
State Propagation

in Abstracted Business Processes

Sergey Smirnov, Armin Zamani Farahani, and Mathias Weske

Hasso Plattner Institute, Potsdam, Germany
{sergey.smirnov,mathias.weske}@hpi.uni-potsdam.de,
armin.zamanifarahani@student.hpi.uni-potsdam.de

Abstract. Business process models are abstractions of concrete oper-
ational procedures that occur in the daily business of organizations.
Typically one model is insufficient to describe one business process. For
instance, a detailed technical model may enable automated process execu-
tion, while a more abstract model supports decision making and process
monitoring by business users. Thereafter, multiple models capturing one
process at various levels of abstraction often coexist. While the relations
between such models are studied, little is known about the relations be-
tween process instances and abstract models.

In this paper we show how the state of an abstract activity can be
calculated from the states of related, detailed process activities as they
happen. The approach uses activity state propagation. With state unique-
ness and state transition correctness we introduce formal properties that
improve the understanding of state propagation. Algorithms to check
these properties are devised. Finally, we use behavioral profiles to iden-
tify and classify behavioral inconsistencies in abstract process models
that might occur, once activity state propagation is used.

1 Introduction

Recent years have seen an increasing interest in modeling business processes
to better understand and improve working procedures in organizations and to
provide a blue print for process implementation. With an increasing complexity
of the processes and their IT implementations, technical process models become
intricate. Business users can hardly grasp and analyze such exhaustive models.
For instance, monitoring the state of a process instance challenges a manager,
once a model enriched with technicalities is used. To support business users, less
detailed models are created. As an outcome, one process is typically formalized
by several models belonging to various levels of abstraction.

While methods for derivation of abstract process models from detailed ones
are well understood, e.g., see [4,5,10,11,14,17], little is known about the relations
between process instances and abstract process models. Meanwhile, this knowl-
edge is essential for such tasks as monitoring of process instances by means of
abstract models. Only a small share of the named approaches discusses the role
of process instances [4,14]. However, even these endeavors have gaps and limita-
tions motivating the current research. This paper assumes that each activity of

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 16–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

State Propagation in Abstracted Business Processes 17

an abstract process model is refined by a group of activities in a detailed model,
yet each activity of the detailed model belongs to some group. Motivated by
non-hierarchical activity refinement [4,12,21], we are liberal in terms of activity
group definition. For instance, activities of one group can be arbitrary spread
over the model. We study acyclic process models.

This paper clarifies the relations between process instances and abstract pro-
cess models. To achieve this we introduce an approach to derive the state of an
activity in the abstract model from the states of concrete process activities, as
they happen. The approach is based on activity instance state propagation that
determines the state of an abstract activity by the states of their detailed coun-
terparts. We identify two formal properties for state propagation approaches—
state uniqueness and state transition correctness. Further, we develop methods
for validation of these properties. The properties should be considered during the
design of any state propagation approach and can be validated by the developed
algorithms. Finally, we investigate behavioral inconsistencies that might result
from state propagation.

The paper is structured as follows. Section 2 motivates the work and iden-
tifies the main challenges. In Section 3 we elaborate on the state propagation,
its properties and property validation methods. Further, Section 4 explains be-
havioral inconsistencies observable during state propagation. We position the
contribution of this paper against the related work in Section 5 and conclude
with Section 6.

2 Motivating Example and Research Challenges

This section provides further insights into the problem addressed by the current
study. We start with a motivating example. Further, we informally outline our
approach and identify the main research challenges.

Various stakeholders use models with different level of details about a given
business process. In this setting several models are created for one process. Con-
sider the example in Fig. 1. Model m describes a business process, where a
forecast request is processed. Once an email with a forecast request is received,
a request to collect the required data is sent. The forecast request is registered
and the collected data is awaited. Then, there are two options: either to perform
a full data analysis, or its quick version. The process concludes with a forecast
report creation. Model m contains semantically related activities that are aggre-
gated together into more coarse-grained ones. The groups of related activities
are marked by areas with a dashed border, e.g., group g1 includes Receive email
and Record request. Model ma is a more abstract specification of the forecast
business process. Notice that further we reference the most detailed model as
initial. Each activity group in m corresponds to a high-level activity in ma, e.g.,
g1 corresponds to Receive forecast request. Meanwhile, m′

a is even more abstract:
its activities are refined by the activities of model ma and are further refined
by activities of m. While the forecast process can be enacted using model m,
abstract models ma and m′

a are suitable for monitoring the state of process

18 S. Smirnov, A.Z. Farahani, and M. Weske

g8

g7

g6

Receive
data

Perform
analysis

Perform
simulation Generate

forecast report

Perform quick
data analysis

Consolidate
results

Prepare data for
quick analysis

Prepare data for
full analysis

abstract model, ma

initial model, m

Receive
email

Record
request

Request data
gathering

Perform full
analysis

Perform quick
analysis

Handle
data

Receive
forecast request

Generate
forecast report

Perform data
analysis

Receive
forecast request

Generate
forecast report

g3

g4

abstract model, m'a

g5g1
 g2

Fig. 1. Models capturing business process “Forecast request handling” at different
levels of abstraction

instances. For example, a process participant might leverage model ma, while
the process owner may monitor states of instances by means of m′

a.

 termi-
nated

skipped

runningreadyinit

skip

enable begin terminate

Fig. 2. Activity instance life
cycle

We assume that the state of a process instance
is defined by the states of its activity instances.
The paper adheres to the activity instance life
cycle presented in Fig. 2. When an activity is
created, it is in the init state. We consider pro-
cess models to be acyclic. Hence, once a process
is instantiated, all of its activity instances are
created in state init. The enable state transition

brings the activity into state ready. If an instance is not required, skip transition
brings it to state skipped. The skipped state has to be spread among activities
that are not required. This can be realized by a well established approach of dead
path elimination [13]. From the ready state the activity instance may evolve to
running state by means of transition begin. When the instance completes its
work, terminate transition brings it to the terminated state. The use of one ac-
tivity instance life cycle implies that all activity instances behave according to
this life cycle disregard of the abstraction level of the model an activity belongs
to. Throughout this paper we frequently refer to activity instance states. As
activities at the model level do not have states, we interchangeably and unam-
biguously use terms activity state and activity instance state.

To monitor process instance state by means of an abstract model, one needs
a mechanism establishing the relation between the states of activities in the ab-
stract model and activities of the detailed model. We reference this mechanism
as activity instance state propagation. Consider a group of activities g in model
m and activity x of the abstract model, such that x is refined by activities of
g. State propagation maps the states of instances of activities in g to the state

State Propagation in Abstracted Business Processes 19

of x. One can design various state propagation mechanisms depending on the
use case at hand. However, we identify two formal criteria to be fulfilled by
any state propagation. The first criterion, activity instance state uniqueness, is
motivated by the observation that each activity instance at every point in time
is exactly in one state. Hence, this criterion requires state propagation to be a
surjective mapping: each constellation of instance states in group g must result
exactly one state for x. Second criterion, activity instance state transition cor-
rectness requires state propagation to assure that every activity instance behaves
according to the declared life cycle, neither adding, nor ignoring predefined state
transitions.

In the following section we design a state propagation approach that considers
the activity grouping along with the states of activity instances in the groups.
This state propagation is simple and can be efficiently implemented. However,
this approach does not consider control flow information. Hence, one may observe
behavioral inconsistencies taking place in the abstract model: while the model
control flow prescribes one order of activity execution, state propagation results
contradicting activity instance states. Section 4 elaborates on this phenomenon.

3 Activity Instance State Propagation

This section formalizes state propagation. We start by introducing the concepts
of a process model and process instance. Next, we design the state propaga-
tion method. Further, Section 3.3 proposes the algorithm validating activity
instance state uniqueness, while Section 3.4 elaborates on the algorithm for ac-
tivity instance state transition correctness validation. The role of the algorithms
is twofold. First, they validate the developed state propagation. Second, the
algorithms can be reused for validation of other state propagation methods.

3.1 Preliminaries

Definition 1 (Process Model). A tuple m = (A, G, F, s, e, t) is a process
model , where A is a finite nonempty set of activities, G is a finite set of gateways,
and N = A∪G is a set of nodes with A∩G = ∅. F ⊆ N×N is a flow relation, such
that (N, F) is an acyclic connected graph. The direct predecessors and successors
of a node n ∈ N are denoted, respectively, by •n = {n′ ∈ N |(n′, n) ∈ F} and
n• = {n′ ∈ N |(n, n′) ∈ F}. Then, ∀ a ∈ A : | • a| ≤ 1 ∧ |a • | ≤ 1, while s ∈ A
is the only start activity, such that •s = ∅ ∧ ∀a ∈ A\{s} : | • a| > 0 and e ∈ A
is the only end activity, such that e• = ∅ ∧ ∀a ∈ A\{e} : |a • | > 0. Finally,
t : G → {and, xor} is a mapping that associates each gateway with a type.

The execution semantics of a process model is given by a translation to a Petri
net [1,8]. As the defined process model has exactly one start activity and end
activity the corresponding Petri net is a WF-net. We consider sound process
models, see [2], that can be mapped to free-choice WF-nets [1].

To describe the process instance level, we formalize the activity in-
stance life cycle shown in Fig. 2 as a tuple (S, T , tran, {init},S′).

20 S. Smirnov, A.Z. Farahani, and M. Weske

S = {init, ready, running, terminated, skipped} is a set of activity instance
states, where init is the initial state and S′ = {skipped, terminated} is a set of
final states. T = {enable, begin, skip, terminate} is a set of state transition labels.
The state transition mapping tran : S × T → S, is defined as tran(init, enable)
= ready, tran(ready, begin) = running, tran(running, terminate) = terminated,
tran(ready, skip) = skipped. A process instance is defined as follows.

Definition 2 (Process Instance). Let S be the set of activity instance states.
A tuple i = (m, I, inst, stat) is a process instance, where m = (A, G, F, s, e, t)
is a process model, I is a set of activity instances, inst : A → I is a bijective
mapping that associates an activity with an activity instance, and stat : I → S
is a mapping establishing the relation between an activity instance and its state.

As Definition 1 claims the process model to be acyclic, there is exactly one
activity instance per process model activity, i.e., |I| = |A|. Finally, we formalize
the activity grouping by means of function aggregate.

Definition 3 (Function Aggregate). Let m = (A, G, F, s, e, t) be a pro-
cess model and ma = (Aa, Ga, Fa, sa, ea, ta)—its abstract counterpart. Function
aggregate : Aa → (P(A)\∅) sets a correspondence between one activity in ma

and the set of activities in m.

Definition 4 introduces an auxiliary function stagg mapping a set of activities
to the set of activity instance states observed among the instances of these
activities.

Definition 4 (Function State Aggregate). Let m = (A, G, F, s, e, t) be a
process model and ma = (Aa, Ga, Fa, sa, ea, ta)—the abstract model of the
same process. Function stagg : Aa → (P(S)\∅) is defined as stagg(x) =⋃

∀a∈aggregate(x){stat(inst(a))}, where x ∈ Aa.

Fig. 1 illustrates function aggregate as follows aggregate(Receive forecast request)
= {Receive email, Record request}. In the subsequent examples we denote the
coarse-grained activities as x and y, where x, y ∈ Aa, while a and b are such
activities of the model m, i.e., a, b ∈ A that a ∈ aggregate(x), b ∈ aggregate(y).

3.2 State Propagation

State propagation implies that the state of an activity x in the abstract model
ma is defined by the states of activities aggregate(x) in model m. Consider the
example in Fig. 3, where the instances of Receive email and Record request define
the state of Receive forecast request instance. We develop one possible approach
establishing the relation between activity instance states. To formalize state
propagation we introduce five predicates, each corresponding to one activity
instance state and “responsible” for propagation of this state to an abstract
activity. An argument of a predicate is a nonempty set of states S ⊆ S. Set S
is populated by the states of activity instances observed in the activity group

State Propagation in Abstracted Business Processes 21

aggregate(x), i.e., S = stagg(x). If a predicate evaluates to true, it propagates
the respective state to the instance of x. For example, predicate pru corresponds
to the state running. Given an instance of Receive forecast request and instances
of Receive email and Record request, we evaluate predicate pru against the set
{init, terminated}. If pru evaluates to true, we claim the instance of Receive
forecast request to be running, see Fig. 3. The predicates are defined as follows.

– pin(S) := ∀s ∈ S : s = init
– pre(S) := (∃s′ ∈ S : s′ = ready ∧ ∀s ∈ S : s ∈ {init, ready, skipped}) ∨

(∃s′, s′′ ∈ S : s′ = init ∧ s′′ = skipped ∧ ∀s ∈ S : s ∈ {init, skipped})
– pru(S) := ∃s ∈ S : s = running ∨ (∃s′, s′′ ∈ S : s′ = terminated ∧ s′′ ∈

{init, ready})
– pte(S) := ∃s ∈ S : s = terminated ∧ ∀s′ ∈ S : s′ ∈ {skipped, terminated}
– psk(S) := ∀s ∈ S : s = skipped

abstract model, ma

initial model, m

Receive
email

Record
request

Request data
gathering

Receive
forecast request

g1

[terminated] [running] [init]

[running]

Fig. 3. State propagation
example

We name this set of predicates ps. The predicate de-
sign implies that activity instance state uniqueness
holds. The predicates pin and psk propagate, respec-
tively, states init and skipped, if only initialized or
skipped activities are observed. The predicate pre

propagates state ready containing two conditions.
The first part of its disjunction requires at least one
ready activity, while others can be skipped or initial-
ized. The second part of the disjunction propagates
state ready, if in S exists a skipped activity, i.e., this
activity was in state ready, and there exists an ini-
tialized activity, i.e., that activity will be in state
ready. Predicate pru propagates state running, if 1)

a running activity is observed or 2) in S exists a terminated activity, i.e., this ac-
tivity was in state running and there is an initialized or ready activity, i.e., that
activity can be in state running. The additional conditions of pre and pru assure
that activity instance state transition correctness holds. Finally, pte propagates
state terminated, once each activity of the group is either skipped or terminated.
The five predicates construct activity instance state propagation function defin-
ing the state of activity x instance.

Definition 5 (Activity Instance State Propagation Function). Activity
instance state propagation function stp : P(S) → S maps a set of activity in-
stance states to one activity instance state:

stp(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

init, if pin(S)
ready, if pre(S)
running, if pru(S)
terminated, if pte(S)
skipped, if psk(S).

Let m = (A, G, F, s, e, t) be a process model with its process instance i =
(m, I, inst, stat) and ma = (Aa, Ga, Fa, sa, ea, ta)—the abstract model with

22 S. Smirnov, A.Z. Farahani, and M. Weske

Algorithm 1. Verification of activity instance state uniqueness
1: checkStateUniqueness(Predicate[] ps, LifeCycle lifeCycle)
2: for all S ⊆ lifeCycle.S do
3: if S �= ∅ then
4: propagated = false;
5: for all p in ps do
6: if !propagated then
7: if p(S) then
8: propagated = true;
9: else
10: if p(S) then
11: return false
12: if !propagated then
13: return false
14: return true

process instance ia = (ma, Ia, insta, stata). Then, function stata : Ia → S is
defined as stata(insta(x)) = stp(stagg(x)).

3.3 Activity Instance State Uniqueness

State propagation mechanism maps the states of activity instances of
aggregate(x) to the state of inst(x). Definition 6 formalizes activity instance
state uniqueness property.

Definition 6 (Activity Instance State Uniqueness). Let
(S, T , tran, {init},S′) be an activity instance life cycle. Activity instance
state propagation defined by function stp based on predicates ps fulfills activity
instance state uniqueness iff ∀S ⊆ S exactly one predicate of ps evaluates to
true.

The set of states S is observed within aggregate(x). However, an activity group
is defined by the user and is not known in advance. Hence, it is not efficient
to reason about state uniqueness property explicitly enumerating all activity in-
stance states that occur within activity instance groups. Instead of dealing with
concrete activity instance groups, we introduce activity instance group equiv-
alence classes. For a process instance i = (m, I, inst, st) two activity instance
groups I1, I2 ⊆ I belong to one equivalence class, if in both groups the same
set of activity instance states is observed, i.e., ∀i1 ∈ I1∃i2 ∈ I2 : stat(i1) =
stat(i2) ∧ ∀i2 ∈ I2∃i1 ∈ I1 : stat(i2) = stat(i1). For instance, a pair of activity
instances with states (init, terminated) and an instance triple with states (init,
init, terminated) belong to one class with observed states S = {init, terminated}.
As this classification covers all possible state combinations, the algorithm checks
all cases. We can consider such classes of activity instance groups, since the
predicates make use of existential and universal quantifiers.

Algorithm 1 validates activity instance state uniqueness. The algorithm takes
a set of predicates and an activity instance life cycle as inputs; it returns true,
once the property holds. As the number of equivalence classes is exponential
to the number of states in the activity instance life cycle, the computational
complexity of Algorithm 1 is also exponential.

State Propagation in Abstracted Business Processes 23

Algorithm 2. Validation of activity instance state transition correctness
1: checkStateTransitionCorrectness(Predicate[] ps, LifeCycle lifeCycle)
2: for all p in ps do
3: for all S ⊆ S : p(S) = true do
4: for all s ∈ (S\lifeCycle.S′) do
5: for all t ∈ lifeCycle.T , where tran(s, t) is defined do
6: S′ = S ∪ {tran(s, t)}
7: if stp(S′) �= stp(S) and tran(stp(S), t) �= stp(S′) then
8: return false
9: S′ = S′\{s}
10: if stp(S′) �= stp(S) and tran(stp(S), t) �= stp(S′) then
11: return false
12: return true

3.4 Activity Instance State Transition Correctness

Activity instance state propagation must assure that instances of activities in
abstract models behave according to the predefined life cycle, see Definition 7.

Definition 7 (Activity Instance State Transition Correctness). Let
(S, T , tran, {init},S′) be an activity instance life cycle. Activity instance state
propagation defined by function stp fulfills activity instance state transition
correctness iff ∀S ⊆ S each state transition allowed by tran from ∀s ∈ S
through t ∈ T produces a set S′ = S ∪ {tran(s, t)} such that either stp(S) =
stp(S′) ∨ stp(S) = stp(S′\{s}) or tran(stp(S), t) = stp(S′) ∨ tran(stp(S), t) =
stp(S′\{s}).

Algorithm 2 validates activity instance state transition correctness. Its inputs
are a set of predicates and an activity instance life cycle. It returns true, if state
transitions are correct. The key idea of the algorithm is the observation that an
instance of an activity x in the abstract model changes its state, when one of the
activity instances that refines x changes its state. Hence, the validation considers
all possible state transitions. For each predicate p of ps the algorithm constructs
state sets S ⊆ S, where the predicate evaluates to true (lines 2–3). For instance,
predicate pin has one such set {init}. Then, the validation constructs state set
S′ reachable from S by one state transition of the activity instance life cycle
(lines 4–6 and line 9). In the example S = {init} evolves to {ready} or {init,
ready}. For each of those reachable state sets S′ function stp is evaluated. If
for each S′ the state stp(S′) equals stp(S) or can be reached from stp(S) using
the same state transition as required to reach S′ from S, the state propagation
rules are valid. Algorithm 2 realizes the checks in lines 7 and 10 and reports
correctness in line 12. The algorithm has the running time of O(2|S|).

4 Behavioral Inconsistencies

This section elaborates on the problem of behavioral inconsistencies. We start
with the motivation, then introduce auxiliary formal concepts and define the
notion of behavioral inconsistency. Finally, we classify behavioral inconsistencies.

24 S. Smirnov, A.Z. Farahani, and M. Weske

Receive
data

Prepare data for
quick analysis

Prepare data for
full analysis

abstract model, ma

initial model, m

Receive
email

Record
request

Request data
gathering

Handle
data

Receive
forecast request

g1
 g2

[terminated] [running] [init]
[init]

[init]

[init]

[running] [running]

Fig. 4. Behavioral inconsistency in a process instance for the business process in Fig. 1

4.1 Example

An abstract process model dictates activity execution order. Meanwhile, the
designed state propagation disregards the control flow, but influences the states
of activities in ma. In this setting one can observe behavioral inconsistencies.
Fig. 4 exemplifies a behavioral inconsistency. Activities Receive forecast request
and Handle data are refined with groups g1 and g2, respectively. According to the
state propagation mechanism, once Receive email terminates, Receive forecast
request runs until Record request terminates. While Request data gathering runs,
Handle data is in the state running. According to the state propagation we
observe activities Receive forecast request and Handle data in state running
at the same time. However, model ma prescribes sequential execution of the
activities: Handle data can be executed, once Receive forecast request terminates.
Hence, these states are inconsistent with the control flow of ma.

Behavioral inconsistencies have two reasons. The first reason is activity group-
ing. Consider the example in Fig. 4, where activities in groups g1 and g2 inter-
leave: Receive email precedes Request data gathering and Request data gathering
precedes Record request. The second reason is the loss of activity optionality or
causality in the abstract model. We say that an activity is optional, if there is
such a process trace, where this activity is not observed. Considering the exam-
ple in Fig. 4 Prepare data for full analysis is optional. Activity causality implies
that 1) an order of execution for two activities is given and 2) two activities
appear together in all process executions. One can observe causality relation for
Receive email and Receive data, but not for Receive email and Prepare data for
full analysis. The next section formalizes the notion of behavioral inconsistencies.

4.2 Formalization of Behavioral Inconsistencies

To formalize the discussion of behavioral inconsistencies we exploit the notion
of behavioral profiles [23]. While this discussion can be based on alternative
formalisms, we stick to behavioral profiles, as 1) they can be efficiently com-
puted and 2) there are techniques enabling navigation between process models
of different abstraction levels based on behavioral profiles [17]. To introduce be-
havioral profiles we inspect the set of all traces from s to e for a process model

State Propagation in Abstracted Business Processes 25

m = (A, G, F, s, e, t). The set of complete process traces Wm for m contains lists
of the form s · A∗ · e, where a list captures the activity execution order. To de-
note that an activity a is a part of a complete process trace we write a ∈ w
with w ∈ Wm. Within this set of traces the weak order relation for activities is
defined.

Definition 8 (Weak Order Relation). Let m = (A, G, F, s, e, t) be a process
model, and Wm—its set of traces. The weak order relation
m ⊆ (A×A) contains
all pairs (x, y), where there is a trace w = n1, . . . , nl in Wm with j ∈ {1, . . . , l−1}
and j < k ≤ l for which holds nj = x and nk = y.

Two activities of a process model are in weak order, if there exists a trace in which
one activity occurs after the other. Depending on how weak order relates two
process model activities, we define relations forming the behavioral profile. While
behavioral profiles enable judgment on activity ordering, they do not capture
causality. Following on [24] we make use of auxiliary co-occurrence relation and
causal behavioral profile.

Definition 9 (Behavioral Profile and Causal Behavioral Profile). Let
m = (A, G, F, s, e, t) be a process model and Tm be its set of traces. A pair
(a, b) ∈ (A × A) is in one of the following relations: 1) strict order relation
�m, if a
m b and b �
m a; 2) exclusiveness relation +m, if a �
m b and
b �
m a; 3) interleaving order relation ||m, if a
m b and b
m a. The set of
all three relations is the behavioral profile of m. A pair (a, b) ∈ (A × A) is in
the co-occurrence relation �m iff for all traces σ = n1, . . . , nl in Wm it holds
ni = a, i ∈ {1, . . . , l} implies that ∃j ∈ {1, . . . , l} such that nj = b. Then
{�m, ||m, +m,�m} is the causal behavioral profile of m.

The behavioral profile relations along with the inverse strict order �−1=
{(x, y) ∈ (A × A) | (y, x) ∈ �}, partition the Cartesian product of activities in
one process model. The causality relation holds for a, b ∈ A if a �m b∧ a �m b.

The example in Fig. 4 witnesses that state propagation allows concurrent
activity execution. However, the behavioral profile relations are defined on the
trace level and do not capture concurrency. To formalize the observed behavior of
activities, we introduce relations defined on the process instance level. These re-
lations build on top of causal behavioral profile relations. However, they consider
not traces, but process instances.

We say (x, y) ∈�obs if there is a process instance where x is executed before y,
but no instance, where y is executed before x. Similarly, relation x �−1

obs y means
that there is a process instance where y is executed before x, but no instance,
where x is executed before y. Relation x +obs y holds if there is no instance
where x and y both take place. Relation ||obs corresponds to the existence of 1)
an instance where x is executed before y, 2) an instance where y is executed
before x and 3) an instance where x and y are executed concurrently. Finally,
x �obs y holds if for every instance, where x is executed, y is executed as well.
Then, the behavioral inconsistency can be defined as follows.

26 S. Smirnov, A.Z. Farahani, and M. Weske

Definition 10 (Behavioral Inconsistency). Let m = (A, G, F, s, e, t)
be a process model and i = (m, I, inst, stat)—its instance. ma =
(Aa, Ga, Fa, sa, ea, ta) is the abstract model obtained from m and having
the instance ia = (ma, Ia, insta, stata), where function stata is defined as
stata(insta(x)) = stp(stagg(x)). We say that there is a behavioral inconsistency,
if ∃(x, y) ∈ (Aa ×Aa) for which the causal behavioral profile relations do not co-
incide with the observed behavioral relations: 1) (x, y) ∈�ma ∧(x, y) /∈�obs;
or 2) (x, y) ∈�−1

ma
∧(x, y) /∈�−1

obs; or 3) (x, y) ∈ +ma ∧ (x, y) /∈ +obs; or
4) (x, y) ∈ ||ma ∧ (x, y) /∈ ||obs; or 5) (x, y) ∈�ma ∧(x, y) /∈�obs.

4.3 Classification of Behavioral Inconsistencies

Table 1 classifies behavioral inconsistencies comparing the declared and observed
behavioral constraints for abstract process model activities x and y. A table
row corresponds to behavioral profile relations declared by an abstract model.
Columns capture the observed behavioral relations. A cell of Table 1 describes an
inconsistency between the observed and declared behavioral relations. The table
presents a complete analysis of inconsistencies, due to extensive exploration of
all possible relation combinations.

The “+” sign witnesses no inconsistency since the declared and observed
constraints coincide. We identify one class of activity groups causing no incon-
sistency. Consider a pair of activities x, y ∈ Aa. If ∀(a, b) ∈ aggregate(x) ×
aggregate(y) the same causal behavioral profile relation holds, no behavioral in-
consistency is observed. A prominent example of activity groups that fulfill the
defined requirement are groups resulting from the canonical decomposition of a
process model into single entry single exit fragments, see [19,20].

Every cell marked with “±” symbol corresponds to an inconsistency, where
no contradiction takes place: an observed relation restricts a declared behavioral
relation. Consider, for instance, the behavioral inconsistency, where x||may, while
x �−1

obs y and x �obs y. This inconsistency has no contradiction, as the observed
behavior only restricts the declared one. We identify five classes of behavioral
inconsistencies marked in Table 1 and illustrate them by the examples in Fig. 5.

A: Co-occurrence loss Behavioral inconsistencies of this type take place if
the model declares co-occurrence for an activity pair, while both activities are
observed not in every process instance. The cause of inconsistency is the loss of

Table 1. Classification of behavioral inconsistencies

x �obs y x �−1
obs y x +obs y x||obsy

x �obs y x ��obs y x �obs y x ��obs y

x �ma y
x �ma y + A B B C D
x ��ma y ± + B B C D

x �−1
ma

y
x �ma y B B + A C D
x ��ma y B B ± + C D

x +ma y E E E E + E
x||may ± ± ± ± C +

State Propagation in Abstracted Business Processes 27

abstract model

initial model

g1

a1

b1 c1

g2

y1x1

d1

z1

[running][terminated]

[skipped]

g3

[terminated] [running]

[skipped]

[skipped]

(a) Co-occurrence loss

abstract model

initial model

g4

a2 b2 c2

y2x2

d2

[init][terminated]

g5

[terminated][running]

[terminated] [running]

(b) Inverse order

abstract model

initial model

g7

b3

d3

c3

e3

[running] [init]

[skipped] [skipped]

g6

y3x3

[running][skipped]

(c) Activity loss

b4

abstract model

initial model

g8

a4

y4x4

c4

g9
[running][terminated] [init]

[running] [running]

(d) Order loss

abstract model

initial model

g11

a5

b5

d5

c5

e5g10

x5

y5

[terminated]

[running] [init]

[skipped]

[terminated]

[running]

[skipped]

(e) Exclusiveness loss

Fig. 5. Examples of behavioral inconsistencies: one example per class

information about the causal coupling of an activity pair. The example in
Fig. 5(a) illustrates this inconsistency type. Since activities of group g2 are
skipped, activity y1 is in state skipped as well. However, it cannot be skipped
according to the abstract model control flow.

B: Inverse order. We say that an inverse order inconsistency takes place if
the model prescribes x �ma y (x �−1

ma
y), whilst the user observes x �−1

obs y
(x �obs y). Fig. 5(b) gives an example of such an inconsistency baring its cause:
for each (a, b) ∈ aggregate(x) × aggregate(y) activities a and b have the order
opposite to the order of x and y.

C: Activity loss. Once the process model specifies two activities to appear
within one instance, whereas only one activity is observed within an instance,
activity loss inconsistency takes place. Fig. 5(c) exhibits one example of such an
inconsistency. While activity groups g6 and g7 are exclusive, the corresponding
abstract activities x3 and y3 are in strict order. Accordingly, either x3 or y3 is
observed within each instance.

D: Order loss. For a pair of activities in (inverse) strict order, the user observes
interleaving execution. A behavioral inconsistency of this type is exemplified

28 S. Smirnov, A.Z. Farahani, and M. Weske

in Fig. 5(d). Such inconsistencies have the following roots: 1) aggregate(x) ∩
aggregate(y) �= ∅ or 2) exist a1, a2 ∈ aggregate(x) and b1, b2 ∈ aggregate(y)
such that it holds a1
m b1 and b2
m a2. In Fig. 5(d) activity b2 belongs to
groups g1 and g2. As a consequence, once b2 runs both sequential activities x2

and y2 are running concurrently.

E: Exclusiveness loss. While the model prescribes exclusiveness relation for
x and y, both activities are observed within one instance. These inconsistencies
take place, once in the initial model there exist such a and b that a
m b or
b
m a. Fig. 5(e) exemplifies this inconsistency. According to the abstract model
x3 +ma y3. However, in the presented process instance both x3 and y3 take place.

5 Related Work

We identify two directions of the related work. The first one is the research on
business process model abstraction. The second one is the body of knowledge
discussing similarity of process models.

open

not_running

not_started

suspended

running

closed

completed

terminated

aborted

Fig. 6. Activity instance life cycle
as presented in [14]

Business process model abstraction has
been approached by several authors. The ma-
jority of the solutions consider various as-
pects of model transformation. For instance,
[5,10,11,15,17] focus on the structural aspects
of transformation. Among these papers [17]
enables the most flexible activity grouping.
Several papers study how the groups of se-
mantically related activities can be discovered [6,16]. A few works elaborate on
the relation between process instances and abstract process models, e.g. [4,14].
In [4] Bobrik, Reichert, and Bauer discuss state propagation and associated be-
havioral inconsistencies, but do not use the concept of activity instance life cycle.
[14] suggests state propagation approach that builds on the activity instance life
cycle shown in Fig. 6. In [14] Liu and Shen order three states according to how
“active” they are: not started < suspended < running. The state propagation
rules make use of this order, e.g., if a coarse-grained activity is refined by activi-
ties in one of the open states, the high-level activity is in the most “active” state.
Against this background, consider an example activity pair evolving as follows:
(not started, not started) to (not started, running) to (not started, completed).
According to the rules defined in [14] the high level activity evolves as not started
to running to not started, which contradicts the activity instance life cycle. As we
mentioned above, the majority of works on business process model abstraction
consider only the model level. Meanwhile, the papers that take into account pro-
cess instances have gaps and limitations. For instance, [4,14] motivated us not
only to introduce the state propagation approach, but also to identify formal
properties for such approaches and develop validation algorithms.

The works on similarity of process models can be refined into two substreams.
A series of papers approaches process model similarity analyzing model structure
and labeling information, see [7,21]. These works provide methods to discover

State Propagation in Abstracted Business Processes 29

matching model elements. Several research endeavors analyze behavioral similar-
ity of process models. In particular, [3] introduces several notions of inheritance
and operations on process models preserving the inheritance property. Recently,
Weidlich, Dijkman, and Weske investigated behavioral compatibility of models
capturing one business process [22]. [9] elaborates on process model similarity
considering both model element labeling and model behavior. Considering that
processes are inherently concurrent systems, various notions of behavioral equiv-
alence for concurrent systems can be leveraged to compare the behavior of initial
and abstract process models [18]. The enumerated papers help to compare the
behavior of initial and abstract process models. As such, the notions of behav-
ioral equivalence and behavioral compatibility might give additional insights into
the causes of behavioral inconsistencies, see Section 4, and classify them further.

6 Conclusion and Future Work

Although the relations between models capturing one business process on dif-
ferent levels of abstraction have been thoroughly studied earlier, the relations
between process instances and abstract process models have been barely explored.
The current paper bridged this gap. First, we developed activity instance state
propagation mechanism that allows to describe the process instance state by
means of an abstract process model. Second, we have identified two formal prop-
erties for state propagation and proposed methods for their validation. Finally,
we elaborated on behavioral inconsistencies that can be observed, once the as-
sumed abstraction and state propagation mechanisms are used.

We foresee several directions of the future work. The direct next step is the
extension of the considered model class. As we leverage dead path elimination
to spread activity instance state skipped over not executed activities, the state
propagation approach is limited to acyclic models. Substitution of dead path
elimination with an alternative approach would facilitate handling of cyclic mod-
els. Another direction is the further study of the behavioral inconsistencies and
methods for their resolution. With that respect, it is valuable to integrate control
flow information into state propagation mechanism. Finally, the applications of
the introduced technique call for deep investigation. One direct application of
our approach is business process monitoring [25], where abstract models help
users to follow the progress of running business processes.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using
Petri-Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A.
(eds.) BPM. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

3. van der Aalst, W.M.P., Basten, T.: Life-Cycle Inheritance: A Petri-Net-Based Ap-
proach. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 62–81.
Springer, Heidelberg (1997)

30 S. Smirnov, A.Z. Farahani, and M. Weske

4. Bobrik, R., Reichert, M., Bauer, T.: Parameterizable Views for Process Visual-
ization. Technical Report TR-CTIT-07-37, Centre for Telematics and Information
Technology, University of Twente, Enschede (April 2007)

5. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

6. Di Francescomarino, C., Marchetto, A., Tonella, P.: Cluster-based Modularization
of Processes Recovered from Web Applications. Journal of Software Maintenance
and Evolution: Research and Practice (2010)

7. Dijkman, R.M., Dumas, M., Garćıa-Bañuelos, L.: Graph Matching Algorithms for
Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Pro-
cess Models in BPMN. Information and Software Technology 50(12), 1281–1294
(2008)

9. van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Busi-
ness Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

10. Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data & Knowledge
Engineering 64(2), 419–438 (2008)

11. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining–Adaptive Process Simplifi-
cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

12. Knoepfel, A., Groene, B., Tabeling, P.: Fundamental Modeling Concepts: Effective
Communication of IT Systems. John Wiley & Sons, Ltd. (2005)

13. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR, Upper Saddle River (2000)

14. Liu, D.-R., Shen, M.: Business-to-business Workflow Interoperation based on
Process-Views. Decision Support Systems 38, 399–419 (2004)

15. Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process
Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 229–244. Springer, Heidelberg (2009)

16. Smirnov, S., Dijkman, R.M., Mendling, J., Weske, M.: Meronymy-Based Aggrega-
tion of Activities in Business Process Models. In: Parsons, J., Saeki, M., Shoval, P.,
Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg
(2010)

17. Smirnov, S., Weidlich, M., Mendling, J.: Business Process Model Abstraction Based
on Behavioral Profiles. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 1–16. Springer, Heidelberg (2010)

18. van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Ab-
stract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp.
278–297. Springer, Heidelberg (1990)

19. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008)

20. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow
Analysis for Business Process Models Through SESE Decomposition. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55.
Springer, Heidelberg (2007)

State Propagation in Abstracted Business Processes 31

21. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of
Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

22. Weidlich, M., Dijkman, R., Weske, M.: Deciding Behaviour Compatibility of Com-
plex Correspondences between Process Models. In: Hull, R., Mendling, J., Tai, S.
(eds.) BPM 2010. LNCS, vol. 6336, pp. 78–94. Springer, Heidelberg (2010)

23. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement based
on Behavioural Profiles of Process Models. In: IEEE TSE (2010) (to appear)

24. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient Computation of
Causal Behavioural Profiles Using Structural Decomposition. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 63–83. Springer, Heidelberg
(2010)

25. zur Muehlen, M.: Workflow-based Process Controlling - Foundation, Design and
Application of Workflow-Driven Process Information Systems. PhD thesis, Univer-
sity of Münster (2002)

	State Propagation in Abstracted Business Processes
	Introduction
	Motivating Example and Research Challenges
	Activity Instance State Propagation
	Preliminaries
	State Propagation
	Activity Instance State Uniqueness
	Activity Instance State Transition Correctness

	Behavioral Inconsistencies
	Example
	Formalization of Behavioral Inconsistencies
	Classification of Behavioral Inconsistencies

	Related Work
	Conclusion and Future Work

