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Abstract. In this paper, we present an automatic and accurate pedes-
trian segmentation algorithm by incorporating pedestrian shape prior
into the random walks segmentation algorithm. The random walks [1] al-
gorithm requires user-specified labels to produce segmentation with each
pixel assigned to a label, and it can provide satisfactory segmentation
result with proper input labeled seeds. To take advantage of this interac-
tive segmentation algorithm, we improve the random walks segmentation
algorithm by incorporating prior shape information into the same opti-
mization formulation. By using the human shape prior, we develop a
fully automatic pedestrian image segmentation algorithm. Our exper-
imental results demonstrate that the proposed algorithm significantly
outperforms the previous segmentation methods in terms of pedestrian
segmentation accuracy on a number of real images.
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1 Introduction

Pedestrian segmentation is an important problem in computer vision, especially
for video surveillance [2]. Human detection is usually the first step in video
surveillance. The traditional systems can only supply rough human locations,
but more precise human segmentation information is required for some advanced
applications, such as gait recognition, human identification or human motion
analysis [3]. Therefore, pedestrian image segmentation which segments pedes-
trian from an image is a critical problem with several potential applications.

Object segmentation is the key technique in many applications, including
interactive video editing, content-based image retrieval, video surveillance, med-
ical image analysis, and so on. This problem has been researched in computer
vision for decades, but automatic object segmentation is still very challenging
for general objects whose appearance is difficult to model, such as humans. A
finely segmented human image can provide important and precise information
of the human, which is very helpful for a number of higher level tasks on human
motion analysis. It remains a great challenge because of the highly articulated
human body postures, viewpoint changes, large appearance variations, and clut-
tered background, especially when pedestrians have similar color or texture with
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the connected background regions. Recently, interactive segmentation techniques
[1][20] becomes popular due to their flexibility in handling the difficult cases.

In recent years, simultaneous detection and segmentation of pedestrians be-
come a popular problem. In general, these methods obtain rough shape or sil-
houette of human from different ways. In [4], Lin et al. proposed a hierarchical
part-template matching approach [5] and learned a human detector which con-
sists of elementary part detectors for head-torso, upper legs, and lower legs. This
algorithm provides accurate human detection and a rough human segmentation
from an image. Gao et al. [6] presented a novel feature representation called
Adaptive Contour Feature (ACF) that is robust against reasonable object defor-
mation like HOG, and the detection and segmentation of human was trained by
a cascade framework [7] and Real AdaBoost [8]. For human segmentation, each
pixel is classified as human or background from the ACFs.

The random walker algorithm was originally developed for interactive im-
age segmentation by Grady [1]. With input of some user-specified seeds, the
algorithm provides image segmentation result by solving a sparse linear system.
Grady [21] extended the random walker algorithm by incorporating an intensity-
based prior model into the energy minimization formulation to relieve the re-
quirement of user-specified labels in the original algorithm. The prior model
proposed in [21] is based on imposing the prior intensity distribution constraint
as an additional quadratic energy term into the original energy minimization for-
mulation. In this work, we propose to impose a pedestrian shape prior, instead of
the intensity-based prior, into the random walks image segmentation algorithm.
This shape prior is a mixture of Gaussians distribution, which is quite different
from [21], and the image segmentation can still be obtained via solving similar
sparse linear systems.

The overall flow of the proposed pedestrian segmentation algorithm is de-
picted in Fig. 1. It mainly consists of two components; namely, shape prior
estimation and pedestrian segmentation. The shape prior estimation is to learn
the human shape prior distribution from a training set of human shapes. The
pedestrian segmentation is based on a shape-prior constrained random walks

Fig. 1. System flow of the proposed pedestrian segmentation algorithm
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image segmentation algorithm that incorporates the learned human shape prior
into the random walks segmentation framework. We will detail these two main
components in the subsequent sections.

2 Shape Prior Estimation

In order to estimate the pedestrian shape prior model, we collect a large set
of pedestrian silhouettes, which were extracted from videos with uniform back-
ground. We took several pedestrian sequences, with each sequence containing one
person walking along difference directions. We applied a background subtraction
procedure to segment the pedestrian regions from videos and the extracted re-
gions are normalized to 64 x 128, as depicted in Fig. 2. Finally, the dataset
consists of 1,439 pedestrian silhouettes extracted from videos of 10 walking per-
sons. With the left-right reflections, there are totally 2,878 pedestrian silhouettes
in the training dataset.

Fig. 2. Samples of pedestrian silhouettes extracted from images. The silhouettes are
normalized to 64 x 128.

2.1 Pedestrian Shape Prior Model

The prior pedestrian shape model is estimated from the binary pedestrian sil-
houette data. To cluster the set of human silhouette data, we employ the Affinity
Propagation (AP) [9] clustering algorithm in this paper. The AP clustering is
an iterative algorithm that works by finding a set of exemplars in the data and
assigning other data points to the exemplars.

In this work, all the training pedestrian silhouettes are divided into 7 clusters
after applying the AP clustering. Next, we estimate the shape prior model µs =
(μs

1, μ
s
2, . . . , μ

s
N ) by taking the averages for all pixels of the silhouettes for each

cluster. In addition to the 7 prior models constructed from all the associated
pedestrian silhouettes, we also compute the model with all the pedestrian images
µ0 = (μ0

1, μ
0
2, . . . , μ

0
N ). Fig. 3. shows the probability map of each cluster. All the

8 shape models are employed to form a mixture of Gaussians distribution for
the human shape prior distribution; namely,

p(x) = c

7∑

s=0

G(x − µs, Ds), (1)
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Fig. 3. The probability maps corresponding to all clusters are shown here, and the last
one is the probability map computed from all training data

where x = (x1, x2, . . . , xN ) with xi representing a continuous random variable
for the i-th pixel that indicates the likelihood to be a pedestrian region, G is
a N -dimensional Gaussian function, . Ds is a diagonal covariance matrix to be
determined later, and c is a normalization factor.

3 Pedestrian Segmentation

Given an image I, each pixel vi ∈ V is assigned to a label li ∈ {0, 1} representing
background and pedestrian, respectively, in the pedestrian segmentation prob-
lem. The pedestrian segmentation problem is simply to assign vi the label based
on the posteriori probability P (xi > α|I), where α is set to 0.5 in this problem.
Noe that the shape prior p(x) is assumed to be a mixture of Gaussian functions
given in eq. 1. We will formulate the pixel likelihood estimation problem by us-
ing a graphical model framework, and derive the energy function for the image
segmentaion.

3.1 Graphical Model

We first describe the notion of a graph for an image. A graph G = (V, E) has
vertices (nodes), represented by set V , with each vertex corresponding to a
pixel and V = {vi}i=1,...,N , and edges, denoted by e ∈ E ⊆ V × V . An edge e
connecting two vertices vi and vj is denoted by eij . A weighted graph has a value
assigned to each edge, and it is called a weight. The weight of edge eij , is denoted
by w(eij) and we express it as wij . The degree of a vertex is di =

∑
wij for all

edges eij incident on vi. In this work, we assume that the graph is undirected
(wij = wji).

3.2 Edge Weights

In order to represent the image structure, one must define a function that maps a
change in image intensities to edge weights. This is a common feature of graph-
based algorithms for image analysis. In this work, we implement the typical
Gaussian weighting function given below. Let Ni be the neighborhood of a pixel
vi. In this paper, we employ an 8-connected neighborhood structure,
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wij =
{

exp(−β(gi − gj)2) vj ∈ Ni,
0 otherwise, (2)

where gi indicates the image intensity at pixel vi and β is a constant that controls
the strength of the weight. This equation could be modified to handle color vector
data by replacing (gi − gj)2 by ‖gi − gj‖2. The definition of weighting function
is the same as random walks [1] and [10], and it provides a numerical measure
for the label similarity between two neighboring pixels.

Besides the above Gaussian weighting function is used here, we also present
a weighting function for the shape prior,

ws
ij =

{
exp(−θ(μs

i − μs
j)

2) vj ∈ Ni,
0 otherwise,

(3)

where μs
i denotes the probability at pixel vi for the s-th shape prior model,

and θ is a free parameter. It is similar to eq. 2. The higher value of the weight
is computed when the probability of μs

i is very close to μs
j , which means that

they should be labeled with the same class, and vice versa. The degree of the
s-th shape prior model is ds

i =
∑

ws
ij for all edges eij incident on vi. Finally,

the importance for each node, denoted by Ds
i , is determined by multiplying the

associated degree of the prior shape model and the degree of the same node
determined by its weight, i.e.

Ds
i = di × ds

i (4)

Thus, the diagonal covariance matrix Ds for the s-th Gaussian in eq. 1 is
formed from the diagonal entries Ds

i .

3.3 Likelihood Estimation

Given a weighted graph, there are a set of marked nodes VM (seeds), and a set
of unmarked nodes VU , such that VU

⋃
VM = V and VU

⋂
VM = φ. Therefore,

we would like to label each node vi ∈ VU with a class, pedestrian or background.
The set of seeds VM in previous random walker segmentation is usually obtained
by user interaction. In this work, the seeds are placed automatically by using
the prior human shape model, and more details will be described subsequently.

In the random walks segmentation approach, the problem is to assign a label
to each node vi ∈ VU , the likelihood xi, such that a random walker starting from
that node first reaches a seed vj ∈ VM , and assigns a label for vj . The segmenta-
tion is then completed by assigning each free node to the label corresponding to
the highest likelihood. In our implementaion, the node vi ∈ VU will be labeled
to 1(pedestrian)if xi > 0.5.

Now we review the quadratic energy function to be minimized in random
walks segmentation [1],
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ERW (x) =
∑

eij∈E

wij(xi − xj)2 (5)

This energy function is called Dirichlet integral [11] in random walks. It is similar
to an electrical problem, which includes three fundamental equations of circuit
theory (Kirchhoff’s current and voltage law and Ohm’s law). Here is the explana-
tion for this energy function in likelihood: the energy function will be minimum
if the likelihood xi and xj at node vi and vj are very close when wij is a large
value, thus the node vi and vj should be labeled to the same class.

In addition to the random walks energy function given in eq. 5, we propose
another energy function to incorporate the prior shape model. The nodewise
priors μs

i , which represents the probability of the s-th pedestrian prior model
at node vi, and the energy function of the s-th pedestrian prior model can be
written as:

Es
Prior(x

s) =
∑

vi∈V

Ds
i (x

s
i − μs

i )
2 (6)

where xs
i is the likelihood at pixel vi of the s-th shape prior model.

The above two energy functions, given in eq. 5 and 6, are combined to ap-
proximate the total energy function corresponding to the MAP estimation of x
with the introduction of a parameter λ that controls the weighting between the
two energy functions; i.e.

ETotal(x) ≈ ERW (x) + λ min
0≤s≤7

Es
Prior(x) (7)

where the first term ERW is the label-continuity constraint borrowed from the
original Random Walks formulation enforcing that two neighboring pixels in
the small neighborhood system should have the same label if their colors or
intensities are similar, and the energy Es

Prior is the unary constraint that each
pixel tends to the s-th prior model. The weighting parameter λ is a positive
coefficient measuring how much we want to fit the prior models. If λ = 0, the
energy function ETotal is completely the same as that used in the random walks
segmentation algorithm.

3.4 Convex Optimization

There is no closed-form solution to directly minimize the energy function in
eq. 7. Instead, we minimize the individual combined energy function Es

Total =
ERW +λEs

Prior for each individual shape prior model, and find the one with the
minimal cost to be the solution. For each individual combined energy function,
it can be formulated as a quadratic form of x as follows:

Es
Total(x

s) = ERW (xs) + λEs
Prior(x

s)
=

∑

eij∈E

wij(xs
i − xs

j)
2 + λ

∑

vi∈V

Ds
i (x

s
i − μs

i )
2

= xsT Lxs + (xs − µs)T λDs(xs − µs)

(8)
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where Ds is a diagonal matrix with the values Ds
i on the diagonal, Ds =

diag([Ds
1, . . . , D

s
N ]), and L represents the combinatorial Laplacian matrix [12]

defined by

Lij =

⎧
⎨

⎩

di if i = j,
−wij if vi and vj are adjacent nodes,
0 otherwise,

(9)

where Lij is indexed by vertices vi and vj .
Partitioning the vertices into two sets, marked node set VM (seeds) and un-

marked node set VU , we may decompose eq. 8 into

Es
Total(x

s) = xsT Lxs + (xs − µs)T λDs(xs − µs)
= xsT

MLMxs
M + 2xsT

UBT xs
M + xsT

ULUxs
U

+(xs
M − µs

M )T λDs
M (xs

M − µs
M )

+(xs
U − µs

U )T λDs
U (xs

U − µs
U )

(10)

where xs = [xs
M , xs

U ] and µs = [µs
M , µs

U ] correspond to the partitioning of
the labels and potentials into the seeded and unseeded nodes, respectively.

Differentiating the above matrix form for the energy function Es
Total given in

eq. 10 with respect to xs
U , and setting it to zero yields

∂Es
Total

∂xs
U

= BT xs
M + LUxs

U + λDs
U (xs

U − µs
U ) = 0 (11)

then the system of linear equations can be written as

(LU + λDs
U )xs

U = −BT xs
M + λDs

Uµs
U (12)

Since the matrix A = LU + λDs
U is positive definite, the linear system in 12

can be solved easily by an iterative numberical algorithm, such as conjugate
gradient, to obtain the likelihood xs

U for all unmarked pixels.

3.5 Prior Model Decision

The score function is presented for deciding the prior model automatically. The
correlation coefficient is used as a score function Score(xs, µs) that evaluates the
normalized correlation between the prior model µs and its corresponding segmen-
tation result xs. Let s∗ denote the prior model with the maximum score, i.e.

s∗ = argmaxs(Score(xs, µs)) (13)

Finally, after we compute the likelihood xs∗
i in eq. 12 for the s∗-th prior model,

the decision rule of each pixel vi for image segmentation is given as follows

ls
∗

vi
=

{
1(pedestrian) if xs∗

i > T1,
0(background) otherwise,

(14)
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where T1 is the threshold. After assigning the label ls
∗

vi
to each pixel vi, the

pedestrian segmentation is accomplished.

3.6 Human Detection and Refinement

In order to make use of the prior model appropriately, it is necessary to find
the precise location of pedestrian in an image. First of all, a human detector is
applied to obtain a rough position, Ir, of pedestrian in this system. Fig. 4 (a)
shows the result of human detection in [13], the bounding box is regarded as a
coarse pedestrian location in this procedure.

Refining the precise location of pedestrian based on the rough position is
proposed in this section. This problem is formulated as a binary sliding-window
search problem. A multiple-size window is scanned over the bounding box which
is determined from the human detection result, and template matching provides
estimates of the pose model parameters for every detected window. We define a
score function, which is the same as that given in eq. 14, to find precise location
of pedestrian based on the maximal score.

The random walks segmentation without prior model is applied to Ir to obtain
the ordinary probability of pedestrian (Fig. 4 (c)), and the seeds are placed using
μ0

i ∈ µ0 (prior model with whole training data), i.e.

Seedped = {vi|μ0
i > T2} (15)

where T2 is threshold for shape prior, and Seedbackground is determined with
respect to the rectangular boundary of Ir. An example of human detection re-
finement is depicted in Fig. 4 (b).

Fig. 4. Example of human detection and refinement procedure. (a) Result of human
detection, the bounding box with yellow line shows Ir. (b) Seeds are placed in Ir. The
green and blue dots represent the pedestrian and background seeds, respectively. (c)
Result of the random walks segmentation with the seeds from (b), and the bounding
boxes with red lines indicate the multiscale sliding window. (d) The final result with
human detection and refinement procedure.

4 Experimental Results

All of our experiments were performed on a PC equipped with Intel i5 CPU 750
(2.67 GHz) and 2 GB memory. The proposed pedestrian segmentation algorithm
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was implemented in MATLAB. We have used the MIT pedestrian dataset [14],
INRIA person dataset [15], and ViSOR surveillance video dataset [16] to evaluate
the results of our algorithm. The ViSOR dataset consists of surveillance videos,
and we trimmed a short pedestrian sequence from it for the testing.

Refining the precise location of pedestrian is formulated as a sliding-window
search problem. We refine the detection window by using the NCC score with 7
scales of the sliding windows. In order to quantify the results of the pedestrian
segmentation, we applied our algorithm on MIT, INRIA, and ViSOR datasets,
and compare the segmentation results with manually labeled masks, which are
regarded as the ground truth.

The percentage of overlap area between the ground truth mask and the seg-
mented region is evaluated as the segmentation accuracy in this experiment.
The manually labeled segmentation ground truths are sometimes ambiguous
around the boundary pixels. Hence we mark a two-pixel width do-not-care
(DNC) boundary for accuracy assessment of the human segmentation results.
This strategy is similar to that used in [18] [19].

We select 60 testing images from MIT and INRIA datasets, and cut a short
video from the ”Man with a dog” video sequence in the ViSOR dataset, the
trimmed video contains 30 testing images, Table 1 shows comparison of the
segmentation accuracies for the GrabCut [20] algorithm, the random walks algo-
rithm and the proposed algorithm. Fig. 6 depicts some segmentation results from
the testing images for the comparison of the proposed pedestrian segmentation
algorithm with the GrabCut [20] algorithm and the random walks segmentation
algorithm. In our experiments, all of the three algorithms have with the same
initialized windows of detected humans for a fair comparison. It is obvious from
Table 1 and Fig. 6 that the proposed pedestrian segmentation algorithm signif-
icantly outperforms the other two well-known segmentation algorithms in our
experiments.

Fig. 5. The testing image samples and the corresponding segmentation ground truth
masks
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(a)

(b)

(c)

Fig. 6. Pedestrian segmentation results by using three different methods with the same
initializations on testing images in (a) MIT, (b) INRIA, and (c) ViSOR datasets. The
first rows give the results by using the GrabCut method, the second rows are the results
by using the random walks algorithm, and the third rows show the results by using the
proposed pedestrian segmentation algorithm.
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Table 1. Overlap area percentages between ground truth and segmented regions

Dataset Methods Accuracy

MIT
GrabCut 68.06 %
Random Walks 81.16 %
Our method 84.36 %

INRIA
GrabCut 46.56 %
Random Walks 69.78 %
Our method 83.36 %

ViSOR
GrabCut 46.14 %
Random Walks 71.03 %
Our method 87.08 %

5 Conclusion

In this paper, we presented an automatic pedestrian segmentation algorithm
by incorporating pedestrian shape prior into random walks segmentation. Our
experimental results show that the proposed algorithm can provide good seg-
mentation results for the cases with slight occlusion, similar background and
illumination changes. In addition, a new pedestrian dataset with labeled silhou-
ettes is produced.

For the directions of future research, the over-segmentation can be incorpo-
rated into this framework to obtain more accurate segmentation and reduce
the computational time by taking each region as a node. It could be a possible
direction for developing a more accurate and robust pedestrian segmentation
technique.
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