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Abstract. In recent years, several classes of Boolean functions with
good cryptographic properties have been constructed by using univari-
ate (or bivariate) polynomial representation of Boolean functions over
finite fields. The estimation of an incomplete additive character sum
plays an important role in analyzing the nonlinearity of these functions.
In this paper, we consider replacing this character sum with another in-
complete additive character sum, whose estimation was firstly given by
A.Winterhof in 1999. Based on Winterhof’s estimation, we try to modify
two of these functions and obtain better nonlinearity bound of them.
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1 Introduction

In order to resist all kinds of cryptographic attacks, Boolean functions used in
stream ciphers should have good cryptographic properties including balanced-
ness, high algebraic degree, high nonlinearity, high resiliency and large algebraic
immunity. Construction of Boolean functions with good cryptographic properties
has been an important problem for many years.

In 2008, Carlet and Feng exploited the univariate polynomial representation
of Boolean functions in finite fields and constructed successfully a class of bal-
anced Boolean functions with optimal algebraic degree, optimal algebraic immu-
nity and good nonlinearity [1]. Before this result, none of constructed Boolean
functions with optimal algebraic immunity could be proven to have good non-
linearity. This class of functions was then called the Carlet-Feng function. From
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China (Grant No. 61070168, Grant No. 10971246).
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then on, Boolean functions with optimal algebraic immunity constructed by us-
ing univariate (or bivariate) polynomial representation received more attention
[2,3,4,5,6,7,8].

P.Rizomiliotis discussed the resistance of Boolean functions against (fast) al-
gebraic attacks and provided a sufficient and necessary condition of Boolean
function having optimal algebraic immunity under univariate polynomial rep-
resentation [7]. Before long, X.Zeng et al. exploited the sufficient and necessary
condition and provided more constructions of Boolean functions with optimal
algebraic immunity under univariate polynomial representation [8].

Tu and Deng firstly studied the algebraic immunity of a subclass of the so-
called Partial Spread functions introduced by Dillon [9]. They obtained a class
of bent functions with optimal algebraic immunity based on an unproven combi-
natoric conjecture and constructed a class of Boolean functions in even variables
with optimal algebraic degree, better nonlinearity (than that of the Carlet-Feng
function) and optimal algebraic immunity based on the conjecture [3]. This class
of functions was then called the Tu-Deng function. They also proposed a class
of 1-resilient functions in even variables with optimal algebraic degree, good
nonlinearity and suboptimal algebraic immunity based on the conjecture [5].

Before long, X.Tang et al. generalized Tu-Deng’s results. Based on Tu-Deng’s
conjecture, they further improved the nonlinearity of balanced Boolean functions
with optimal algebraic immunity and also gave a class of 1-resilient functions in
even variables with optimal algebraic degree, good nonlinearity and suboptimal
algebraic immunity [6].

It is easy to see that the estimation of the incomplete additive character sum
over F2n ,
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plays an important role in analyzing the nonlinearity of the Carlet-Feng function,
the Tu-Deng function and Tu-Deng’s 1-resilient function, where α is a primitive
element of F2n and tr(·) = trF2n /F2(·) is the absolute trace function.

In this paper, we would like to consider replacing this character sum with
another incomplete additive character sum, whose estimation was firstly given by
A.Winterhof in 1999 [10]. Based on the character sum considered by Winterhof,
we try to modify the Tu-Deng function and Tu-Deng’s 1-resilient function. Using
Winterhof’s estimation, we can obtain better nonlinearity bound of these two
functions.

The nonlinearity bound of the modified functions will be better than that of
the original functions, but unfortunately it is worse than that of the Boolean
functions given by X.Tang et al. in [6]. Moreover, the algebraic degree of the
modified Tu-Deng function will decrease compared with the original function.
This means that the modified functions given by us may not be a good choice for
stream ciphers. However, we believe that our work will help us understand the
impact of incomplete additive character sums on the estimation of nonlinearity
of Boolean functions.
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The rest of the paper is organized as follows. Section 2 provides some pre-
liminaries and recalls the character sum considered by Winterhof. Section 3 and
Section 4 modify the Tu-Deng function and Tu-Deng’s 1-resilient function re-
spectively and discuss their cryptographic properties.

2 Preliminaries

Let n be a positive integer. We denote by Bn the set of all the n-variable Boolean
functions. Any n-variable Boolean function has a unique representation as a
multivariate polynomial over F2, called the algebraic normal form(ANF),

f(x1, x2, · · · , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

aijxixj + · · · + a12···nx1x2 · · ·xn,

where a0, ai, aij , . . . , a12···n belong to F2. The algebraic degree of Boolean func-
tion f , denoted by deg(f), is the degree of this polynomial, i.e., the number of
variables in the highest order term with nonzero coefficient. A boolean function
is affine if there exists no term of degree strictly greater than 1 in the ANF.

A Boolean function g ∈ Bn is called an annihilator of f ∈ Bn if fg = 0.
The lowest algebraic degree of all the nonzero annihilators of f and 1 + f is
called algebraic immunity of f , denoted by AIn(f). It has been also proved
that AIn(f) ≤ �n

2 � for a given f ∈ Bn [11,12]. A Boolean function f ∈ Bn has
optimal (suboptimal) algebraic immunity if AIn(f) = �n

2 � (= �n
2 � − 1).

For f ∈ Bn, the set of x = (x1, x2, · · · , xn) ∈ F
n
2 for which f(x) = 1 (resp.

f(x) = 0) is called the on-set (resp. off-set) of f , denoted by supp(f) (resp.
supp(1 + f)). The Hamming weight of f is the cardinality of supp(f), denoted
by wt(f). f is called balanced if wt(f) = 2n−1.

The Hamming distance of f ∈ Bn from g ∈ Bn is the Hamming weight of f+g.
The nonlinearity of an n-variable Boolean function f is its minimum Hamming
distance from all the n-variable affine functions. The nonlinearity of f ∈ Bn can
be described through its Walsh transform:

nl(f) = 2n−1 − 1
2

max
ω∈F

n
2

|Wf (ω)|,

where Wf (ω) =
∑

x∈F
n
2
(−1)f(x)+ω·x and ω · x ∈ F2 is the usual inner product

over F
n
2 . Moreover, Wf (ω) = −2

∑

supp(f)

(−1)ω·x for ω �= 0.

By identifying the finite field F2n with the vector space F
n
2 , an n-variable

Boolean function f can be written as a univariate polynomial over F2n : f(x) =
∑2n−1

i=0 fix
i, where f0, f2n−1 ∈ F2 and f2i = (fi)2 ∈ F2n , 1 ≤ i ≤ 2n − 2. The

algebraic degree deg(f) (not the degree of the polynomial over F2n) is given by
the largest integer s = wt2(i) such that fi �= 0, where wt2(i) is the number of
nonzero coefficients in the binary representation of i.

Let n = 2k then F2n ∼= F2k × F2k and an n-variable Boolean function f can
be written as a bivariate polynomial over F2k : f(x, y) =

∑2k−1
i=0

∑2k−1
j=0 hi,jx

iyj ,
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where hi,j ∈ F2k . The algebraic degree of Boolean function f , deg(f) is given
by the largest integer s = wt2(i) + wt2(j) such that hi,j �= 0. Under bivariate
polynomial representation over F2k the Walsh transform of Boolean function
f(x, y) ∈ B2k is given by Wf (a, b) =

∑

(x,y)∈F2k×F2k
(−1)f(x,y)+tr(ax+by) where

tr(·) is the absolute trace function. Moreover, for (a, b) �= 0, we have

Wf (a, b) = −2
∑

(x,y)∈supp(f)

(−1)tr(ax+by).

Let ψ be the additive canonical character of F2n , i.e. ,

ψ(c) = (−1)tr(c) for all c ∈ F2n ,

and g(x) ∈ F2n [x] be a univariate polynomial over F2n . Winterhof gave the
following results.

Lemma 1. [10] If the degree of g(x) as a polynomial over F2n , denoted by
deg(g), is more than 2 and gcd(deg(g), 2) = 1, then
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x∈V

ψ(g(x))

∣
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∣
∣
≤ (deg(g) − 1) · 2 n

2

holds for any additive subgroup V of F2n .

3 The Modified Tu-Deng Functions with a Better
Nonlinearity Bound

In this section we modify the Tu-Deng function according to Lemma 1, i.e. ,
the incomplete additive character sum considered by Winterhof. Before this we
recall the Tu-Deng function, which can be considered as a bivariate polynomial
over F2k .

Definition 1. 2k-variable Boolean function F : F2k × F2k → F2 is called the
Tu-Deng function if

F (x, y) =

⎧

⎨

⎩

f(x
y ) if x · y �= 0
1 if x = 0, y ∈ Δ
0 otherwise

,

where the k-variable Boolean function f : F2k → F2 is defined by

supp(f) = {1, α1, · · · , α2k−1−1},
α is a primitive element of F2k and Δ = {αi : i = 2k−1 − 1, 2k−1, · · · , 2k − 2}.
In the following content in this paper, the k-variable Boolean function f : F2k →
F2 is always defined by supp(f) = {1, α1, · · · , α2k−1−1} and α is a primitive
element of F2k .
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It was proven that the Tu-Deng function has the optimal algebraic immunity if
Tu-Deng’s conjecture is true [3,4]. According to the fact that 2k-variable Boolean
function H : F2k × F2k → F2 defined by

H(x, y) =
{
f(x

y ) if x · y �= 0
0 otherwise

,

is a bent function and the estimation of the incomplete additive character sum
over F2k given by Carlet and Feng,

∣
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2 k · ln 2 + 1, (λ ∈ F

∗
2k)

it was shown also in [3,4] that the nonlinearity of the Tu-Deng function is greater
and equal to

22k−1 − 2k−1 − 2
k
2 · k · ln 2 − 1.

Now we give the modified Tu-Deng function. Let V be an additive subgroup (or
considered as a vector subspace over F2) of dimension k−1 of F2k , t be a positive
integer and

V t = {γt | γ ∈ V }.
It is not hard to see that |V t| ≤ |V | and the equality holds if gcd(t, 2k − 1) = 1.

Definition 2. 2k-variable Boolean function Gt : F2k × F2k → F2 is defined by

Gt(x, y) =

⎧

⎨

⎩

f(x
y ) if x · y �= 0

1 if x = 0, y ∈ V t

0 otherwise
,

where V is an additive subgroup of dimension k − 1 of F2k and t is a positive
integer.

We discuss respectively the algebraic immunity, balanceness, nonlinearity and
algebraic degree of Gt(x, y) ∈ B2k.

Recall the proof of the Tu-Deng function about optimal algebraic immunity in
[3,4], we can see that replacing Δ in Definition 1 with V t in Definition 2 does not
essentially affect the procedures of the proof (Note that h(x, 0) = for ∀x ∈ F

∗
2k

can imply that hi,0 = 0 for 1 ≤ i ≤ 2k − 2 but for 0 ≤ i ≤ 2k − 1). Therefore,
Gt(x, y) ∈ B2k still has optimal algebraic immunity if Tu-Deng’s conjecture is
true.

Theorem 1. Boolean function Gt(x, y) ∈ B2k defined as in Definition 2 has
optimal algebraic immunity if Tu-Deng’s conjecture is true.

It is clear that wt(Gt(x, y)) = 2k−1(2k − 1) + |V t|. Since |V t| = |V | = 2k−1 if
gcd(t, 2k −1) = 1, about the balanceness of Gt(x, y) we have the following result
directly.
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Theorem 2. Boolean function Gt(x, y) ∈ B2k defined as in Definition 2 is bal-
anced if gcd(t, 2k − 1) = 1.

Note that
2k − 1 ≡ (−1)k − 1 ≡ (−2) mod 3

if k is odd and
2k − 1 ≡ (−1)

k
2 − 1 ≡ (−2) mod 5

if k ≡ 2 mod 4. Then we have the following corollaries.

Corollary 1. Boolean function G3(x, y) ∈ B2k defined as in Definition 2 is
balanced if k is odd.

Corollary 2. Boolean function G5(x, y) ∈ B2k defined as in Definition 2 is
balanced if k ≡ 2 mod 4.

Theorem 3. Let Boolean function Gt(x, y) ∈ B2k be defined as in Definition 2.
If t > 2 and gcd(t, 2k − 1) = 1 then its nonlinearity satisfies

nl(Gt(x, y)) ≥ 22k−1 − 2k−1 − (t− 1) · 2 k
2 .

In particular,
nl(G3(x, y)) ≥ 22k−1 − 2k−1 − 2

k
2 +1

if k is odd, and
nl(G5(x, y)) ≥ 22k−1 − 2k−1 − 2

k
2 +2

if k ≡ 2 mod 4.

Proof. Since gcd(t, 2k −1) = 1, Gt is balanced by Theorem 2 and WGt(0, 0) = 0.
Let 0 �= (a, b) ∈ F2k × F2k , then

|WGt(a, b)| =

∣
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∣

−2
∑

(x,y)∈supp(Gt)

(−1)tr(ax+by)
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∣

WH(a, b) − 2
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x=0,y∈V t

(−1)tr(ax+by)
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,

where the 2k-variable Boolean functionH as mentioned before is a bent function.
From Lemma 1, if t > 2 and gcd(t, 2k − 1) = 1 then
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which implies that

nl(Gt(x, y)) ≥ 22k−1 − 2k−1 − (t− 1) · 2 k
2 .

It is trivial that the rest of the theorem holds. �
It is not hard to see that the nonlinearity bound of G3(x, y) ∈ B2k for odd k
and G5(x, y) ∈ B2k for k with k ≡ 2 mod 4 are better than the nonlinearity
bound of the original Tu-Deng function except for some small k. In other words,
with Winterhof’s estimation, in most of cases (at least three-fourth of all) the
Tu-Deng function can be simply modified to have better nonlinearity bound.

However, the nonlinearity bound of G3(x, y) and G5(x, y) are still worse than
the nonlinearity bound of the Boolean function given by X.Tang et al. in [6]. This
is because H.Dobbertin’s balanced Boolean function with very high nonlinearity
[13] was involved cleverly in [6].

Before we determine the algebraic degree of Gt(x, y) ∈ B2k, we need two
lemmas.

Lemma 2. Let 0 ≤ i ≤ 2k − 1. If V is an additive subgroup of dimension k− 1
of F2k , then

∑

γ∈V

γ−i �= 0

if and only if i is a power of 2.

Proof. Let l(x) ∈ Bk such that its on-set is V , i.e. , supp(l(x)) = V . Then l(x)
can be written as a univariate polynomial over F2k :

l(x) =
∑

γ∈V

(x + γ)2
k−1 =

2k−1∑

i=0

⎛

⎝
∑

γ∈V

γ2k−1−i

⎞

⎠xi =
2k−1∑

i=0

⎛

⎝
∑

γ∈V

γ−i

⎞

⎠ xi.

Then
∑

γ∈V

γ−i is the coefficient of term xi. Since V is an additive subgroup of

dimension k − 1 of F2k , it is not hard to see that l(x) is affine. Therefore,

l(x) =
k−1∑

j=0

⎛

⎝
∑

γ∈V

γ2k−1−2j

⎞

⎠ x2j

=
k−1∑

j=0

⎛

⎝
∑

γ∈V

γ−2j

⎞

⎠x2j

.

Comparing the coefficients of two equations above, we get desire result. �
Lemma 3. Let k be a positive integer and j be a non-negative integer less than
k. If k is odd then wt2(2k−1−2j

3 ) = k−1
2 where j = 0, 2, 4, · · · , k−1. If k ≡ 2 mod 4

then wt2(2k−1−2j

5 ) = k
2 where j = 3, 7, 11, · · · , k − 3.

Proof. If k is odd and j = 0, it is not hard to see that

2k − 1 − 1 = 2(2k−1 − 1) = 2
(k−3)/2

∑

i=0

(22i + 22i+1) = 3
(k−3)/2

∑

i=0

22i+1.
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Thus, wt2(2k−2
3 ) = k−1

2 . Generally, for j = 2, 4, 6, · · · , k − 1, we have

2k − 1 − 2j = 2(2k−1 − 1) − (2j − 1) = 3
(k−3)/2

∑

i=0

22i+1 − 3 · 2j−2,

which implies that

wt2(
2k − 1 − 2j

3
) = wt2(

(k−3)/2
∑

i=0

22i+1 − 2j−2) =
k − 1

2
.

Similarly, if k ≡ 2 mod 4 and j = 3 we have

2k − 9 = 4(2k−2 − 1) − 5 = 5
(k−6)/4

∑

i=0

(24i+2 + 24i+3) − 5

Therefore wt2(2k−9
5 ) = k−2

2 + 1 = k
2 . Generally, for j = 7, 11, · · · , k − 3 we have

2k − 1 − 2j = 4(2k−2 − 1) − (2j − 3) = 4(2k−2 − 1) − 3(2j−3 − 1) − 5 · 2j−3

= 5
(k−6)/4

∑

i=0

(24i+2 + 24i+3) − 5
(j−7)/4

∑

i=0

(24i + 24i+3) − 5 · 2j−3

= 5
(k−6)/4

∑

i=(j+1)/4

(24i+2 + 24i+3) + 5
(j−7)/4

∑

i=0

(24i + 24i+1) + 5(2j−1 + 2j) − 5 · 2j−3

= 5
(k−6)/4

∑

i=(j+1)/4

(24i+2 + 24i+3) + 5
(j−7)/4

∑

i=0

(24i + 24i+1) + 5(2j−3 + 2j−2 + 2j).

Therefore wt2(2k−1−2j

5 ) = k−2
2 − 2 + 3 = k

2 . �
Theorem 4. Let Gt(x, y) ∈ B2k be defined as in Definition 2. If k is odd then
deg(G3(x, y)) = 3k+1

2 . If k ≡ 2 mod 4 then deg(G5(x, y)) = 3k
2 .

Proof. Function Gt(x, y) can be written as a bivariate polynomial over F2k .

Gt(x, y) = H(x, y) +
∑

a=0,b∈V t

(1 + (x+ a)2
k−1)(1 + (y + b)2

k−1)

= H(x, y) +
∑

b∈V t

(1 + x2k−1)(1 + (y + b)2
k−1),

where the 2k-variable Boolean functionH as mentioned before is a bent function.
Since deg(H) ≤ k, the algebraic degree of Gt is then determined by

∑

b∈V t

(1 + x2k−1)(1 + (y + b)2
k−1)
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= (1 + x2k−1)(1 + y2k−1) +
∑

b∈(V t)∗
(1 + x2k−1)(1 + (y + b)2

k−1)

= x2k−1 + y2k−1 +
∑

b∈(V t)∗

2k−1∑

i=1

biy2k−1−ix2k−1 +
∑

b∈(V t)∗
(y + b)2

k−1

Thus, deg(Gt) = k + wt2(2k − 1 − i) if and only if wt2(2k − 1 − i) is the largest
integer such that

∑

b∈(V t)∗
bi �= 0.

From Lemma 2, if k is odd, for G3(x, y),

2k − 1 − 2j

3
, j = 0, 2, 4, · · · , k − 1

are all the integers such that

∑

b∈(V 3)∗
b

2k−1−2j

3 =
∑

b∈V 3

b
2k−1−2j

3 =
∑

b∈V

b2
k−1−2j

=
∑

b∈V

b−2j �= 0.

By Lemma 3, wt2(2k − 1− 2k−1−2j

3 ) = k−wt2(2k−1−2j

3 ) = k+1
2 , i.e. , deg(G3) =

k + k+1
2 = 3k+1

2 .
Similarly, from Lemma 2, if k ≡ 2 mod 4, for G5(x, y),

2k − 1 − 2j

5
, j = 3, 7, 11, · · · , k − 3

are all the integers such that
∑

b∈(V t)∗ b
2k−1−2j

5 �= 0. By Lemma 3, wt2(2k − 1−
2k−1−2j

5 ) = k − wt2(2k−1−2j

5 ) = k
2 , i.e. , deg(G5) = k + k

2 = 3k
2 . The proof is

completed. �

4 The Modified Tu-Deng’s 1-Resilient Functions with a
Better Nonlinearity Bound

Being similar to Section 3, in this section, we modify the 1-resilient Boolean func-
tion given by Tu and Deng according to Lemma 1, then discuss its cryptographic
properties respectively.

Lemma 4. [5] Let F (x, y) be a 2k-variable Boolean function, i.e. , F : F2k ×
F2k → F2. If its on-set supp(F ) is constituted by the following four disjoint parts:

1. {(x, y) : y = αix, x ∈ F
∗
2k , i = 1, 2, · · · , 2k−1 − 1}

2. {(x, y) : y = x, x ∈ A}
3. {(x, 0) : x ∈ F2k \ A}
4. {(0, y) : y ∈ F2k \ A}
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where A = {0, 1, α, α2, · · · , α2k−1−1}. Then F is 1-resilient, deg(F ) = 2k − 2,
nl(F ) ≥ 22k−1 − 2k−1 − 3 · k · 2

k
2 ln 2 − 7 and AI2k(F ) ≥ k − 1 if Tu-Deng’s

conjecture is true.

The function F (x, y) defined as in Lemma 4 is called Tu-Deng’s 1-resilient func-
tion. Now we give the modified Tu-Deng’s 1-resilient function.

Definition 3. Let V be an additive subgroup of dimension k−1 of F2k and t �= 2
be a positive integer such that gcd(t, 2k − 1) = 1. We define 2k-variable Boolean
function Gt(x, y) : F2k × F2k → F2, whose on-set supp(Gt) is constituted by the
following four disjoint parts:

1. {(x, y) : y = αix, x ∈ F
∗
2k , i = 1, 2, · · · , 2k−1 − 1}

2. {(x, y) : y = x, x ∈ B}
3. {(x, 0) : x ∈ F2k \ B}
4. {(0, y) : y ∈ F2k \ B}

where B = V t ∪ {β} and β ∈ F2k \ V t.

Recall the proofs of Tu-Deng’s 1-resilient function about balanceness, 1-resiliency
and optimal algebraic immunity respectively, we can see that replacing A in
Lemma 4 with B in Definition 3 does not essentially affect the procedures of the
proofs.

Theorem 5. Let Boolean function Gt(x, y) ∈ B2k be defined as in Definition 3.
Then it is balanced and 1-resilient, and AI2k(Gt) ≥ k − 1 if Tu-Deng’s conjec-
ture is true.

Theorem 6. Let Boolean function Gt(x, y) ∈ B2k be defined as in Definition 3.
Its nonlinearity satisfies

nl(Gt(x, y)) ≥ 22k−1 − 2k−1 − 3(t− 1) · 2 k
2 − 4.

In particular,
nl(G3(x, y)) ≥ 22k−1 − 2k−1 − 3 · 2 k

2 +1 − 4

if k is odd, and

nl(G5(x, y)) ≥ 22k−1 − 2k−1 − 3 · 2 k
2 +2 − 4

if k ≡ 2 mod 4.

Proof. Since Gt is balanced WGt(0, 0) = 0. Let 0 �= (a, b) ∈ F2k × F2k , then

WGt(a, b) = −2
∑

(x,y)∈supp(Gt)

(−1)tr(ax+by)

= −2
2k−1−1∑

i=1

∑

x∈F
∗
2k

(−1)tr((a+bαi)x) − 2
∑

x∈B
(−1)tr((a+b)x)

−2
∑

x∈F2k\B
(−1)tr(ax) − 2

∑

y∈F2k\B
(−1)tr(by)
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Since t �= 2 and gcd(t, 2k − 1) = 1, from Lemma 1, we have
∣
∣
∣
∣
∣

∑

x∈B
(−1)tr(ax)

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

∑

x∈V t

(−1)tr(ax)

∣
∣
∣
∣
∣
+ 1 =

∣
∣
∣
∣
∣

∑

z∈V

(−1)tr(azt)

∣
∣
∣
∣
∣
+ 1 ≤ (t− 1) · 2 k

2 + 1.

Similarly, ∣
∣
∣
∣
∣
∣

∑

x∈F2k\B
(−1)tr(ax)

∣
∣
∣
∣
∣
∣

≤ (t− 1) · 2 k
2 + 1.

Therefore, it can be verified that

1
2

∣
∣
∣
∣

max
(a,b)∈F2k×F2k

WGt(a, b)
∣
∣
∣
∣
≤ 2k−1 + 1 + 3(t− 1) · 2 k

2 + 3

which implies that

nl(Gt(x, y)) ≥ 22k−1 − 2k−1 − 3(t− 1) · 2 k
2 − 4.

It is trivial that the rest of the theorem holds. �
Theorem 7. Let Boolean function Gt(x, y) ∈ B2k be defined as in Definition 3.
If k �= 3 then deg(G3(x, y)) = deg(G5(x, y)) = 2k − 2.

Proof. Let F (x, y) ∈ B2k be defined as in Lemma 4. In [5] it was proved that
deg(F ) = 2k − 2 if

∑

γ /∈A
γ2 �= 0.

It can be also see that replacing A in Lemma 4 with B in Definition 3 does not
affect this result holding, i.e. , for Boolean function Gt(x, y) ∈ B2k defined as in
Definition 3, deg(Gt) = 2k − 2 if

∑

γ /∈B
γ2 �= 0.

Note that
∑

γ /∈B
γ2 +

∑

γ∈B
γ2 =

∑

γ∈F2k

γ2 =

⎛

⎝
∑

γ∈F2k

γ

⎞

⎠

2

= 0.

Then we have

∑

γ /∈B
γ2 =

∑

γ∈B
γ2 =

∑

γ∈V t

γ2 + β2 =

⎛

⎝
∑

γ∈V t

γ

⎞

⎠

2

+ β2 =

⎛

⎝
∑

γ∈V

γt

⎞

⎠

2

+ β2,

where 0 �= β ∈ F2k \V t. According to Lemma 2,
∑

γ∈V

γ3 or
∑

γ∈V

γ5 can be nonzero

only if k = 3. This means that
∑

γ /∈B
γ2 �= 0

for t = 3, 5 when k �= 3. Therefore deg(G3(x, y)) = deg(G5(x, y)) = 2k− 2 when
k �= 3. �
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5 Conclusion

In this paper, according to the incomplete additive character sum over finite filed
F2k considered by Winterhof, we modify the Tu-Deng function and Tu-Deng’s
1-resilient function respectively. Using Winterhof’s estimation, we can obtain
better nonlinearity bound of these two functions compared with the original
functions. We also discuss other cryptographic properties of them.
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