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Abstract. Similar entity search is the task of identifying entities that
most closely resemble a given entity (e.g., a person, a document, or an
image). Although many techniques for estimating similarity have been
proposed in the past, little work has been done on the question of which
of the presented techniques are most suitable for a given similarity anal-
ysis task. Knowing the right similarity function is important as the
task is highly domain- and data-dependent. In this paper, we propose
a recommender service that suggests which similarity functions (e.g.,
edit distance or jaccard similarity) should be used for measuring the
similarity between two entities. We introduce the notion of “similarity
function recommendation rule” that captures user knowledge about sim-
ilarity functions and their usage contexts. We also present an incremen-
tal knowledge acquisition technique for building and maintaining a set
of similarity function recommendation rules.

Keywords: Similarity Function, Recommendation, Entity Search, RDR.

1 Introduction

The community portals, such as DBLife, Wikipedia, are widely available for
diverse domains, from scientific data management to end-user communities on
the Web. In a community portal, data from multiple sources are integrated
so that its members can search and query relevant community data. Commu-
nity data typically contains different classes of entity instances, such as persons,
documents, messages, and images, as well as relationships between them, such
as authorBy(person, document), supervisedBy(person, person), and earlyVer-
sionOf(document, document). Each entity instance 1 is described by a set of
attributes (e.g., person has name, title and address).

In this paper, we focus on similar entity search on such community data that
is exposed as data services [7,8]. Unlike keyword based search, in similar entity
search, entities are compared based on the similarity of entity attributes 2 [5,3,15]

1 In this paper we use “entity instance” and “entity” interchangeably.
2 We specify as attributes for short.
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as well as entity relationships 3 [14,1], and a ranked list of entities is returned
based on the degree of similarity.

A main challenge arises from the fact that entities may belong to different
classes with potentially very different characteristics, and contain attributes of
different data types. In such a situation, it is impractical to expect a single
generic similarity function can work well for all attributes [3]. For example, in
Figure 1(a), to measure the similarity between q and m from a discussion forum,
we compare the attribute values individually: Title with Title, Content with
Content, and Size with Size. When using one of the basic similarity functions
(e.g., edit distance) [16,15] for all attributes and combining the scores, we obtain
the final similarity score (0.55). However, the accuracy can be increased to 0.89
(Figure 1(b)) by choosing different similarity functions suited to each attribute.
It is also possible to consider relationships with other entities if they exist, such
as repliedBy(message, person). The need for SES (Similar Entity Search) tasks
is present in many application domains, such as product search, people search,
document search, and data integration in business intelligence [3,20,15].

Brainstorm    Reply as soon as possible please        180

Title Content Size

m

Brainstorming    Please reply as soon as possible     200q

f1: 0.77 f1: 0.56 f1: 0.33

Brainstorm    Reply as soon as possible please        180m

f1: 0.77 f2: 1.0 f3: 0.9

(b) Using different appropriate functions       
 (0.77+1.0+0.9)/3= 0.89

f1: Edit distance,  f2: Jaccard similarity,  f3: Relative distance

Brainstorming   Please reply as soon as possible    200q

(a) Using the same function     
                (0.77+0.56+0.33)/3= 0.55

Fig. 1. Computing similarity between two messages q and m

Existing approaches for similarity analysis can be roughly divided into two
groups. The first group computes attribute similarities using methods such as
jaccard similarity, edit distance, or cosine similarity [16,9,5,21]. The second group
exploits the relationships among entities [14,1] or machine learning-based tech-
niques [4,5,24,23,10] for estimating the similarity of entire entities. For example,
supervised machine learning techniques [5,10,24] train a model using training
data pre-labeled as “matching” or “not matching” and then apply the trained
model to identify entities that refer to the same real-world entity. Some of the
machine learning-based techniques use positive and negative examples to learn
the best combination of basic similarity functions [4,24,23].

While existing techniques have made significant progress, they do not provide
a satisfactory answer to the question of which of the presented techniques should
3 We specify as relationships for short.
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be used for a given SES task. Even a technique that shows good performance
for some data sets can perform poorly on new and different ones [5,15]. In real-
world application domains, as in community portals, we observe that, community
users, especially advanced users like programmers, administrators, and domain
experts, often have valuable knowledge useful for identifying similar entities - the
knowledge about which combination of similarity functions is most appropriate
in which usage contexts. For instance, edit distance function [21] works well
for comparing short strings (e.g., person names or document titles). We believe
that this information is beneficial in terms of reuse and knowledge sharing as
community users would choose similar functions in similar contexts.

Unfortunately, this information is not effectively exploited in existing ap-
proaches when measuring similarity. In this paper, we provide a recommender
service that suggests most appropriate similarity functions for a given SES task
by utilizing the knowledge collected from community users. It should be noted
that our approach is complementary to the machine-learning based techniques in
the sense that it allows adaptive knowledge “learning” over time as the applica-
tion contexts change. Examples of such context changes are: application domain
changes, dataset changes, continuous or periodic updates of datasets, and so on.
In this paper we only consider the similarity of entities that belong to a same
class/category. In particular, we make the following contributions:

– We introduce the notion of similarity function recommendation rules (hence-
forth recommendation rules). The recommendation rules represent the infor-
mation about which similarity functions are considered most appropriate in
which usage contexts (Section 3).

– We propose incremental knowledge acquisition techniques to build and up-
date a set of recommendation rules. The continuous updates of recommenda-
tion rules enable the proposed recommender service to make more fine-tune
recommendation (Selection 4).

– We present an implementation of the recommender service and provide the
experimental results that show the feasibility and effectiveness of our pro-
posed approach (Section 5).

2 Preliminaries

In what follows, we first explain the data model for representing entities and
their relationships. We then describe how to measure the similarity of entities
and present the overall architecture of the proposed recommender service.

2.1 Community Data Graph

We use a graph-based model, named “Community Data Graph”, to represent
entities and their relationships. We model the community data as a set of en-
tities E = {E1, E2, ..., En} and a set of relationships R = {R1, R2, ..., Rn},
where each Ei/Ri is an entity or a relationship category. Each entity cate-
gory Ei (e.g., Person) has a set of entity instances (e.g., John and Alice).



222 S.H. Ryu et al.

Each relationship Ri (e.g., authorBy) has a set of relationship instances (e.g.,
authorByJohn firstDraft.doc

4). Each entity/relationship instance consists of a set
of attributes A = {A1, A2, ..., Am} and is denoted as ei or ri.
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Fig. 2. Example excerpt of community data graph

Figure 2 shows a snapshot of a community data graph for an education com-
munity (called courseWiki)5. In courseWiki, the community users, such as su-
pervisors, tutors, students, administrators, and even outside collaborators, could
collaboratively work with each other and share their knowledge and experiences
during the course. The courseWiki community data comes with a heterogeneous
set of entities: project specifications (in Microsoft Word documents), wiki pages,
emails exchanged, project reports (in PDF documents), and images/diagrams.
In the graph, the nodes denote entity categories/instances and the edges denote
relationships between them. For example, John and Alice are student instances
of Student category. They can be also associated with a set of attributes, such
as id 100 and email address john@unsw. The category Student denotes the col-
lection of all students managed in the courseWiki community.

Definition 1. (Community Data graph)
A community data graph is a direct labeled graph G= < V, Lv, Le, E >, where
V is a set of nodes, Lv is a set of node labels, Le is a set of edge labels and E
⊆ V 2 × Le is a set of labeled edges. Each node represents an entity category or
instance and each edge represents a relationship between two entities. Here, a
node ∈ V consists of a set of attributes {A1, A2, ..., An}.
2.2 Measuring Entity Similarity

We now describe how to estimate the similarity between two entities:
Attribute-based Similarity: To measure the similarity between a query
entity q and a same category of entity ei, we compute the similarity between
4 This can be specified as authorBy for short when there is no ambiguity.
5 This is constructed from a project-based course “e-Enterprise Projects” in our school.
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individual attributes and then produce the weighted similarity between the
entities. In certain cases, a weight may be associated with each attribute,
depending on its importance. Formally, we define the combined score basic sim
as follows:

- basic sim(q, ei) =
∑N

k=1 αkfk(q.Ak, ei.Ak)

where fk is the basic function being applied to a pair of attributes, αk is its
weight, and N is the number of basic functions.

Relationship-based Similarity: Apart from the attribute-based similarity, we
exploit semantic relationships (called co-occurrence) between entities [14,1]. For
example, two persons are likely to be similar (related), if they have co-occurring
authorBy relationships. Like atomic attributes, relationships may have weights
according to their importance (e.g., frequency of relationships). We adopt the
weighted Jaccard distance to compute the co-occurrence coefficient between
two entities. The weighted Jaccard distance is defined as:

- co sim(q, ei) =
∑

r∈A∩B wr∑
r∈A∪B wr

where A and B are the sets of relationships which the query entity q and the
entity ei have respectively, and wr is a weight assigned to the relationship.
Composition-based Similarity: If entities have internal structures, such as
XML schemas or process models, the entity similarity can be measured based
on a complex process. Such a process is a directed graph that specifies the
execution flow of several components [22]. The components could be a similarity
estimator, a score combiner which computes a combined similarity value
from results of other estimators, or a filter that identifies the most similar at-
tribute pairs. We can integrate these measurement methods in our recommender
service, if there is a need for finding correspondences between complex structures.

2.3 Overall Architecture

This subsection gives an overview of the recommender service architecture and
describe components that support the concepts presented in our approach. The
proposed architecture consists of the following three layers (see Figure 3).
Data service layer: To provide uniform and high-level data access to the data
repository, we expose CoreDB [2] as a service by leveraging the data service
technology [7,8]. CoreDB stores entities and their relationships extracted from
community data sources, based on the entity-relationship model. For instance,
Person entity table has attributes name, role, and interest, and stores all
person entity instances. The data service layer also provides a set of CoreDB
access open APIs [2], including basic CRUD operations, keyword search, rule
creation, similarity functions recommendation, and so on.

Recommender service layer: This layer is composed of three main
components: function recommender, similarity computation and rule manager
components. The function recommender component takes as input q and
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Fig. 3. Overall architecture

recommends as output a combination of similarity functions. This component
accesses the recommendation rules managed in CoreDB via the open APIs.
The similarity computation component asks users for a threshold (between
0.0 and 1.0) and computes the similarity scores using the recommended
similarity functions. This component relies on multiple similarity functions
that are represented as entities in CoreDB. The component returns and ranks
the entities similar to q based on their final scores. The rule manager allows
users to create and maintain recommendation rules. If a user is not satisfied
with the returned result by the similarity computation component, she can
create another recommendation rule using this rule manager. Then, she can
immediately re-apply the newly added rule to get a different result.
User interface layer: At this layer, the community data accessible from
data services is represented and visualized as a graph based on the mindmap
metaphor [6] (the details will be described in Section 5.2). This layer is also
responsible for providing various functionalities to enable users to intuitively
browse and query the community data using the graph browser as well as to
incrementally build recommendation rules using the rule editor.

3 Exploiting Community User Knowledge

In this section, we describe the notion of recommendation rules and their
management. The rules represent user knowledge about similarity functions
and their usage contexts. Then, we show how the recommender service makes
recommendations on which functions to select, using the recommendation rules.

3.1 Recommendation Rule Representation Model

Community users, especially advanced users, often have their knowledge about
the characteristics of individual similarity functions, such as usage purposes or
function-specific parameters. For example, edit distance function [21] is ex-
pensive or less accurate for measuring the similarity between long strings (e.g.,
document or message contents). It is likely to be suitable for comparing short
strings (e.g., document titles), capturing typographical errors or abbreviations.
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Table 1. Examples of recommendation rules

RuleID Usage Context Function Combination CS∗∗

1 C∗= “Message” ∧ exist(title) ∧ exist(author) {(title, EditDistance), (author, Jaro)} 1

2 C= “Person” ∧ exist(interest) ∧ exist(role) {(interest, Jaccard), (role, EditDistance)} 1

3 C= “Person” ∧ hasRelationship(sentEmail) {(sentEmail, co-occurrence)} 2

4 C= “Product” ∧ exist(name) ∧ price ≤ 1500 {(name, Jaccard), (price, RelativeDistance)} 1

* C stands for Category, ** Confidence Score (see Section 3.3)

As another example, relative distance [3] is good for comparing numerical
values, like weight and price, and Hamming distance [15] is used mainly for
numerical fixed values, like postcode and SSN.

Thus, the effective leverage of this kind of knowledge is important to
improve the accuracy of SES. In addition, community users may know which
attributes/relationships play an important role in identifying similar entities.
As an example, if a task is to find similar persons for a given person, attribute
interest might be more useful than attributes id. To capture such user knowl-
edge, we propose recommendation rules that consist of two components: usage
context and function combination.

Usage context. Briefly stated, a usage context refers to the constraints that q
should satisfy before the recommender service suggests similarity functions. It
consists of a conjunction of predicates, each of which is specified by a unary or
binary comparison involving entity’s categories, attributes or its relationships,
and constants. For example, in Table 1, the usage context of RuleID 1 states
that q should belong to a Message category and have two attributes title and
author. Table 2 shows some of operations that are used for specifying such
usage contexts.

Function combination. For each usage context, the recommendation rule is
associated with a list of pairs (attribute/relationship, similarity function) that
indicates which functions are most appropriate to which attributes/relationships.
For instance, in Table 1, the function combination of RuleID 1 suggests that
the edit distance function, good for short string comparison, should be used
to compare title and the Jaro function, good for name similarity detection,
should be used for author.

Table 2. Usage Context Operations

- exist(ak) checks whether q has an attribute ak.
- valueOf(ak) returns the value of an an attribute ak.
- hasRelationship(rk) checks whether q has a relationship rk

- length(ak) returns the length of ak attribute value.
- contain(ak, V) checks whether attribute ak contains the value V.
- belongTo(ak, C) checks whether the value of ak belongs to a semantic concept C.

Definition 2. (Recommendation Rule)
Let Ce be a set of entity categories supported in the recommender service. Rec-
ommendation rule is of the form: q ∈ Ei, P (q.A1, ..., q.An) → ∑N

k=1 fk(q.Ak)
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where P is a conjunction of predicates on the entity category and attributes A1,
..., Ak of q. Each predicate is either of the form q.category = Ci ∈ Ce or unaryop
(q.attribute/relationship) or q.attribute op value where op ∈ {=, <, >,≤,≥, �=
, contain, belongTo}, unaryop ∈ {exist, valueOf, hasRelationship, length}.

3.2 Matching Recommendation Rules

When a user selects a certain entity as q, the recommender service identifies
the potential combinations of functions being applicable to q. For this, the
service provides an operation called recommendFunctions(), which takes as
input q and produces as output a set of function recommendations that can be
potentially applied to perform the corresponding SES task. The recommender
service matches q against the usage contexts of a set of recommendation rules.
The matching process relies on subsumption (containment) or equivalence
between q and entity contexts. For example, given a query entity q: (category:
Student, name: John, interest: programming, role: undergraduate student ),
the usage context of RuleID 2 is matched as the Student category is a sub-type
of Person category (in Figure 2). The function combination of the matched
recommendation rule is returned to the user. If no combination is found to be
appropriate to q, the user might create a new recommendation rule with the
help of rule editor.

3.3 Ranking Recommendation Rules

In our recommender service, each recommendation rule can be associated with
a positive value, called Confidence Score (CS). The score indicates the level
of credence in a corresponding recommendation rule. In fact, a CS reflects the
user satisfaction level for the function combination in a recommendation rule.
To obtain this score, we introduce a user feedback loop at the end of each SES
task. After the user has applied the recommended function combination and
examined the returned results by them, she can express the level of satisfaction
with the recommendation rule (hence the function combination) by giving a
score. The CS value for a recommendation rule is accumulated overtime, each
positive feedback rating adding 1. The CS values are then used to show users
a ranked list of the recommendation rules when there are more than one rule
matching q. If no CS value is specified, we assume cs = 1. Also, completing the
feedback loops is optional to users.

Definition 3. (Ranked recommendation rule)
A ranked recommendation rule gives a confidence score cs ≥ 1 to a recommen-
dation rule definition: q ∈ Ei, P (q.A1, ..., q.An) cs−→ ∑N

k=1 fk(q.Ak).

4 Incremental Knowledge Acquisition

In this section, we present how to incrementally obtain the recommendation
rules from community users.
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4.1 Knowledge Acquisition Method: Ripple Down Rule

To incrementally build and update recommendation rules, we adopt the knowl-
edge acquisition method called Ripple Down Rule (RDR) [12] for several rea-
sons: (i) RDR provides a simple and easy approach to knowledge acquisition and
maintenance [18]; (ii) RDR works incrementally, in that users can start with an
empty rule base and gradually add rules while processing new example cases.

In RDR, a rule has two components a condition and a conclusion: if [condition]
then [conclusion]. Hence, the condition part of an RDR rule is mapped to the
usage context in our recommendation rule, and the conclusion part to the func-
tion combination (with a confidence score). RDR organizes our recommendation
rules as a tree structure. For example, Figure 4 shows an example rule tree, in
which the rules are named rule 0, rule 1, rule 2, etc., according to their creation
order. Rule 0 is the default root rule that is always fired for every query entity q.
The rules underneath rule 0 are more specialized rules created by modifying rule
conditions. The rule inference in RDR starts from the root node and traverses
the tree, until there are no more children to evaluate. The conditions of nodes
are examined as a depth-first traversal, which means the traversal result is the
conclusion node whose condition is lastly satisfied.

4.2 Acquiring Knowledge through Different Rule Types

In what follows, we describe the incremental knowledge acquisition process
using different rule types.

Rule3

String type                  Jaccard
Numeric type              Relative distance
Sequence type            Simth-Watermann
Structure type             Graph edit distance
Phonetic code             Soundex
Date type                    Date function
Time type                   Time function

Rule1
Rule2

IF
    C = Document
Then 
    Name          Jaccard

Rule0

IF  exist(Body)
Then 
    Name         Edit distance
    Body          TFIDF
    CS= 3

IF C = Person AND   
         hasRelationship(authorBy)   
Then 
    authorBy          co-occurrence

IF  valueOf(interest) 
          belongTo BPM concept
Then 
    Interest         Jaccard + Abbreviation
    Role              Edit distance 

Rule9

Rule7

Rule4

IF  C = Message AND exist(Title)
           AND exist(Author)
Then 
    Title             Jaccard
    Author         Jaro

IF 
    
Then 
    Interest          Jaccard  
    Role               Edit distance   
    CS= 5

Rule5 Rule8

IF  exist(Content)
Then 
    Title                 Edit distance
    Content            Cosine
    CS= 3

IF exist(Description)
Then 
    Description          Jaccard

Rule6

Rule10

IF  exist(Size)
Then 
    Title                 Edit distance
    Content            Cosine
    Size                  Relative distance
    CS= 7

IF  C = Person AND exist(Role) 
            AND exist(Interest)
Then 
    Interest          Jaccard  
    Role              Jaccard 
    CS= 2

Fig. 4. Example RDR Tree: we omit duplicate conditions between parent and children
rules for simplicity. If a confidence score (cs) is not available in the rule conclusion,
cs= 1 is assumed. σ denotes the condition is the same as the parent one.
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Attribute Type-Based Rule (Default Rule). The default rule contains no
condition (i.e., it is always satisfied) and its conclusion consists of a list of pairs
(attribute type, name of the suitable function). This rule only checks the types
of attributes, meaning for example, all string-type attributes will be assigned
the same string function (i.e., jaccard similarity function).

Example 1. In Figure 4, Rule 0 specifies that Jaccard function is applied to
string type attributes, RelativeDistance to numeric, SimithWatermann to
attributes having sequence (e.g., biological sequence), and so on.

Key Attribute-based Rule. We note that there are some situations where
choosing a few key attributes in an entity for comparison, rather than looking
at all available attributes, may produce better results. For example, for Person
entities, the attribute such as id may not be significant in determining similarity,
but interest or role may provide a better clue. Using this rule, the user can
identify any key attributes in an entity that she wants to compare. There are
two possibilities in defining this rule:

Choosing key attributes only: the user identifies the attributes that play an im-
portant role for assessing the similarity without degrading the search accuracy.
In this case, each attribute is paired with the default similarity function based
on its type.

Example 2. Rule 1: q ∈ Ei, category= “Person” ∧ exist(interest) ∧ exist(role)
→ fJaccard(interest) ∧ fJaccard(role).

Choosing key attributes and functions: In this case, the user can choose key
attributes as well as their similarity functions. Note that this may happen
incrementally if the user determines later that a different function may produce
better results. For example, in Rule 5, after looking at the results from Rule
1, she may realise that edit distance is better suited for role attribute,
because the character-based function (edit distance) works better than the
token-based function (jaccard) in detecting the similarity between strings
including abbreviations, e.g., Assoc. Professor vs. Associate Professor.

Relationship-based Rule. Entity relationships can also contribute to
analysing similarity. Out of all relationships linked with q, this rule allows the
user to examine co-occurring ones only. Further, the user can specify the co-
occurring relationships that are perceived more important. For example, the
following example finds persons who have co-occurring relationship authorBy.

Example 3. Rule 3: q ∈ Ei, category= “Person” ∧ hasRelationship(authorBy)
→ fco−occurrence(authorBy)

Lexical Relation-based Rule. This rule type takes into consideration the
values of attributes where certain keywords/phrases or semantic information may
play a role in determining similarity. For instance, consider two strings “BPM”
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and “Business Process Modelling and Management” of interest attribute in
person entities. When normal string comparison function may fail to see the
similarity, it is certainly desirable to be able to match the two as ‘similar’.

To handle the semantic relationships between attribute values, this rule
allows the users to specify lexical relations between words (e.g., synonym,
hyponym) or abbreviation. We use synonym and abbreviation tables, including
domain-specific terms. An example of the abbreviation table entry is: (BPM:
Business Processes, Business Process Management, Business Process Modelling
and Management)), which takes the format of (concept name: list of terms).
For instance, Rule 9 states that if q has interest attribute and its value
belongs to concept name “BPM”, then, for interest, apply fJaccard function in
comparing syntactical differences and use abbreviation function in comparing
semantic differences.

Example 4. Rule 9: q ∈ Ei, category= “Person” ∧ exist(interest) ∧ exist(role)
∧ interest belongTo BPM → (fJaccard(interest) ∨ fAbbreviation(interest)) ∧
fEditDistance(role).

5 Implementation, Usage, and Evaluation

This section describes our prototype implementation, usage scenario and exper-
iment results.

5.1 Implementation

The prototype has been implemented using Java, J2EE technologies, and some
generic services from existing Web services environments to implement specific
functionalities of the services proposed in our approach. We extract coureWiki
community data from multiple data sources and store the data into CoreDB.
For this, we have implemented a number of wrappers in which each wrapper has
a particular purpose and pulls the data from its original location to populate
the community data graph. For instance, a special wrapper would analyse email
exchange logs and build relationships such as sentEmail, repliedBy. We expose
CoreDB as data services [7,8] that allow uniform data access via open APIs [2].
We have developed the recommender service supporting our proposed approach,
which consists of three components: the function recommender, similarity com-
putation, and rule manager components (Section 2.3). Table 3 shows a set of
operations that such components can invoke to perform their specific function-
alities. We also present a graphical user interface (Section 5.2) that allows users
to interact with the recommender and data services.

5.2 Usage Scenario of the Recommender Service

We propose the following scenario as an illustration. Figure 5 presents a
screenshot of the graph browser. Initially, in the visualization area, an entity
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Table 3. The list of operations invoked by recommender service components

Function recommender/rule manager operations
- recommendFunctions(q) returns a list of similarity functions according to q ’ context.
- createRule(c, d) creates a rule with a condition c and a conclusion d.
- refineRule(r, c, d) refines a rule r with a condition c and a conclusion d.
- rankRule(r) increases the confidence score of a rule r by 1.

Similarity computation operations
- computeSim(ak,fi) computes similarity scores by applying function fi to attribute ak.
- aggregateSim(q, ei) aggregates similarity values between individual attributes of q
and ei and computes a final score.

node (e.g., root entity) serving as a center node is displayed. The center node
is directly connected with other nodes denoting entity categories or instances.
A user can choose one of entity instances as q. The top left panel is used for
navigating the graph according to the entity categories and the bottom left
panel displays the details of the selected query entity (if any). After selecting q,
she asks the recommender service for similarity functions. The service returns
function combinations according to the recommendation rules that q satisfies.
One recommendation rule example is:

– IF C= Person and exist(interest) and exist(role)
THEN interest → Jaccard, role → Edit distance

Next, the user chooses one of function combinations, the similarity computation
component calculates the similarity scores between q and the other entities, using
the recommended functions, and then returns a list of similar entities. The right
top panel shows the list of returned entities and the right bottom panel shows
the details of a returned entity selected by the user. Here, the user can examine
why the selected entity is similar to q.

Fig. 5. Usage scenario of recommender service: the service returns entities similar to q
using recommended functions
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5.3 Evaluation

We now present the evaluation results that show how the recommender service
can be effectively utilized in the courseWiki domain.

Dataset: We uses the dataset from our project-based course for the courseWiki
community. The dataset is a collection of different categories of entities: 210
persons, 684 messages, 942 documents, 580 issues and 22874 events. For the
evaluation, we applied our system on three categories of entities (i.e., Person,
Message, and Document).

Evaluation Metrics and Methodology: We measured the overall performance with
accuracy. Accuracy is the number of correctly identified similar pairs divided
by the total number of identified similar pairs. Whether returned entities are
similar to q is dependent on users’ subjective decision. Therefore, we decided to
manually pre-classify the entities into different groups (i.e., within a group, the
entities are considered similar). All entities in one group is pre-labelled with the
same groupID. For example, for Person entities, we grouped them according to
their project/assignment work groups. Document entities were grouped based on
their revision history.

Starting with a default rule, we began the knowledge acquisition process by
looking at the different categories of entities in chronological order (instance
creation date). For example, for 210 people entity instances, the acquisition
process is defined as follows, note that this process is repeated for every entity
instance: (i) an entity instance is selected as q, (ii) rules are applied, (iii) we
examine the result6, if the result is satisfactory (i.e., the groupID of q is the
same as that of the returned entity), the rule is untouched, if not, the existing
rule is refined (e.g., changing the function). The above steps are repeated until
all entity instances are considered as q.
Results: Figure 6 shows that overall, across all categories, the accuracy of our
system improves overtime as the number of entity instances being processed is
increased. This is because there are more (refined) rules created. Some other
observations we made about different categories are: (i) for Person entities, the
relationships played an important role in improving the accuracy. As shown in
Figure 6, with only about 60 number of entity instances considered, the system
already performed at accuracy 0.93 (in this case, the number of created rules
is 4). (ii) for Document entities, knowing the right function to use for a certain
attribute was a particularly important factor. For example, comparing title
attribute worked better with character-based string match function.

Discussion: It should be noted that the number of rules created depends on how
well the users know about the characteristics of the dataset and available func-
tions. In addition, the RDR approach for knowledge acquisition enables domain
experts or users to build rules rapidly since there is no need for understanding
the knowledge base as a whole or its overall structure [13].

6 In fact, we consider the entity returned with the highest similarity score.



232 S.H. Ryu et al.

Person              Message Document

Fig. 6. Results of Evaluations

6 Related Work

Our recommender service is related to the efforts in basic similarity functions
and record linkage.

Basic Similarity Functions. In this group of work, individual attributes
are considered for similarity analysis. Many different basic functions for
capturing similarity have been proposed in the last four decades [16,9,5,21].
For example, they are used for comparing strings (e.g., edit distance and its
variations, jaccard similarity, and tf-idf based cosine functions), for numeric
values (e.g., Hamming distance and relative distance), for phonetic encoding
(e.g., Soundex and NYSIIS), for images (e.g., Earth Mover Distance), for
assessing structural similarity (e.g., graph edit distance and similarity flooding),
and so on. In contrast to those techniques, our work focuses on determining
which similarity functions are most appropriate for a given similarity search task.

Record Linkage. The record linkage problem has been investigated in research
communities under multiple names, such as duplicate record detection, record
matching, and instance identification. The approaches can be broadly divided
into three categories: supervised methods, unsupervised methods, rule-based
methods. The supervised methods [5,24,11] train a model using training data
pre-labeled as “match” or “no match” and later apply the model to identify
records that refer to the same real-world object. The unsupervised methods [25]
employ the Expectation Maximum (EM) algorithm to measure the importance
of different elements in feature vectors. The rule-based approaches [19,17]
enable domain experts to specify matching rules that define whether two
records are the same or not. However, our work differs in that (i) we do
not rely on the existence of training data. (ii) our recommender service
helps users incrementally define recommendation rules and enables them to
choose similarity functions suitable for the domain-specific similarity search task.
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7 Conclusion and Future Work

In this paper, we presented a recommender service that suggests most appro-
priate similarity functions, which can be used when comparing two entities.
Particularly, we introduced similarity function recommendation rules and their
types. We also proposed an incremental knowledge acquisition process to build
and manage the rules. In future work, we plan to investigate how to extend our
approach to support large scale of SES tasks, such as identifying similar enti-
ties from millions of entities, using some high performance computing techniques.
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