
A Flexible Method for Localisation and

Classification of Footprints of Small Species

Haokun Geng1, James Russell2, Bok-Suk Shin1,
Radu Nicolescu1, and Reinhard Klette1

1 Department of Computer Science, University of Auckland, Auckland, New Zealand
hgen001@aucklanduni.ac.nz, {b.shin,r.nicolescu,r.klette}@auckland.ac.nz
2 School of Biological Sciences, Department of Statistics, University of Auckland,

Auckland, New Zealand
j.russell@auckland.ac.nz

Abstract. In environmental surveillance, ecology experts use a stan-
dard tracking tunnel system to acquire tracks or footprints of small
animals, so that they can measure the presence of any selected ani-
mals or detect threatened species based on the manual analysis of gath-
ered tracks. Unfortunately, distinguishing morphologically similar species
through analysing their footprints is extremely difficult, and even very
experienced experts find it hard to provide reliable results on footprint
identification. This expensive task also requires a great amount of efforts
on observation. In recent years, image processing technology has become
a model example for applying computer science technology to many other
study areas or industries, in order to improve accuracy, productivity, and
reliability. In this paper, we propose a method based on image processing
technology, it firstly detects significant interest points from input track-
ing card images. Secondly, it filters irrelevant interest points in order
to extract regions of interest. Thirdly, it gathers useful information of
footprint geometric features, such as angles, areas, distance, and so on.
These geometric features can be generally found in footprints of small
species. Analysing the detected features statistically can certainly pro-
vide strong proof of footprint localization and classification results. We
also present experimental results on extracted footprints by the proposed
method.With appropriate developments or modifications, this method
has great potential for applying automated identification to any species.

1 Introduction

Computer-based systems have been a common technique of humankind to per-
form activities that have to be repeated numerous times [5]. Identifying small
species from their footprints is one of such activities. Currently ecological experts
need to spend much effort and time identifying footprints from inked tracking
cards, highly dependent on the experts’ knowledge and experiences, and the man-
ual identification analysis often needs to be repeated on many tracking cards.

Therefore, we would like to initialise a work based on many previously re-
searched theoretical findings, with knowledge from ecology, especially from the
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Fig. 1. Samples of mice footprints in different situations. From left to right: Nor-
mal front footprint, sliding front footprint, missing toe hind footprint, and overlapped
hind&front footprints

study area of track recognition, and to transfer them into a practical technique
to assist ecological experts in analysing inked tracking cards.

The demand for such systems that can process the automated identification
of species from their scanned footprint images is most likely to increase in the
future [8]. It becomes essential to have a working application that can be properly
incorporated into the current system, handles the repetitive jobs, and outputs
accurate and reliable results.

However, the presentations of footprints are varied, the ‘puzzle’ is that the
images of a footprint may have very different appearances (as shown in Fig.1).
Besides normal footprints, other undesirable image data include sliding foot-
prints, missing toe footprints, and overlapped footprints. A single tracking card
may contain footprints from ≥ 1 individuals.

Before any further analysis can be carried out by the automated recognition
algorithm, those varied representations of the footprints need to be transformed
into digitalised geometric models. Correctly understanding and handling the
transformation process is certainly a difficult task.

In this paper, we will firstly introduce the current standard track acquisi-
tion procedure. Then we will describe how a footprint can be digitalised and
understood by our image processing application. This involves a rule based foot-
print recognition algorithm that performs automated footprint localisation and
classification. Additionally, we would like to present the conceptualization of an
integrated proposed system, and suggest some possible future work.

2 Track Acquisition of Small Species

The Tracking Tunnel System is a widely used standard procedure for collect-
ing tracks of small animals to gain an index of the abundance of target small
species in New Zealand [2]. It is a cost-effective method to collect tracks of small
species over large areas [10]. Providing reasonable analysis and reliable results on
the estimate of species’ presence plays an important role in ecological research
when ecologists decide to study rare species or assess community composition
for environmental surveillance or pest control [7].



276 H. Geng et al.

Fig. 2. Top: Isolated front footprint model example. Bottom: Isolated hind footprint
model example.

Traditionally, tracks or footprints are collected by this tracking tunnel system,
and the identification of tracks and footprints is handled manually by experi-
enced wildlife experts [3]. The basic principle of animal tracking is firstly to
recognise single footprints from a number of unknown footprints, and then to
identify the species based on the analysis of its footprints [10].

The tracking tunnel system is considered the first step when ecologists would
like to non-invasively monitor or study a selected species. The collected tracks or
footprints need to be analysed manually by human experts. In the identification
procedure, distinguishing among many morphologically similar species through
analysing their footprints is extremely difficult, and one single tracking card can
also contain footprints from different species [10]. Our method aims to ultimately
implement an automated recognition process to assist experts in the current
identification procedure.

3 Footprint Geometric Analysis

The further implementation of the track recognition algorithm would highly de-
pend on the understanding of the footprint geometric models of targeted species.
In the following experiments, we choose house mice (Mus musculus) as our major
object of study.

We isolate normal footprints from many tracks on a tracking card. The front
foot for a house mouse usually has four toes, the hind foot usually has five
toes [10]. The toes of the front foot are evenly distributed around the central
pad. The hind foot normally has three toes bunched in front of the central pad
that can roughly form a straight line. Based on the previous studies [10] and our
experimental set of tracking cards, we isolated normal footprints from tracks.
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Fig. 3. Left: Geometric model for mice front footprint. Right: Geometric model for
mice hind footprint.

The isolated front footprint model is shown in Figure 2 (top), and the isolated
hind footprint model is shown in Figure 2 (bottom).

Manually analysing the relations among toes and central pads of the isolated
footprints is an essential step for footprint localisation and classification (i.e.,
front or hind footprints). Figure 3 visually represents how geometric features
will be analysed by the proposed algorithm.

Figure 3 (left) is an isolated front footprint, it has a clear geometric structure:
a central pad is in the centre of the footprint. There are two accessorial pads
and four toes evenly distributed around the central pad. In most cases, the
central pad has the larger size than other nodes in this particular region. The
toe prints are marked by blue circles, the central pad and accessorial pads prints
are marked by red circles. The central pad is distributed in the middle point
of that line segment. The central pad and two accessorial pads clearly form a
triangle. Also there are three straight lines intersecting the central pad, they are
T1T4, T2A2, and T3A1.

Figure 3 (right) is an isolated hind footprint, it has a similar geometric struc-
ture to the front footprint. However, by contrast it has a differently formed
central pad which consists of two vice pads. It also has three toes in the front,
they can roughly form a straight line T2T3 that is approximately parallel with
the line formed by the two outer toes T1T4. Comparing with the front footprint,
the formation of the hind central pads and the number of toes could be two
significant conditions of front and hind footprints classification.

4 Footprint Extraction

We propose a method for extracting regions of interest using improved OpenSurf
libraries1 with the rule-based conditional filtering and geometric model. This

1 The term “Open” refers to one of its major development components OpenCV, and
“SURF” is the abbreviation of Speeded Up Robust Features.
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method detects significant interest points from many distributed points on input
images, and it extracts regions of interest which are suitable for geometric model
analysis.

4.1 Interest Points Detection

The implementation of OpenSURF libraries was based on an interest point
detection-description scheme, first described by Bay et al. [1] in 2006. An in-
termediate image representation plays an important role in the improvement of
SURF’s performance, which is known as the “Integral Image” [11]. The integral
image can be computed directly from the input image by the following formula:

I∑ (x, y) =
x∑

i=0

y∑

j=0

I(x, y)

where I is the input image, and (x, y) are the x- and y-coordinates of a certain
pixel on the input image. So the integral image I∑ can be then calculated by
the formula given above [4].

Figure 4 shows a sample scanned tracking card image with many interest
points detected before applying the filtering function. The blue circles indicate
the interest points that have black marks on a white background with a detected
radius.

However, it is too difficult to define the proper regions of interest on the
input image at this stage, because the representation of small species’ footprints

Fig. 4. Raw analysis result for a sample tracking card image
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Fig. 5. Left: Detected interest points before preprocessing. Right: Identified areas of
interest after preprocessing.

are commonly massively distributed, and too many interest points are detected,
including many insignificant points. This certainly requires a filtering function
to remove all irrelevant interest points. Therefore we implemented a rule-based
filtering algorithm to remove insignificant interest points.

4.2 Regions of Interest Extraction

Applying this rule-based conditional filtering function, most of the insignificant
or noisy interest points can be detected and removed. After applying a rule-based
conditional filtering function, most of the insignificant or noisy interest points can
be detected and removed. Figure 5 (Left) shows all the initially detected interest
points on an input image. Figure 5 (Right) presents the experimental result after
using filtering rules. Basically all the regions of interest on the input image are
detected and localised correctly. For the filtering algorithm, see Figure 7.

Analysing the standard geometric models could provide us with the following
organised truths of our study object’s footprints:

Fig. 6. Left: Original image. Middle: Interest points preprocessed by our application.
Right: Central pad localisation by our application. Blue circles indicate ‘area of inter-
est’; red circle indicate ‘recognised central pad’; green circles indicate distance from
the centre of the central pad, each gap represents one times the central pad radius.
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1: Initialise L; {the list of interest points on the input image}
2: for (each interest point I in list L) do
3: if (the radius of I is less than 6 pixels) then
4: Delete the interest point from list L;
5: else
6: Initialise V; {an empty interest point list }
7: for (each interest K in the list L) do
8: if (the radius of K ≥ the radius of I) then
9: Initialise D; { the distance between I and K }

10: if (the radius of K ≥ the radius of I + D ) then
11: if (the radius of K ≥ 7/10 of the radius of I) then
12: Store K in V
13: else
14: Store I in V
15: end if
16: else
17: if ((D < 6) then
18: if (the radius of K ≥ 7/10 of the radius of I) then
19: Store K in V
20: else
21: Store I in V
22: end if
23: else
24: Store I in V
25: end if
26: end if
27: end if
28: end for
29: for (each interest point T in V) do
30: Delete T from the list L;
31: end for
32: end if
33: end for

Fig. 7. Pseudo-code for the pre-processing stage

Accurate matching: a central pad normally has the largest area within the
six times its radius bounded region, and there should be exactly six (for the
front footprint) or seven (for the hind footprint) smaller areas of interest in
that particular region.

Loose matching: a central pad normally has a radius larger than the average
radius within the six times its radius bounded region, and the number of
areas of interest in this particular region should be greater than or equal to
four, and less than or equal to ten.

Figure 6 shows the progress of locating a possible central pad on an input image.
We use green circles to indicate the distance from the centre of the central pad,
which also is the centre of the possible region for a footprint. From the inside to
the outside boundary, each gap between every two green circles represents the
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Fig. 8. Footprint detection result of an input tracking card image. Fully recognised
footprints are indicated by zooming in.

length of the radius of the central pad area. The outside boundary shows the
region of a possible footprint on the image. This region could be valuable when
human experts decide to do manual additional analysis of the tracking card.

As the central pad can be recognised, the region of a possible footprint is
located with a proper boundary, which is six times the radius of the central pad.
The algorithm can then test the interest points within this range for whether
their distribution matches the pre-defined model. We again defined a rule-based
approach for the footprint identification and localisation. Figure 8 shows the
result image after processed by the following rules:

Fig. 9. Testing results for front and hind footprints
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Rule 1. Two accessorial pads should be close to the central pad, generally
within the range of three times the radius of the central pad.

Rule 2. Two accessorial pads must have smaller distance to each other than
their distance to other areas of interest in this particular region.

Rule 3. Two accessorial pads and the central pad can form a triangle at the
back of the footprint. Each angle inside the triangle should be only smaller
than or equal to 90◦, and the sum of the three angles is exactly 180◦.

Rule 4. A line segment can be drawn between every two toes. The longest line
segment, which is the line between the left and the right outer toes, must
cross the area of the central pad.

Rule 5. If the region with a recognised central pad can not completely match
all the rules, it should be considered and marked as a ‘possible region of a
footprint’ on the result image for human experts to review.

Rule 6. If the region with a recognised central pad has more than ten areas of
interest within its considerable range, which is six times the radius of the
central pad, the algorithm should identify this region as an ‘unpredictable
region’, and it will refuse to do any further analysis.

Rule 7. If only one central pad is detected in this region, and also two accesso-
rial pads and four toes are detected, the algorithm will identify it as a front
footprint of our study object.

Rule 8. If two central pads are detected in this region, and also two accessorial
pads and five toes are detected, the algorithm will identify it as a hind
footprint of our study object.

Since normally every two nearby toes have certain angles in between, a statistical
analysis was used to find out the angles between every two nodes of the footprint
samples. The corresponding statistical analysis of those angles provides us the
following additional classification rules:

Front or hind footprint classification: for front footprints, the average
value for angle ∠T2CT3 is 46.2◦ in the range from 43.6◦ to 48.9◦; for hind
footprints, the average value for angle ∠T2CT3 is 56.1◦ in the range from
53.2◦ to 59.8◦. There is a clear difference between the two ranges.

Left or right footprint classification: if angle ∠A1CT1 is less than angle
∠T4CA2, then this is a left footprint; otherwise, this is a right footprint.

Figure 9 presents two fully recognised footprints of our study object with ex-
pected classification results. In this case, the algorithm counts the number of
central pads detected, a front footprint should have one central pad whereas a
hind footprint should have two. Also the number of toes are different, a front
footprint should have four toes, and a hind footprint should have five.

4.3 Geometric Feature Extraction

By understanding the standard geometric models of our study object’s foot-
prints, we could gather useful information for relations among nodes within one
region of interest, such as angles, areas, or distances. These geometric features
can be generally found by footprints which are left by small species. Analysing
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the detected features statistically can certainly provide strong proof of footprint
localisation and classification results. We extract geometric features from asso-
ciated nodes in the regions of interest. Data collection is only as valid as the
feature extraction, and is considered an important objective of our application.

In order to collect statistical analysis data for classifying similar species (e.g.
rats and mice), we have to sort the accessorial pads and toes in a certain order
(e.g. sort them clockwise). The application would collect (1) radius of each node;
(2) distance between each node and central pad; (3) the area of the triangle
(formed by central pad and its accessorial pads); (4) internal angles of that
triangle, etc. These statistic data will be used to find definitive differences for
distinguishing morphologically similar species, such as rats and mice.

4.4 Directional Scale Vector

Every footprint has a relative direction. The footprint directions are indispens-
able when we try to find a single track of an individual mammal. In our approach,
we use a 2D vector vds to present the relative direction of a given footprint, it
is called directional scale. Based on the extracted geometric regions and their
centroids, the directional scale vector vds = (xs, ys) can be calculated by the
following formula:

xs =

(
nr∑

i=1

xi

)

− nr · xcp and ys =

(
nr∑

i=1

yi

)

− nr · ycp

Here, nr is the number of regions (i.e. toes and accessorial pads of the given
footprint, not counting the central pad), xcp and ycp are the x- and y-coordinates
of the centroid of the central pad, and xi and yi are the coordinates of the
centroid of region i. This vector can precisely indicate the relative directions
of any footprints. By picking up those footprints with similar direction scale
values, we can then directly indicate which path on the tracking card the current
footprint belongs to.

5 Experimental Test

In order to systematically test the accuracy of our algorithm, we test accuracy
on two datasets of mice tracked on cards. The first study is of introduced house
mice from New Zealand and the second study of hazel dormice from the United
Kingdom. The combined image data set has been divided into three data groups
(as shown in Figure 10). We recorded the experimental data during application
of the track recognition algorithm. The experimental results are reported by
tracking card for the three different image data groups in four different categories,
where each category represents a classification related to regions of interest on
a card. Thus a single card with multiple regions of interest may fall in more
than one of the following categories explained below, depending on the number
of regions identified:
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(Group 1) (Group 2) (Group 3)

Fig. 10. The preview images of the three image data groups. (Group 1) clear fore-
ground and background; (Group 2) dim foreground and background; (Group 3) unex-
pected species involved (here an invertebrate).

Sensitive Matches: The number of cards containing an identified footprint
fully matching the pre-defined rules in the algorithm (i.e. confirmed species
presence).

Loose matches (True): The number of cards containing a region of interest
loosely identified as a possible region of footprints, where it is truly one
footprint (i.e. footprint identified).

Loose matches (False): The number of cards containing a region of interest
loosely identified as a possible region of footprints, but it is not a footprint
(i.e. mis-identification).

Did not detect print: The number of cards where no footprints are detected
by the algorithm (i.e. species absence).

The experimental result (as shown in Table 1) indicates that the algorithm has a
fairly high success rate for sensitive footprint identification and loose-condition
matches for images with clear prints and clean background.

The accuracy for dim background and foreground images is lower than the
results for images from clear background and foreground images. In addition, the
accuracy for tracking cards with tracks from unexpected species

Table 1. The experimental statistical analysis for the algorithm accuracy evaluation.
“Sensitive matches” indicates rate of best matched footprints. Correctly or incorrectly
detected possible footprints are assigned as “loose matches (true)” or “loose matches
(false)”. “Did not detect print” records no footprints detected for a card.

Percentage of Detection Accuracy
Classification Group 1 (72 cards) Group 2 (42 cards) Group 3 (22 cards)

Sensitive matches 77.8 % 61.9 % 68.2 %
Loose matches (True) 85.7 % 68.3 % 80.7 %
Loose matches (False) 14.3 % 31.7 % 19.3 %
Did not detect print 1.4 % 9.5 % 9.1 %
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(e.g. invertebrates) is surprisingly good; the reason being that the track recog-
nition algorithm has a filtering function that filters out all the tracks with very
small regions, which might be left by unknown species other than our object of
study (e.g. invertebrate tracks).

6 Conclusions

We propose a method for locating and classifying footprints of small species on
scanned tracking card images by three major steps: (1) extracting regions of
interest; (2) further analysis with “rule-based conditional filtering”; (3) extract-
ing footprint “geometric features”. In addition, our method can provide useful
results for finding footprints which belong to the same path with a 2D vector
called “direction scale”.

Comparing with some previous studies [6,8,9,10,12] in this research field, we
propose two new ideas for this algorithm:

A footprint could be identified either “fully matched” or “partially matched”,
which depends on the degree of matching the pre-defined rules. Due to the
sparse amount of information provided by the detected interest points, rule-
based identification processes could be a key to the shortage of information.
Moreover, rule-based identification could allow developers to add a new rule or
modify the existing rules. This provides a greater extensibility to this algorithm.

Footprint geometric models could provide precise mathematical relationships
among nodes of the standard footprint for any target species. In practical im-
plementations, numbers, equations and formulas are always considered useful
information for footprint identification (e.g. [10] ).

The experimental results provide positive feedback on the accuracy of this
algorithm; if the image cards have clear prints and clean background, 85.7 %
of them can be detected as “loosely matched” by the pre-defined rules of this
algorithm.
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