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Abstract. We propose a novel framework to automatically discover ser-
vice communities that group together related services in a diverse and
large scale service space. Community discovery is a key enabler to ad-
dress a set of fundamental issues in service computing, which include
service discovery, service composition, and quality-based service selec-
tion. The standard Web service description language, WSDL, primarily
describes a service from the syntactic perspective and rarely provides
rich service descriptions. This hinders the direct application of tradi-
tional document clustering approaches. In order to attack this central
challenge, the proposed framework applies Non-negative Matrix Factor-
ization (NMF) to the WSDL corpus for service community discovery.
NMF has demonstrated its effectiveness in clustering high-dimensional
sparse data while offering intuitive interpretability of the clustering re-
sult. NMF-based community discovery is further augmented via semantic
extensions of the WSDL descriptions. The extended semantics are first
computed based on the information sources outside the WSDL corpus.
They are then seamlessly integrated with NMF, which makes the seman-
tic extensions fit in the context of the original services. The experiments
on real world Web services are presented to show the effectiveness of the
proposed framework.

1 Introduction

Web services are increasingly being adopted to access data and applications
across the Web [I9]. This has been largely the result of the huge investment in
Web application development and the many standardization efforts to describe,
advertise, discover, and invoke Web services [3]. The emergence of cloud infras-
tructure also offers a powerful yet economical platform that greatly facilitates
the development and deployment of a large number of Web services. Based on
the most recent statistics, there are 28,593 Web services being provided by 7,728
distinct providers over the world and these numbers keep increasing in a fast
rate [1. Despite the abundance of various supporting technologies to facilitate
the access to these Web services, there currently lacks a meaningful organization
of the large and diverse Web service space. Most current Web services exist on
the Web in a disorganized manner, which poses significant challenges for users
to fully leverage the wealthy computing resources offered by these services.

! http://webservices.seekda.com/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 18852637 2011.
© Springer-Verlag Berlin Heidelberg 2011



Service Community Discovery from the WSDL Corpus 189

Discovery of service communities that group together related services is a key
enabler to address a set of fundamental issues in service computing that include
service discovery, service composition, and quality based service selection:

— Service discovery: Searching a service with a desired functionality can be
performed solely within the service communities that offer relevant function-
alities. This not only increases the searching accuracy but also significantly
reduces the searching time because services from irrelevant communities are
directly filtered out.

— Service composition: Grouping together relevant services into commu-
nities facilitates the discovery of potentially composable services. Service
composition can be (semi-)automated in such a controlled environment to
generate value-added composite services.

— Service selection: As competing Web services that offer “similar” function-
alities will be categorized into the same service communities, service users are
provided with a one stop shop to get the service with required functionality
and the best desired quality.

Existing efforts in constructing service communities can be categorized into ei-
ther top-down or bottom-up approaches. A top-down approach usually starts
with a set of predefined template services and bootstraps the communities by
grouping together the related template services. It then relies on the services to
register to the corresponding service communities based on the similarity with
the template services. A top-down strategy may only be applicable to a limited
number of Web services (e.g., within an organization), where a centralized con-
trol on the services can be enforced. Unfortunately, when a large scale of Web
services from an open environment (e.g., the Web) are considered, the top-down
strategy presents key challenges. One the one hand, as Web services are expected
to be autonomous (i.e., provided by independent service providers) and a priori
unknown, it is infeasible to predefine the template services that match the func-
tionalities of these services. On the other hand, it is also unreasonable to rely on
the independent service providers to register their services with the predefined
service communities.

Bottom-up approaches directly infer service communities from the Web ser-
vice descriptions. Most existing Web services are described using the standard
Web service description language, WSDL. However, WSDL primarily describes
a service from the syntactic perspective and rarely provides rich service descrip-
tions [7]. This hinders the direct application of traditional document clustering
approaches. Some recent efforts have been devoted to break the limitations of
WSDL for improving the accuracy of service search and community discovery.
These approaches can be divided into two categories, both of which, however,
suffer some major issues.

— The first category aims to fully exploit the information carried by the
WSDL service descriptions [7US[T3/12]. For example, a key premise behind
the Woogle Web service search engine is that terms that co-occur frequently
tend to share the same concept [7]. Nevertheless, WSDL descriptions usually
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come with very limited number of terms. Hence, semantically similar terms
(e.g., car and vehicle) will have a slim chance to co-occur in a WSDL corpus
and thus be deemed as irrelevant.

— The second category, on the other hand, explores external information
sources, such as WordNet, Wikipedia, and search engines, to extend WSDL
with rich semantics [ITJ2]. However, the external semantic extensions may
not fit into the context of the original services. For example, “apple” means
different things for a computer hardware service and an online grocery store
service. In this regard, the semantic extensions are useful only when they can
be leveraged in the context of the original service.

We propose a novel framework to discover service communities that group to-
gether related services from diverse and large scale Web services. We adopt
the bottom-up strategy so that the communities can be automatically dis-
covered from the WSDL corpus. In order to attack the central challenges as
highlighted above, the proposed framework exploits Non-negative Matrix Fac-
torization (NMF) as a powerful tool for service community discovery. NMF-based
community discovery is further augmented via semantic extensions of the WSDL
descriptions. The key contributions of the proposed framework are summa-
rized as follows.

Community Discovery via NMF. Service community discovery is to group to-
gether Web services with similar functionalities. As the functionalities of Web
services are captured by the operations they offer, we construct an m x n matrix
X, where the i-th row represents service s;, the j-th column represents operation
0;, and the entry X(4, j) represents the association between s; and o;. We exploit
an augmented version of NMF, called Non-negative Matrix Tri-Factorization
(NMTF), which factorizes matrix X into three low-rank non-negative matrices:
a service cluster indicator matrix, an operation cluster indicator matrix, and
a service-operation association matrix. NMTF in essence simultaneously clus-
ters both services and operations. In this way, NMTF not only leverages the
WSDL service descriptions but also exploits the “duality” relationship between
services and operations [5J20]. Duality signifies that service clustering is de-
termined by the functionalities of services (i.e., the operations they offer) while
operation clustering is determined by the co-occurrence of operations in function-
ally similar services. Simultaneously clustering services and operations enables
the two clustering processes to guide each other so that the overall clustering
accuracy can be improved. Furthermore, the non-negative constraint of NMTF
yields a natural parts-based representation of the data as it only allows addictive
combinations [I0]. Thus, the clustering result from NMTF is more intuitive to
interpret.

Semantic Ezxtension Integration. NMTF goes beyond the existing service and
community discovery approaches by fully exploiting the information carried by
the WSDL corpus, which includes not only the service descriptions but also the
duality relationship between services and operations. Unfortunately, due to the
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limited descriptive capacity of WSDL, terms that share similar semantics may
be regarded as irrelevant if they do not co-occur in a WSDL file. This will lead to
poor community discovery performance. To attack this challenge, we compute
the semantic extensions of the WSDL corpus by leveraging external informa-
tion sources. We then integrate the semantic extensions into the NMTF process,
where the original service descriptions are used to discover the service communi-
ties. The amalgamation of the semantic extensions and NMTF has the effect of
fitting the extended semantics obtained from external sources into the context
of the original services. This enables the proposed the framework to effectively
leverage the semantic extensions to benefit service community discovery.

Outline: The remainder of the paper is organized as follows. We propose a
framework for service community discovery in Section 2. The cornerstone of
the proposed framework is the usage of Non-negative Matrix Tri-Factorization
(NMTF) to simultaneously cluster services and operations. We present a strat-
egy for computing the semantic extensions of the WSDL corpus in Section 3. We
then elaborate on how to integrate the extended semantics into the community
discovery framework. We evaluate the effectiveness of the proposed service com-
munity discovery framework via real-world Web services in Section 4. We give
an overview of related work in Section 5 and conclude in Section 6.

2 Framework for Service Community Discovery

Service community discovery aims to group together Web services that provide
similar functionalities. Since the functionality of a Web service is reflected by
its operations, it is desirable to evaluate the similarity between services based
on the operations they offer. We consider two types of objects in a Web service
space: services S = {si, ..., S;, } and operations O = {04, ..., 0, }. The association
(or similarity) between a service s and an operation o is denoted by a scalar
value z(s,0). Thus, we can use a m-by-n two dimensional matrix X to denote
the association between each pair of service and operation if we map the row
indices into S and the column indices into O. Each entry X(i,5) € X denotes
the association between service s; and operation o;. We refer to the matrix X
as the service-operation contingency matrix. Once matrix X is constructed, the
similarity between services s; and s; can be computed as the dot-product of the
i*" and j** row vectors of X:

sim(si, Sj) = X(?;, :) : X(], :) (1)

To complete the construction of matrix X, we also need to compute the
association between each pair of service and operation. This can be achieved by
representing both services and operations as N-dimensional term vectors, where
N is the number of distinct terms in the WSDL corpus. More specifically, if
the k' term appears in the description of service s; (or the signature of operation
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Table 1. Notations

Notation Description

S,0 sets of services and operations

Si, 0; the " service and 7" operation

W, the WSDL description of service s;

E(Ws,)  the semantic extension of W,

5p, 0q the p!” service community and ¢** operation community
X, S, R, O matrices

xT the transpose of matrix X

X(%,7) the element at the i*” row and j*" column of matrix X
X(i,:) the i*" row of matrix X

X(:,7) the j*" column of matrix X

0;), the corresponding entry in the term vector will be set as the frequency of
this termP. Otherwise, the corresponding entry is set to 0. Hence, the association
between service s; and operation o; can be computed as the dot-product of their
term vectors. Table [T lists the notations that are used throughout this paper.

2.1 Community Discovery via NMTF

In this section, we propose to use a Non-negative Matrix Tri-Factorization
(NMTF) process to discovery service communities based on the service-operation
contingency matrix X constructed above. In particular, NMTF factorizes X into
three low-rank matrices, i.e.,

X ~ SRO7’ (2)

where S € R™*¥ is the cluster indicator matrix for clustering services (i.e.,
rows of X), O € R"*! is the cluster indicator matrix for clustering operations
(i.e., columns of X), R € R¥*! is the cluster association matrix that captures
the association between service clusters and operation clusters. NMTF in essence
simultaneously clusters S into k disjoint service communities and O into [ disjoint
operation communities. In this way, it effectively exploits the duality between
services and operations to improve the overall community discovery accuracy.
To further demonstrate how NMTF works, we use a collection of real-world
WSDL files obtained from [9]. This dataset consists of over 450 services from
7 different domains. For a clear illustration, we select 5 services, where three
of them are from the eduction domain and two are from the medical domain.
Each service offers one operation and thus there are altogether five operations.
Through some preprocessing of the WSDL files (refer to Section 5 for details),
we identify 33 distinct terms. Hence, all the services and operations can be repre-
sented as 33-dimensional vectors. Then, we construct a 5 X 5 contingency matrix
X where each row represents a service and each column represents an opera-
tion. Applying NMFT on X, we obtain the following result in Equation (@]). It is

2 Other values, such as the TFIDF score [I], can also be used.
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easy to tell that the first three rows of X, which represent three education ser-
vices, are grouped into the first service community §; (because S(i,1) > S(i, 2),
where ¢ € {1,2,3}). The last two rows, representing two medical services are
grouped into the second service community $2 (because S(i,1) < S(i,2), where
i € {4,5}). Similarly, columns 1, 2, and 3, which represent three operations from
the education domain are grouped into the first operation community 6; and the
fourth and fifth operations are grouped into the second operation community 0s.

813220 O 0.3069 0.0000 0.3418 0.0000 T
3 6830 0 4 0.2878 0.0042 0.3206 0.0064
223071 0 4 ~ | 0.3834 0.0017 (307'7633 84288) 0.4274 0.0029
10.9841 612.4139
0 0 042 22 0.0000 0.0824 R [ 0.0000 0.1347
0 6 654257/ o 0.0000 0.7045 s 0.0000 0.5936
®3)

2.2 Result Interpretation

Under NMTF, a row vector X(7,:) € X, which corresponds to the i*" service in
the service space, can be represented as follows:

k

X(i,:) =Y _S(i,p)V(p,:) (4)

p=1

where V = RO’ Each entry V(p,j) captures the association of operation o;
with service community §,. V(p, :), a row vector of V, captures the association of
service community §, with all operations. In this regard, V(p, :) can be regarded
as the centroid vector of service community 5,. Recall that NMTF enforces
a non-negative constraints on matrices S, R, O. In addition, S is the cluster
indicator matrix with S(i,p) € S representing the cluster membership of s; in
service community §, Therefore, a service X(7,:) is essentially formulated as
the additive combination of all the service community centroids weighted by the
memberships of s; in these communities.

2.3 Objective Function

NMTF aims to find three low-rank non-negative matrices to approximate the
original service-operation contingency matrix X. A good approximation requires
that values in SRO” be close to the original values in X. Considering the non-
negative constraints, it is equivalent to solve the following optimization problem:

i X — SROT||? 5
szo,ﬁlzl%,ozo” |7 (5)

where || - || denotes Frobenius norm.
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3 Semantic Extension Integration

The NMTF process proposed in Section 2l aims to fully leverage the WSDL de-
scriptions to discover service communities. Due to the autonomous nature of
Web services, it is common that different WSDL files use distinct terms to de-
scribe similar functionalities (e.g., AirlineReservation and BookFlight). Existing
document clustering techniques rely on the co-occurrence of terms to identify
semantically similar terms [7]. Unfortunately, most WSDL descriptions are gen-
erated from program source code written in certain programming languages.
This implies that WSDL files rarely provide rich service descriptions. Due to the
limited terms used in the WSDL descriptions, the semantically similar terms
may have a low chance to co-occur in the WSDL corpus.

To attack this challenge, we propose to explore external information sources to
extend WSDL descriptions with rich semantics. We then exploit these extended
semantics to improve the accuracy of service community discovery. Some recent
efforts have been devoted to leverage semantic extensions of the WSDL files to
improve service discovery [1112]. In these approaches, the semantic extensions are
directly used to match users’ queries or compute the semantic distances between
terms. However, as motivated in Section [I], using external sources may lead to
semantic extensions that are irrelevant to the original services. Using irrelevant
semantics to match users’ queries or compute the similarity between terms will
negatively affect the service discovery accuracy.

We propose to integrate the semantic extensions of the WSDL corpus into
the NMTF process, in which the original services are clustered to discover the
service communities. The amalgamation of the semantic extensions and NMTF
places the extended semantics into the context of the original services to improve
community discovery accuracy.

3.1 Computing the Semantic Extensions of the WSDL Corpus

A number of external information sources, such as WordNet and Wikipedia,
may be used to compute the semantic extensions of the WSDL corpus. However,
as most WSDL descriptions originate from program source code, a lot of terms
may not be proper English words. For example, the concatenation of a number of
words is typically used to describe the names of operations (e.g., GeocodeByZip).
Abbreviations are also commonly used in the parameters of the operations (e.g.,
temp for temperature). This significantly limits the effectiveness of traditional
lexical references, such as WordNet, which do not include WSDL terms that are
not proper English words.

One useful and powerful information source that we plan to leverage is the
large volume of documents on the Web. This also allows us to exploit web search
engines to effectively process the irregular and misspelled terms, which are quite
common in WSDL files. We follow a procedure, which is similar to the one
proposed in [I6] to compute the semantic extensions of the WSDL corpus:
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1. Preprocess each WSDL file (Ws,) in the corpus to identify the functional
terms (refer to Section Ml for the details of WSDL file preprocessing). A
functional term describes the functionality provided by a service.

2. Submit each functional term ¢t € Ws, to a search engine and retrieve the
top-k documents, d, ..., dy.

3. Rank the terms in documents, d,...,d; based on their TFIDF scores and
select the top-r terms.

4. The semantic extension of Ws, is a vector E(Ws,), which consists of the
TFIDF scores of the selected top-r terms.

3.2 Semantic Extension Integration

We propose a graph based approach to achieve semantic extension integration.
The first step is to construct a semantic similarity graph, G = (V, E), which
captures the semantic similarity between different services. Each vertex v; rep-
resents the semantic extension of a service s;. Two vertices are connected if the
similarity W (i, j) between services s; and s; is larger than a certain threshold.
The edge is weighted by W (4, j), which is obtained via the dot-product between
E(Ws,) and E(Ws,). Based on the semantic similarity graph, the underlying
rationale of semantic extension integration can be specified as follows.

Rationale: If two services s; and s, share similar semantic descriptions (i.e., they
have a large edge weight W (3, j) in the similarity graph), they are expected to
provide similar functionalities. Hence, their corresponding cluster memberships
(e.g., S(z,p) and S(j, p)) are expected to be similar. ]

Therefore, W (i, 5)(S(i, p) — S(j,p))? is expected to be small for all i, j. This is
equivalent to say that

Ry =0 > Wi, j)(S(,p) ~ SGip)?
ij=1

is small. If all k service communities are considered and through some algebra,
we have

k
R=>_R,=Ti(S"LS) (6)
p=1
L=D-W (7)

where L is the graph Laplacian of the semantic similarity graph and D is the
degree matrix.

To integrate the semantic extensions with the NMTF process, we incorporate
R as a regularizer into the original objective function specified in Equation ().
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Table 2. Domains of Web Services

Domain #Service Abbreviation
Communication 42 Comm
Education 139 Educ

Economy 83 Econ

Food 23 Food

Medical 45 Medi

Travel 90 Trav

Weapon 30 Weap

Thus, service community discovery with semantic extensions can be formulated
as the following optimization problem:

min __ ||X — SRO”||2 + ATr(STLS) (9)
$>0,R>0,0>0

where A is the regularization parameter. The above optimization problem can

be solved by using an iterative approach that exploits the auxiliary functions

and the optimization theory [I0].

4 Empirical Study

We conduct a set of experiments to assess the effectiveness of the proposed service
community discovery framework. The experiments are performed based upon a
real-world WSDL corpus obtained from [9]. The WSDL corpus consists of over
450 services from 7 different application domains. Table [2 lists the number of
services from each domain.

We preprocess the WSDL corpus before applying the proposed service commu-
nity discovery algorithm. The purpose of WSDL preprocessing aims to identify
the functional terms, which describe the functionalities of the services. We fol-
low a procedure which is similar to the one adopted in [20]. More specifically,
preprocessing consists of four steps: extraction, tokenization, stopword removal,
and stemming: (1) Extraction extracts the key components of a WSDL file in-
cluding types, messages, operations, port types, binding, and port using path
expressions. (2) Tokenization is to decompose the concatenated terms into sim-
ple terms (e.g., from AirlineReservation to Airline and Reservation). (3) Stopword
removal removes the non-functional terms, which include not only the regular
stopwords but also the WSDL specific stopwords, such as url, host, hitp, ftp,
soap, binding, type, get, set, request, response, etc. (4) Stemming reduces differ-
ent forms of a term into a common root form. After the functional terms are
identified through preprocessing, we follow the procedure described in Section
to construct the service-operation contingency matrix X.
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4.1 Evaluation Metrics

The performance is assessed by comparing the community membership assigned
by the proposed community discovery framework and the service domains pro-
vided by the WSDL corpus. We adopt two metrics to measure the community
discovery performance: ACcuracy (i.e., AC') and Mutual Information (i.e., MT).
Both AC and M I are widely used metrics to assess the performance of clustering
algorithms [I7/4].

AC metric: For a given service s;, assume that its assigned community mem-
bership is z; and its domain label is y; based on the WSDL corpus. The AC'
metric is defined as follows:

AC = E:il 6(Zi7 map(yz)) (10)

m

where m is the total number of Web services in the WSDL corpus. 6(z,y) is
the delta function that equals to one if x = y and equals to zero if otherwise.
map(y;) is the permutation mapping function that maps each assigned commu-
nity membership to the equivalent domain label from the WSDL corpus. The
Kuhn-Munkres algorithm is used to find the best mapping [14].

M1 metric: Let D be the set of application domains obtained from the WSDL
corpus and C' be the service communities obtained from the proposed community
discovery framework. The mutual information metric MI(D,C) is defined as
follows:

MI(D,C)= > p(di,¢;)log, Pl 05) (11)

dieD,é;eC p(di)p(¢))

where p(d ) and p(é;) are the probablhtles that a randomly selected service from
the corpus belongs to domain d; and community ¢;, respectively. p(dz7 ¢;) is the

joint probability that the randomly selected service belongs to both domain d;
and community ¢;.

4.2 Experiment Design and Parameter Setting

We also implement two well-know clustering algorithms to compare with the
proposed service community discovery framework. These algorithms are Sin-
gular Value Decomposition (SVD) based Co-clustering algorithm and k-means
algorithm. The SVD based co-clustering algorithm leverages the duality between
services and operations and has been demonstrated to be effective in clustering
WSDL service descriptions [20]. We apply this algorithm to the service-operation
contingency matrix to generate service communities. The k-means algorithm is
applied to the semantic extensions of the WSDL corpus. The semantic exten-
sion of a WSDL file W, is represented as a vector E(Ws,), which consists of



198 Q. Yu

Table 3. AC and M Performance Comparison

Algorithm notation AC (%)  MI (%)

NMTF + Semantics 55.0 47.1
NMTF 52.5 46.2
SVD Co-clustering 45.5 36.0
Semantic k-means 45.0 28.4

the TFIDF scores of the top-r terms returned by a web search engine. Refer to
Section [3 for details about how to compute the semantic extension of a WSDL
file. In addition, we also solely apply NMTF to the service-operation contingency
matrix to generate service communities.

We plan to achieve the following objectives through the comparisons with the
approaches described above:

— The comparison with the SVD based co-clustering algorithm and NMTF
aims to justify the effectiveness of integrating external semantic information
into the service community discovery process.

— The comparison with k-means clustering on the semantic extensions of the
WSDL corpus aims to demonstrate that placing the extended semantics into
the context of the original service can better leverage the semantics to benefit
service community discovery.

We use the notation NMTF+Semantics to denote the proposed algorithm that
integrates NMTF with the semantic extensions of the WSDL corpus. The nota-
tions for other algorithms are also listed in Table Bl The regularization factor A
is set to 10. We perform k-means clustering to initialize matrices S and O. R is
initialized as STXO [6]. We run each algorithm 200 times and the average AC
and M1 are reported.

4.3 Performance Comparison

Table Bl compares the AC' and M performance of four different algorithms.
NMTF+Semantics generates the best results on both AC' and M1 over all the
algorithms. Thus, the results clearly demonstrate the effectiveness of the pro-
posed service discovery framework. It is also worth to note that semantic k-means
reports the lowest performance on both AC and M. This also justifies that us-
ing semantic extensions without considering the context of the original services
does not necessarily benefit community discovery.

To further illustrate the performance difference, Figure 2 shows the confusion
matrices with the best AC performances from the four different algorithms. As
can be seen, NMTF +semantics achieves a best AC' of 64.4%. Figure 2 @ shows
the corresponding confusion matrix. The best AC' achieved by NMTF, SVD
Co-clustering and semantic k-means are 62.8%,47.6%, and 52.9%, respectively.
Figure 2 @, and @ show the corresponding confusion matrices from these
three algorithms, respectively. Among the four algorithms, NMTF-Semantics
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01 C 2 03 04 Cs CG C17

Comm 41 0 1 0 0 0 0
Econ 1 79 1 0 0 2 0
Educ O 5 120 2 1 11 0
Food 1 0 19 0 0 3 0
Medi 0 0 16 6 8 10 5
Trav O 0 47 0 0 43 0
Weap 0 0 30 0 0 0 0
(a)
C1 CQ C3 04 Cs CG C7
Comm 41 0 0 0 0 1 0
Econ 1 78 1 0 0 4 0
Educ 0 6 83 0 37 12 1
Food 1 10 0 0 0 12 0
Medi 0 0 5 10 16 9 5
Trav 0 0 24 0 0 66 0
Weap 0 0 29 0 0 1 0
(b)
ci Cy Cs Cp C5 Cs Cr
Comm 0 31 1 0 0 10 0
Econ 0 59 2 0 0 22 0
Educ 0 2 83 0 6 12 36
Food 0 0 9 0 0 13 1
Medi 0 1 13 0 4 19 8
Trav 13 3 20 5 3 41 5
Weap 0 0 2 0 0 0 28
(c)
01 CQ 03 04 05 06 C’?
Comm 30 0 12 0 0 0 0
Econ 0 57 24 0 0 2 2
Educ O 1 119 0 17 0 2
Food 1 0 22 0 0 0 0
Medi 0 0 26 6 13 0 6
Trav 0 0 60 9 0 20 1
Weap 0 0 30 0 0 0 0
(d)

Fig. 1. Confusion Matrices with the best AC performances. @ NMTF-+Semantics:
AC = 64.4%; [[0)] NMTF: AC = 62.8%; SVD Co-clustering: AC' = 47.6%; [(c)|
Semantic k-means: AC = 52.9%. Comm, Econ, Educ, Food, Medi, Trav, and Weap
are the seven domains obtained from the WSDL corpus. Ci1 to C7 are the service
communities discovered from the WSDL corpus.
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correctly clusters the most number of services from three domains: Comm, Econ,
and Educ. NMTF correctly clusters the most number of services from two do-
mains: Medi and Trav. SVD Co-clustering correctly clusters the most number of
services from the Weap domain.

One interesting observation from the confusion matrices is that none of the
Food services has been correctly clustered by any of these algorithms. Most Food
services are clustered as either Educ or Trav services. This may be because that
the descriptions of the Food services share many common terms with Educ or
Trav services. Another possible reason is due to the inappropriate definitions of
the domains in the given WSDL corpus. For example, food and travel are two
highly related domains and it may be hard to set a clear boundary to differentiate
services that belong to these domains. In this regard, the community discovery
result can provide guidance to improve the service domain definitions.

5 Related Work

We give an overview of existing works that are most relevant to the proposed
approach in this section.

5.1 Service Community Discovery

A WSDL clustering technique is proposed in [8] to bootstrap the discovery of
Web services. Five key features are extracted from WSDL descriptions to group
Web services into functionality-based clusters. These features include content,
types, messages, ports, and name of the Web service. Each feature is assigned
an equal weight when computing the similarity between two services. Then, the
Quality Threshold (QT) clustering algorithm is applied to cluster Web services.
QT is a partitional clustering algorithm, like k-means, but does not require speci-
fying the number of clusters. A similar service clustering algorithm is proposed by
using four types of features to determine the similarity between services, includ-
ing content, context, service host, and service name [I2]. A weighting mechanism
is used to combine these features to compute the relatedness measure between
services. A service-operation co-clustering strategy is proposed in [20] to dis-
covery homogeneous service communities from a heterogenous service space. A
SVD based algorithm is adopted to achieve the co-clustering of services and
operations. Experimental result on a set of real-world Web services shows that
co-clustering generates communities with better quality than just applying one-
side clustering (e.g., k-means or QT on services. The proposed service commu-
nity discovery framework adopts a NMTF process that also clusters services and
operations simultaneously. NMTF is seamlessly integrated with the semantic
extensions of the WSDL corpus to further improve the performance of service
community discovery.

5.2 Service Search and Discovery

Woogle, a Web service search engine, is developed in [7] that helps service users
discover their desired service operations and operations that may be composed
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with other operations. Woogle exploits a clustering algorithm and association
rule mining to group parameters of service operations into concept groups. The
concept groups will then be used to facilitate the matching between users’ queries
and the service operations. Woogle aims to combine multiple sources of evidence,
including description of services, description of operations, and input/output of
operations, to measure similarity. A similar approach is developed in [13] for
service discovery. A service aggregation graph is also proposed to facilitate ser-
vice composition. A service discovery approach is proposed in [I5] based on
Probabilistic Latent Semantic Analysis (PLSA). This approach treats service
descriptions as regular documents without considering the limited information
available in these descriptions. A common issue with the above approaches is that
they solely rely on the information carried by the WSDL service descriptions.
The limited descriptive capacity of the WSDL files may limit the effectiveness
of these approaches. Some recent efforts have investigated to exploit semantic
extensions of the WSDL files to improve service discovery [ITI2]. The semantic
extensions are directly used to match users’ queries or compute the semantic
distance between terms. However, using external resources may lead to seman-
tic extensions that are irrelevant to the original services, which may negatively
affect the service discovery accuracy. This has also been justified through our
experiment results.

5.3 Service Selection

Service selection aims to find a proper service provider with the best user de-
sired quality of service (e.g., latency, fee, and reputation) [I82T22]. The selection
is conducted within a set of services that compete to offer similar functionali-
ties. Most existing service selection approaches assume that services with similar
functionalities have already been discovered. In this regard, the proposed service
community discovery framework can be used to preprocess the Web service space
before service selection can be performed.

6 Conclusion and Future Directions

We present a novel framework that amalgamates Non-negative Matrix Tri-
Factorization (NMTF) and the semantic extensions of the WSDL corpus for
service community discovery. NMTF in essence clusters services and operations
simultaneously. In this way, it not only exploits the service descriptions but also
leverages the duality relationship between services and operations to improve the
performance of service community discovery. The amalgamation of NMTF and
the semantic extensions of the WSDL descriptions places the extended seman-
tics into the context of the service, which enable to more effectively leverage the
semantics to benefit community discovery. We evaluate the proposed framework
on a real-world WSDL corpus and the effectiveness has been clearly justified via
the comparison with three other algorithms.

One interesting direction that we plan to explore is to include prior knowl-
edge or background information to further improve the performance of service



202 Q. Yu

community discovery. A useful type of prior knowledge is the pairwise constraint
that specifies whether two services should belong to the same community or not.
Such kind of prior knowledge is usually easier to get than relying on the domain
experts to actually label a number of services. In this regard, it is worthwhile
to investigate how to use this specific type of supervisory information to benefit
service community discovery.
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