
Multi-scale Integration of Slope Data

on an Irregular Mesh

Rafael F.V. Saracchini1, Jorge Stolfi1, Helena C.G. Leitão2,
Gary Atkinson3, and Melvyn L. Smith3

1 State University of Campinas,
Campinas, Brazil

{ra069320,stolfi}@ic.unicamp.br
2 Fluminense Federal University,

Niteroi, Brazil
hcgl@ic.uff.br

3 University of West England,
Bristol, United Kingdom

{Gary.Atkinson,Melvyn.Smith}@uwe.ac.uk

Abstract. We describe a fast and robust gradient integration method
that computes scene depths (or heights) from surface gradient (or surface
normal) data such as would be obtained by photometric stereo or inter-
ferometry. Our method allows for uncertain or missing samples, which
are often present in experimentally measured gradient maps; for sharp
discontinuities in the scene’s depth, e.g. along object silhouette edges;
and for irregularly spaced sampling points. To accommodate these fea-
tures of the problem, we use an original and flexible representation of
slope data, the weight-delta mesh. Like other state of the art solutions,
our algorithm reduces the problem to a system of linear equations that is
solved by Gauss-Seidel iteration with multi-scale acceleration. Its novel
key step is a mesh decimation procedure that preserves the connectivity
of the initial mesh. Tests with various synthetic and measured gradi-
ent data show that our algorithm is as accurate and efficient as the best
available integrators for uniformly sampled data. Moreover our algorithm
remains accurate and efficient even for large sets of weakly-connected
instances of the problem, which cannot be efficiently handled by any
existing algorithm.

1 Introduction

The integration of a gradient map to yield a height map is a computational
problem that arises in several computer vision contexts, such as shape-from-
shading [9,8] and multiple-light photometric stereo [10,22]. These methods usu-
ally determine the mean surface normal vector within each image pixel, from
which one can obtain the height gradient (the partial derivatives of the surface’s
height Z with respect to the spatial coordinates X and Y). See figure 1.

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 109–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

110 R.F.V. Saracchini et al.

(a) (b) (c)

Fig. 1. Derivative maps ∂Z/∂X and ∂Z/∂Y (b,c) of a hemisphere and the height
map(c) obtained by integration

Although this information alone does not determine the absolute surface
heights, it can yield height differences between parts of the same surface. This
relative height information is sufficient for many important applications, such
as industrial quality control [18], pottery fragment reassembly [11], surveillance,
face recognition [13], and many others.

In practical contexts, this problem faces at least four difficulties. First, the
gradient data is usually discretized, that is, given as a finite set of gradient
samples, each being an average of the gradient ∇Z over some neighborhood of
a gradient sampling point.

Second, the gradient data is usually contaminated with noise arising from
unavoidable measurement, quantization, and computation errors.

Third, the height function Z(X, Y) of a real scene is usually discontinuous. In
particular, it almost always has step-like discontinuities, or cliffs, at the edges of
solid objects. Most gradient acquisition methods, such as photometric stereo, will
return meaningless values for any sample that straddles a cliff or that cannot be
measured. For this reason, practical integration algorithms require an additional
input, a real-valued weight map that specifies the reliability of each gradient
sample. The weight map can be just a binary mask that is zero where there is
invalid data or cliffs and 1 elsewhere. See figure 2.

(a) (b) (c) (d)

Fig. 2. A height map with cliff-like discontinuities (a), the derivative maps ∂Z/∂X

and ∂Z/∂Y (b,c), as could be obtained by photometric stereo methods, and a binary

mask (d) showing the location of the cliffs. Note that the gradient map is oblivious to

the cliffs, and gives no clue as to which end of the ramp (if any) is at ground level.

Finally, even if the data is initially acquired over a regular X–Y grid of sam-
pling points, the samples may become irregularly spaced when the data is sub-
jected to optical rectification, filtering, or interpolation.

Multi-scale Integration of Slope Data on an Irregular Mesh 111

2 Previous Solutions

There is a substantial bibliography on the gradient-to-height problem of com-
puter vision, beginning with B. K. P. Horn’s seminal papers [9,8]. Three surveys
have been published by Agrawal [3], Ng et al. [14], and Saracchini et al. [16].
The published solution methods fall into a few major classes:

Path integration methods [5,15,2] compute the relative height of each pixel
as a line integral along a single path from some reference pixel. These methods
are very efficient (Θ(N) time and space, where N is the number of data pixels),
but are extremely sensisitive to noise present in the gradient data and generally
yield height maps with spurious cliffs. See figure 3.

Fig. 3. Output of Fraile-
Hancock’s integrator [5] ap-
plied to the gradient data of
figure 1 with noise added

Spectral methods, such as those of Frankot-
Chellappa [6], Georghiades [7], and Wei [21] use
the fast Fourier transform (FFT) to perform
the integration by filtering the gradient data in
the frequency domain. These methods are only
slightly more expensive than path integration
(Θ(N log N) time and Θ(N) space) and fairly im-
mune to random data noise. However, they cannot
handle data with cliffs or missing samples, since
the FFT only works with regularly spaced data
and gives the same weight to every sample. When applied to scenes with cliffs,
these methods return severely distorted height maps. See figure 4.

Fig. 4. Output of the Frankot-
Chellappa integrator [6] ap-
plied to the gradient data of
figure 2

Kernel methods, introduced by Ng et al. [14]
assume a sparse gradient field, and reduce the
problem to data fitting with a high-dimensional
function approximation space. This approach can
accomodate irregularly spaced gradient sampling
points and is claimed to provides better “fill in”
for missing data than Poisson methods. However
it requires solving a very large (3N × 3N) linear
equation system, and is therefore way expensive
in time and space.

Direct Poisson-like methods reduce the problem to an N×N sparse system of
equations which is solved directly through Gaussian or Cholesky factorization,
as described by Agrawal [3]. The system can be obtained in many equivalent
ways, such as by analogy to the Poisson second-order differential equation [3],
through an energy minimization formulation [3], as the least squares solution
to an overdetermined system [8], or by a local averaging principle [17]. These
methods can take into account weight maps, modify the Poisson system so as
to use only valid data and avoid integrating around cliffs. As result, they can
handle problems that path-based and spectral methods cannot.

On the other hand, direct Poisson-like methods can be quite expensive. The
solution of the system requires approximately Θ(N1.5) time and Θ(N1.15) space,

112 R.F.V. Saracchini et al.

with large constants factors. The high memory cost makes this approach imprac-
tical for megapixel gradient maps [16].

Iterative Poisson-like methods build the same linear system as the direct
variant, but solve it by the iterative Gauss-Seidel method [19]. With this ap-
proach the memory space needed is only Θ(N), but the time to achieve a preset
accuracy grows at least proportionally to N2; so that even modest (100 × 100)
gradient maps may require more than 105 iterations to produce a minimally
usable result.

Multi-scale Poisson-like methods, first described by Terzopoulos in 1986
[20,19], usemulti-scale techniques to acelerate theGauss-Seidel iterative algorithm.
The idea is to recursively solve a coarse version of the original problem, with the
gradientmaps reduced to half size; and then use the resulting heigh map, expanded
back to the original scale, as the initial guess for the Gauss-Seidel iterator.

Let ε(k) be the residual error, namely the difference between the current guess
and the true solution, after k Gauss-Seidel iterations. As observed by Terzopou-
los [19], the slow convergence of the Gauss-Seidel method is due to the Fourier
components of ε(k) with low spatial frequency, which decrease very little at each it-
eration.Thehigh-frequency components of the error, on the other hand, are quickly
eliminated after a few iterations. Thus, the recursively computed initial guess will
provide the correct low-fequency components of the solution, and the Gauss-Seidel
loop quickly fixes the high frequency components. A fast weighted Poisson-based
integrator along these principles was developed in by Saracchini et al. [16].

2.1 The Problem of Weakly Connected Data

The multi-scale approach fails when the slope maps contain narrow bands of
data surrounded by cliffs or missing samples. When the weight map is reduced,
any pixel of the result that contains a zero weight pixel of the original must
be set to zero too, since it may contain a cliff. It follows that the relative area
affected by the missing samples expands at each successive reduction, until the
narrow bands of data disappear and/or the connectivity of the gradient map is
broken. See figure 5.

Fig. 5. A height map, its gradient map, weight map (256x256 and 16x16 scale) and

the integrator’s output [16] after 200 iterations

At that point, the solution computed for the reduced problem is no longer
a suitable starting guess, since its low-frequency components are usually quite
wrong. On such maps, the multiscale Gauss-Seidel solver becomes considerabily
slower than the direct Gauss or Cholesky solver.

Multi-scale Integration of Slope Data on an Irregular Mesh 113

3 Integration on an Irregular Mesh

Our algorithm is a Poisson method with a novel multiscale iterative solver, that
is effective even for weakly-connected instances like that of figure 5.

The Weight-Delta Mesh Model. We depart from tradition by using a graph
representation for the gradient and weight data, instead a regular grid of samples.
A weight-delta mesh (WDM) is an abstract directed planar graph G with vertices
(nodes) V G and edges (arcs) E G. Each vertex v represents a height sampling
point and is associated to an unknown height value z[v]. Each directed edge e
connects two close vertices and has two numeric parameters: the edge delta d[e],
and the edge weight w[e].

The edge delta d[e] is an estimate for the difference z[v] − z[u] between the
height values at the edge’s origin vertex u = org(e) and its destination ver-
tex v = dst(e). This estimate is presumably derived from measured surface
gradients between the corresponding height sampling points; the details of this
computation depend on the application and are not relevant to this paper. The
edge weight w[e] is a positive number that expresses the reliability of that esti-
mate. More precisely, we assume that the edge delta d[e] includes some Gaussian
measurement error (provenient from camera noise, quantization,etc.), whose ex-
pected value is zero and whose variance is proportional to 1/w[e].

By definition, a weight-delta mesh has no loop edges. We say that a WDM is
simple if it is free from parallel edges (two or more edges with same origin and
destination). In a simple WDM, we can identify each edge e with the ordered
pair (u, v) of its origin and destination vertices. In that case we may denote d[e]
also by d[u, v], and w[e] by w[u, v]. Also by definition, for every directed edge e
in a WDM, the oppositely directed edge sym(e) is also present in the mesh, with
d[sym(e)] = −d[e] and w[sym(e)] = w[e]. Therefore, when drawing the mesh it
suffices to draw only one directed edge out of each pair e, sym(e). See figure 6.

5:5

-5:5

0:5

0:8 -2:3

0:21:6 1:5

Fig. 6. A small WDM. The
edge labels are d[e]:w[e].

Edge Equations. A WDM can be interpreted as
an equation system, with one edge equation

z[dst(e)]− z[org(e)] = d[e] (1)

for every directed edge e. This equation is assumed
to have “strength” w[e]. The problem is then to
solve this system for the height z[v] of each vertex
v, given the mesh and the parameters d[e], w[e] for
every graph edge e.

Since each connected component of the WDM
implies a separate set of unknowns and equations,
we will henceforth assume that the WDM is a con-
nected graph. Note that the edge equations (1)
only depend on height differences; therefore the solution for a connected mesh
has at least one degree of freedom (an additive term corresponding to the inte-
gration constant of the continuous problem).

114 R.F.V. Saracchini et al.

Vertex Equilibrium Equations. If G has cycles, the edge equation system (1)
is overdetermined. In that case, measurement errors present in the deltas often
make it impossible to satisfy all equations at the same time. Given the as-
sumption of independent Gaussian measurement errors in the d values, Bayesian
analysis says that the most likely set of heights z is the weighted least squares so-
lution to the system (1). That solution turns out to satisfy the vertex equilibrium
equation

z[u]−
∑

v∈G[u]

λ[v]z[v] = −
∑

v∈G[u]

λ[v]d[u, v] (2)

for every vertex u, where G[u]is the set of vertices adjacent to u in the mesh and
λ[v] is w[u, v]/

∑
s w[u, s], the relative weight of v among the neighbors of u.

4 The Algorithm

The core of the algorithm is a mesh decimation step that removes a certain
fraction of the vertices of the input mesh G, producing a smaller mesh G′. The
vertices of G′ are a subset of those of G, and the edges of G′ are defined so as
to best summarize the weight and delta information contained in the edges of
G. The algorithm then solves the problem recursively for the mesh G′ yielding a
tentative height function z′ for its vertices. It then interpolates heights to provide
a starting guess z for the original mesh G. Finally it adjusts the heights z by
applying few Gauss-Seidel iterations to the equilibrium equations (2).

The recursion stops when G is reduced to a single vertex v, whose height z[v]
can be set to zero. In other words, we construct a pyramid G(0), G(1), . . . , G(m) of
meshes, where G(0) is the input mesh G, G(m) is a single vertex v, and each mesh
G(k+1) is obtained by decimation of the previous one G(k). Then we compute
solutions z(m), z(m−1), . . . , z(0), in that order; where z(m)[v] is zero for its single
vertex v, and each z(k) is obtained from z(k+1) by mesh interpolation and Gauss-
Seidel iteration. The map z(0) is the result. See figure 7.

G(0) G(1) G(2) G(13)

⇒ ⇒ ⇒ . . .

⇓ ⇓ ⇓ ⇓

⇐ ⇐ ⇐ . . .

Z(0) Z(1) Z(2) Z(13)

Fig. 7. The multiscale integration method

Multi-scale Integration of Slope Data on an Irregular Mesh 115

Formally, the algorithm is the recursive procedure Integrate whose pseudocode
is given in figure 8. It takes as inputs the weight-delta mesh G, an iteration limit
κ and a tolerance ε; and outputs a height function z from V G to R.

Integrate(G, κ, ε)
1. If #V G = 1 then

2. Let v be the only vertex in V G; set z[v]← 0;
3. else

4. G′ ← Decimate(G);
5. β ← #V G′/#V G;
6. z′ ← Integrate(G′, κ/

√
β, ε
√

β,);
7. z ← Interpolate(z′, G′, G);
8. z ← SolveSystem(z, G, κ, ε);

9. Return z.

Fig. 8. The main procedure of the integrator

Mesh Decimation. The procedure Decimate, called in step 4, takes a simple
mesh G, planar and connected, and outputs a smaller mesh G′, which is also
simple, planar, and connected.

First, the procedure partitions V G into a set R of vertices to be removed,
and a set K of vertices to be kept. The set R is a maximal subset of V G whose
elements are independent (that is, pairwise disconnected in G) and have degree
six or less. The set R is found by a greedy algorithm [4].

Next, the vertices in the R set are removed from G. Whenever a vertex u is
removed, the edges incident to u are removed, too. If u has degree 1, nothing
else needs to be done. If u has degree 2 or more, new edges are added to G′,
connecting the neighbors of u. (Observe that all these neighbors are in K and
therefore they will be vertices of G′.) The endpoints, weights and deltas of the
new edges are chosen so that the solution z′[v] for the mesh G′ is as close as
possible to the solution z[v], on every vertex v ∈ K.

More precisely, let k be the degree of u in G; let e0, e1, . . . , ek−1 be the edges
incident to u, oriented out from u, in counterclockwise order around u; and let
v0, v1, . . . , vk−1 be the corresponding destination vertices. Let wi be the weight
of ei, and di its delta. It can be shown that the solution z′ for G′ would exactly
match the solution z for G if, for every pair i, j, we added an edge e′i,j from vi to
vj with delta d′ij = dj − di and weight w′

ij = wiwj/wtot, where wtot is the sum
of all weights wi. We call this operation — removal of u, removal of all incident
edges ei, and the addition of all edges e′ij — a star-clique swap.

If the vertex has degree k = 2, the swap will add only one pair of opposite
edges e′01 and e′10. If the degree k is 3, there will be three new edge pairs: e′01, e′12,
e′02, and their opposites. In both cases, the planarity of the mesh G is preserved.
However, when the degree k is 4 or more, adding all the k(k−1) directed edges e′i,j
would generally make G′ non-planar, and would severely impact the algorithm’s
efficiency.

116 R.F.V. Saracchini et al.

Therefore, when k ≥ 4 we use instead a star-cycle swap, which adds only the
edges e′i,i+1 that connects successive vertices vi and vi+1, for i ∈ {0, 1 . . . k − 1}
into a cycle; as well their opposites. (All indices are taken modulo k). The deltas
d′i,i+1 of these edges are those of the star-clique swap, namely d′i,i+1 = di+1−di.
The weights w′

i,i+1, on the other hand, are given by different formulas for each
degree k. For the new edge e′01 = (v0, v1), we have

k w′
01

2 w0w1/wtot

3 (w0w1 + 0.5(w0w2 + w1w3))/wtot

4 (w0w1 + 0.5(w0w2 + w1w3))/wtot

5 (w0w1 + 1.1690(w2w4 + w0w2 + w1w4))/wtot

6 (w0w1 + 2w5w2 + 1.5(w5w1 + w0w2))/wtot

The same formulas hold for any other edge e′i,i+1 of the cycle, except that all
indices are incremented by i modulo k.

Unlike the star-clique swap, the star-cycle swap does not ensure that the
heights determined by G′ are exactly equal to those implied by G. However,
the solution z′ for the mesh G′ retains the “low-frequency” components of the
solution z of G — in the sense that the error is highly localized, and can be
removed by only a few Gauss-Seidel iterations.

An edge e′ij introduced by the star-cycle swap may have the same endpoints
as a preexisting edge. Therefore, after performing all the star-cycle swaps, the
Decimate procedure collapses every set of parallel edges into a single equivalent
edge in a way that preserves the final solution. Namely, if edges e′ and e′′ have
the same origin and destination, with weights w′, w′′ and deltas d′, d′′, they are
replaced by a single edge e with the same endpoints, with attributes

w[e] = w′ + w′′ d[e] = (w′d′ + w′′d′′)/(w′ + w′′) (3)

Interpolation. Once a solution z′ has been obtained for the reduced mesh G′

(step 6), it is expanded to a starting guess z for G, by the procedure Interpolate
(step 7). First, for every vertex v in the shared set K, we set z[v]← z′[v]. Then,
for every vertex u in the deleted set R, we compute z[u] by its vertex equilibrium
equation (2). Note that every neighbor v ∈ G[u] belongs to K, and therefore its
height z[v] is defined at this point.

Iterative Adjustment. The initial guess z is then used as the starting guess
for the Gauss-Seidel procedure SolveSystem (step 8). Each iteration of the latter
scans every vertex u ∈ V G and uses the equilibrium equation (2) to recompute
its height z[u] from the current heights z[v] of its neighbors. The procedure ter-
minates after a specified maximum number κ of iterations, or after the maximum
absolute change in any height z[u] is less than the specified tolerance ε, whichever
happens first. Note that the iteration limit κ is increased by a factor 1/

√
β, and

the tolerance ε is reduced by
√

β, at each level of the recursion (step 6); where
β is the mesh size reduction factor achieved by Decimate (step 4).

Multi-scale Integration of Slope Data on an Irregular Mesh 117

5 Analysis of the Algorithm

Correctness. The star-cycle transformation and the collapsing of parallel edges
preserve both planarity and connectivity, so the recursive calls to Integrate sat-
isfy its preconditions that G′ be simple, connected and planar. Therefore, the
connectivity and planarity of the original mesh is preserved at all levels of the
pyramid; even within narrow corridors the relevant gradient information is re-
tained all the way to the top. Moreover, if κ is large enough, the final application
of the Gauss-Seidel algorithm (at scale 0) will eventually converge to the unique
solution z = z(0) of the vertex equations (2), irrespective of the starting guess
obtained from the decimated mesh G(1). The experimental tests (section 6) show
that convergence is achieved after only a few iterations, even in instances that
cause other multiscale methods to fail.

Space and Time Costs. Let N = #V G, Nk = #V G(k), M = # E G, Mk =
E G(k). It is known that, for planar simple graphs, M ≤ 6N and Mk ≤ 6Nk;
and that any such graph has at least N/7 vertices with degree 6 or less. From
these facts it follows that the vertex reduction factor β of the Decimate procedure
has a theoretical upper bound β̂ ≤ 41/42 ≈ 0.976 [12]. In practice, the reduction
factor β is usually 0.6.

The maximum scale m is therefore at most log1/β̂ N = O(log N). Moreover,

the total vertex count in all meshes is at most N/(1 − β̂) = O(N) ≈ 2.5N in
practice. The amount of memory required by the algorithm is dominated by
the representation of the mesh G(k); a simple representation that is sufficient for
our purposes uses only Nk + 2 × 3Mk ≤ 19Nk words for the mesh G(k), and
(19/(1− β̂))N words for all meshes in the pyramid.

The decimation algorithm runs in time O(N +M) = O(N) for a planar graph,
therefore the whole pyramid is built in O(N/(1 − β̂)) = O(N) time. The time
required for one Gauss-Seidel iteration at level k is Θ(Nk + 2Mk) = Θ(Nk).
The maximum number of iterations at that level is qk = q/β̂k/2. The maximum
time spent at level k is then proportional to Nkqk = (Nβ̂k)(q/β̂k/2) = Nβ̂k/2.
Therefore, the total work at all levels is O(N/(1− β̂1/2)) = O(N).

6 Tests

In this section we experimentally compare the cost and accuracy of our graph-
based multiscale integrator (MG) with those of other published methods. We
consider only weighted Poisson-based algorithms since they are the ones that can
cope with errors and discontinuities in the gradient data within an acceptable
execution time. Another methods such were not tested due being unable to cope
with discontinuities [6], high sensibility towards gradient noise [5] or too high
memory/time requirements to be comparable [14].

Specifically, we used the M-Estimators (ME) and Affine Transforms (AT)
algorithms [3] of Agrawal et al. with direct system solving; and the the multi-
scale iterative integrator (MS) of Saracchini et al. [16]. For ME and AT we used

118 R.F.V. Saracchini et al.

the author’s Matlab implementations [1] under MS Windows, adapted to use our
input and output file formats and a user-given (rather than internally computed)
weight map. For MS we used the author’s implementation in C. Our algorithm
MG was also implemented in C; both were compiled and tested on a GNU Linux
platform. The maximum number of Gauss-Seidel iterations κ was set to 200 for
MS (as proposed by the authors) and to 20 for our method.

Datasets. In our tests we used four datasets provided by Saracchini et al., as
shown in figure 9. Three of them (spdome, cbabel, and cpiece) are defined by
mathematical functions, and one (dtbust) is a terrain model of a human torso
obtained by a structured-light 3D scanner. In order to simulate the measurement
noise usually present in real datasets, we added to each gradient sample an
independent Gaussian random number with zero mean and deviation 0.3. Each
gradient and its weight map were converted to a WDM whose vertices were the
pixels of desired height map and whose arcs connected pixels that were vertically
or horizontally adjacent in that map. The final vertex height z were then output
in the regular grid format.

spdome cbabel

dtbust cpiece

Fig. 9. Datasets used in the tests, showing the gradient maps (left), the weight masks
(middle), and the correct height map (right)

Accuracy and Robustness. For each combination of dataset and algorithm,
we computed the RMS value ρ of the correct and integrated height fields, and the
RMS difference η between them. In these computations, the height fields were first
shifted to have zero mean, and all averages are weighted by the input weight maps.

Table 1. Relative RMS errors of each method

Results - datasets with 30% of Gaussian noise

spdome cbabel dtbust cpiece

Meth. η η/ρ η η/ρ η η/ρ η η/ρ

AT 3.32 9.8% 0.80 3.0% 1.22 4.9% 0.52 4.1%
ME 0.63 1.8% 0.86 3.3% 0.71 2.8% 0.55 4.3%

MS 0.34 1.0% 23.02 121.0% 0.67 2.7% 5.74 52.5%

MG 0.34 1.0% 0.80 3.1% 0.59 2.3% 0.52 4.1%

Multi-scale Integration of Slope Data on an Irregular Mesh 119

As table 1 shows in these tests the accuracy of our MG method was equivalent
or better than that of the other three. Note that MS integrator failed on the
cbabel and cpiece datasets, due to loss of connectivity after the first few levels
of the pyramid. On the dtbust dataset, MS gives the correct solution but only
after 200 iterations at the base level.
Cost. To evaluate the efficiency of our method, we measured the computing
time and memory needed for the integration of two gradient fields sampled with
various grid sizes from 64 × 64 to 512 × 512. We used the two datasets which
where correctly integrated by all methods (spdome and dtbust), without noise.

 0.01

 0.1

 1

 10

 100

1000

64x64 128x128 256x256 512x512

spdome (sec)AT
PC
MS
MG

 0.01

 0.1

 1

 10

 100

 1000

64x64 128x128 256x256 512x512

dtbust (sec)AT
PC
MS
MG

 0.1

 1

 10

 100

1000

64x64 128x128 256x256 512x512

spdome (MB)AT
PC
MS
MG

 0.1

 1

 10

 100

 1000

64x64 128x128 256x256 512x512

dtbust (MB)AT
PC
MS
MG

Fig. 10. Log-log plots of the running time (top) and memory usage (bottom) of PC,
AT,MS and MG

For AT and ME, we measured only the system solving step; namely, we
aborted the algorithm after a single iteration of its weight-computing step. For
MS and MG, we included the cost of their decimation/interpolation steps as well
as of the Gauss-Seidel solver. The direct solving methods AT and ME need to
store the Poisson system’s matrix A and also its Gaussian triangular factor U
(or Cholesky’s R). For those methods, we counted the nonzero entries NA in the
system’s matrix A and NU in its Gauss or Cholesky’s factor U , and estimated
the memory usage conservatively as 12NA + 16NU bytes For MS we used the
memory estimate given by the authors [16]. For our method we used the estimate
19Ntot where Ntot was the actual number of vertices in all meshes.

The running times of MS and MG cannot be compared directly to those of AT
and ME, since Matlab code is inherently slower than C code. However, figure 10
shows that memory and time costs of MS and MG scale linearly with N, where
as those of AT and ME scale as O(N1.15) and O(N1.5), respectively.

7 Conclusions

Our algorithm allows robust integration of slope maps with cliffs and missing
data. Unlike previous linear-cost algorithms, it can handle gradient maps with

120 R.F.V. Saracchini et al.

narrow corridors. Also it can be used as the inner loop of iterative methods such
as described in [3], were the the computed heights are used to determine the
weights of the next iteration, allowing the detection of outliers and noisy data.

References

1. Agrawal, A.: Matlab/Octave code for [3] (2006),
http://www.umiacs.umd.edu/~aagrawal/software.html

2. Agrawal, A., Chellappa, R., Raskar, R.: An algebraic approach to surface recon-
struction from gradient fields. In: Proc. 7th ICCV, pp. 174–181 (2005)

3. Agrawal, A., Raskar, R., Chellappa, R.: What is the Range of Surface Reconstruc-
tions From a Gradient Field? In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV
2006. LNCS, vol. 3951, pp. 578–591. Springer, Heidelberg (2006)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw-
Hill (1990)

5. Fraile, R., Hancock, E.R.: Combinatorial surface integration. In: Proc. 18th ICPR
2006, vol. 1, pp. 59–62 (2006)

6. Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from
shading algorithms. IEEE TPAMI 10(4), 439–451 (1988)

7. Georghiades, Belhumeur, Kriegman: Illumination cone models for face recognition
under variable lighting and pose. IEEE TPAMI 23, 643–660 (2001)

8. Horn, B.K.P.: Height and gradient from shading. IJCV 5(1), 37–75 (1990)
9. Horn, B.K.P., Brooks, M.J.: Shape from Shading. MIT Press (1989)

10. Horn, B.K.P., Woodham, R.J., Silver, W.M.: Determining shape and reflectance
using multiple images. Technical Report AI Memo 490. MIT (1978)

11. Kampel, M., Sablatnig, R.: 3D puzzling of archeological fragments. In: Skocaj, D.
(ed.) Proc. of 9th Computer Vision Winter Workshop, pp. 31–40 (2004)

12. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. on Comput-
ing 12, 28–35 (1983)

13. Smith, L.N., Hansen, M.F., Atkinson, G.A., Smith, M.L.: 3D face reconstructions
from photometric stereo using near infrared and visible light. Computer Vision and
Image Understanding 114, 942–951 (2010)

14. Ng, Wu, Tang: Surface-from-gradients without discrete integrability enforcement:
A Gaussian kernel approach. IEEE TPAMI 32 (November 2010)

15. Robles-Kelly, A., Hancock, E.R.: Surface height recovery from surface normals
using manifold embedding. In: Proc. ICIP (October 2004)

16. Saracchini, Stolfi, Leitao, Atkinson, Smith: Multi-scale depth from slope with
weights. In: Proceedings of the BMVC, pp. 40.1–40.12. BMVA Press (2010)

17. Smith, G.D.J., Bors, A.G.: Height estimation from vector fields of surface normals.
In: Proc. IEEE DSP, pp. 1031–1034 (2002)

18. Smith, M.L., Smith, L.N.: Polished Stone Surface Inspection using Machine Vision,
page 33. OSNET (2004)

19. Terzopoulos, D.: The computation of visible-surface representations. IEEE
TPAMI 10(4), 417–438 (1988)

20. Terzopoulos, D.: Image analysis using multigrid relaxation methods. IEEE
TPAMI PAMI 8(2), 129–139 (1986)

21. Wei, T., Klette, R.: Height from gradient using surface curvature and area con-
straints. In: Proc. 3rd ICVGIP (2002)

22. Woodham, R.J.: Photometric method for determining suface orientation from mul-
tiple images. Optical Engineering 19(1), 139–144 (1980)

	Multi-scale Integration of Slope Data on an Irregular Mesh
	Introduction
	Previous Solutions
	The Problem of Weakly Connected Data

	Integration on an Irregular Mesh
	The Algorithm
	Analysis of the Algorithm
	Tests
	Conclusions

