future work, we will focus on considering further structural classes of orchestra-
tion components such as loops with multiple entry and/or multiple exit points.
We further aim to consider stochastic QoS values for the SCP.
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