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Abstract. We present a semantic technology-based approach to emerging 
monitoring systems based on our linked data approach in the Tetherless World 
Constellation Semantic Ecology and Environment Portal (SemantEco). Our 
integration scheme uses an upper level monitoring ontology and mid-level 
monitoring-relevant domain ontologies. The initial domain ontologies focus on 
water and air quality. We then integrate domain data from different 
authoritative sources and multiple regulation ontologies (capturing federal as 
well as state guidelines) to enable pollution detection and monitoring. An 
OWL-based reasoning scheme identifies pollution events relative to user chosen 
regulations. Our approach captures and leverages provenance to enable 
transparency. In addition, SemantEco features provenance-based facet 
generation, query answering, and validation over the integrated data via 
SPARQL. We introduce the general SemantEco approach, describe the 
implementation which has been built out substantially in the water domain 
creating the SemantAqua portal, and highlight some of the potential impacts for 
the future of semantically-enabled monitoring systems.  

Keywords: Environmental Portal, Provenance-Aware Search, Water Quality 
Monitoring, Pragmatic Considerations for Semantic Environmental Monitoring. 

1   Introduction 

Concerns over ecological and environmental issues such as biodiversity loss [1], 
water problems [14], atmospheric pollution [8], and sustainable development [10] 
have highlighted the need for reliable information systems to support monitoring of 
ecological and environmental trends, support scientific research and inform citizens. 
In particular, semantic technologies have been used in environmental monitoring 
information systems to facilitate domain knowledge integration across multiple 
sources and support collaborative scientific workflows [17]. Meanwhile, demand has 
increased for direct and transparent access to ecological and environmental 
information. For example, after a recent water quality episode in Bristol County, 
Rhode Island where E. coli was reported in the water, residents requested information 
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concerning when the contamination began, how it happened, and what measures were 
being taken to monitor and prevent future occurrences.1  

In this paper, we describe a semantic technology-based approach to ecological and 
environmental monitoring. We deployed the approach in the Tetherless World 
Constellation’s Semantic Ecology and Environment Portal (SemantEco). SemantEco 
is an exemplar next generation monitoring portal that provides investigation support 
for lay people as well as experts while also providing a real world ecological and 
environmental evaluation testbed for our linked data approach. The portal integrates 
environmental monitoring and regulation data from multiple sources following 
Linked Data principles, captures the semantics of domain knowledge using a family 
of modular simple OWL2 [7] ontologies, preserves provenance metadata using the 
Proof Markup Language (PML) [11], and infers environment pollution events using 
OWL2 inference. The web portal delivers environmental information and reasoning 
results to citizens via a faceted browsing map interface2.  

The contributions of this work are multi-faceted. The overall design provides an 
operational specification model that may be used for creating ecological and 
environmental monitoring portals. It includes a simple upper ontology and initial 
domain ontologies for water and air. We have used this design to develop a water 
quality portal (SemantAqua) that allows anyone, including those lacking in-depth 
knowledge of water pollution regulations or water data sources, to explore and 
monitor water quality in the United States. It is being tested by being used to do a 
redesign of our air quality portal3. It also exposes potential directions for monitoring 
systems as they may empower citizen scientists and enable dialogue between 
concerned citizens and professionals. These systems, for example, may be used to 
integrate data generated by citizen scientists as potential indicators that professional 
collection and evaluation may be needed in particular areas. Additionally subject 
matter professionals can use this system to conduct provenance-aware analysis, such 
as explaining the cause of a water problem and cross-validating water quality data 
from different data sources with similar contextual provenance parameters (e.g. time 
and location). 

In this paper, section 2 reviews selected challenges in the implementation of the 
SemantEco design in the SemantAqua portal on real-world data. Section 3 elaborates 
how semantic web technologies have been used in the portal, including ontology-
based domain knowledge modeling, real-world water quality data integration, and 
provenance-aware computing. Section 4 describes implementation details and section 
5 discusses impacts and several highlights. Related work is reviewed in section 6 and 
section 7 describes future directions.  

2   Ecological and Environmental Information Systems Challenges 

SemantEco provides an extensible upper ontology for monitoring with an initial focus 
on supporting environmental pollution monitoring with connections to health impacts. 
                                                           
1  Morgan, T. J. 2009. “Bristol, Warren, Barrington residents told to boil water” Providence 

Journal, September 8, 2009. http://newsblog.projo.com/2009/09/residents-of-3.html 
2  http://was.tw.rpi.edu/swqp/map.html 
3  http://logd.tw.rpi.edu/demo/clean_air_status_and_trends_-_ozone 
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Our initial domain area for an in depth dive was water quality. The resulting portal is 
a publicly accessible semantically-enabled water information system that facilitates 
discovery of polluted water, polluting facilities, specific contaminants, and health 
impacts. We are in the process of extending it to include air quality data as well as 
industrial connections to the operating entities of polluting facilities. We faced a 
number of challenges during implementation, which we will now discuss. 

2.1   Modeling Domain Knowledge for Environmental Monitoring 

Environmental monitoring systems must model at least three types of domain 
knowledge: background environmental knowledge (e.g., water-relevant contaminants, 
bodies of water), observational data items (e.g., the amount of arsenic in water) 
collected by sensors and humans, and (preferably authoritative) environmental 
regulations (e.g., safe drinking water levels for known contaminants). An 
interoperable model is needed to represent the diverse collection of regulations, 
observational data, and environmental knowledge from various sources. 

Observational data include measurements of environmental characteristics together 
with corresponding metadata, e.g. the type and unit of the data item, as well as 
provenance metadata such as sensor locations, observation times, and optionally test 
methods and devices used to generate the observation. A light-weight extensible 
domain ontology is ideal to enable reasoning on observational data while limiting 
ontology development and understanding costs.  

A number of ontologies have been developed for modeling environmental 
domains. Raskin et al. [13] propose the SWEET ontology family for Earth system 
science. Chen et al. [5] models relationships among water quality datasets. Chau et al. 
[4] models a specific aspect of water quality. While these ontologies provide support 
to encode the first two types of domain knowledge, they do not support modeling 
environmental regulations. 

Environmental regulations describe contaminants and their allowable thresholds, 
e.g. “the Maximum Contaminant Level (MCL) for Arsenic is 0.01 mg/L” according to 
the National Primary Drinking Water Regulations (NPDWRs)4 stipulated by the US 
Environmental Protection Agency (EPA). Water regulations are established both at 
the federal level and by different state agencies. For instance, the threshold for 
Antimony is 0.0056 mg/L according to the Rhode Island Department of 
Environmental Management’s Water Quality Regulations5 while the threshold for 
Antimony is 0.006 mg/L according to the Drinking Water Protection Program6 from 
the New York Department of Health. To capture the diversity of the water 
regulations, we generated a comparison table7 (including provenance) of different 
contaminant thresholds at federal and state levels.  

                                                           
4 http://water.epa.gov/drink/contaminants/index.cfm 
5 http://www.dem.ri.gov/pubs/regs/regs/water/h20q09.pdf 
6 http://www.health.ny.gov/environmental/water/drinking/part5/tables.htm 
7 http://tw.rpi.edu/web/project/TWC-SWQP/compare_five_regulation 
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2.2   Collecting Environmental Data 

Environmental information systems need to integrate data from distributed data 
sources to enrich the source data and provide data validation. For water quality 
monitoring, two major U.S. government agencies publish water quality data: the 
Environmental Protection Agency (EPA) and US Geological Survey (USGS). Both 
release observational data based on their own independent water quality monitoring 
systems. Permit compliance and enforcement status of facilities is regulated by the 
National Pollutant Discharge Elimination System (NPDES8) under the Clean Water 
Act (CWA). The NPDES datasets contain descriptions of the facilities (e.g. name, 
permit number, and location) and measurements of water contaminants discharged by 
the facilities for up to five test types per contaminant. USGS publishes data about 
water monitoring sites and measurements from water samples through the National 
Water Information System (NWIS)9.  

Although environmental datasets are often organized as data tables, it is not easy to 
integrate them due to syntactic and semantic differences. In particular, we observe 
multiple needs for linking data: (i) the same concept may be named differently, e.g., 
the notion “name of contaminant” is represented by “CharacteristicName” in USGS 
datasets and “Name” in EPA datasets, (ii) some popular concepts, e.g. name of 
chemical, may be used in domains other than water quality monitoring, so it would be 
useful to link to other accepted models, e.g. the ChemML chemical element 
descriptions and (iii) most observational data are complex data objects. For example, 
Table 1 shows a fragment from EPA’s measurement dataset, where four table cells in 
the first two columns together yield a complex data object: “C1” refers to one type of 
water contamination test, “C1_VALUE” and “C1_UNIT” indicate two different 
attributes for interpreting the cells under them respectively, and the data object reads 
“the measured concentration of fecal coliform is 34.07 MPN/100mL under test option 
C1”. Effective mechanisms are needed to allow connection of relevant data objects 
(e.g., the density observations of fecal coliform observed in EPA and USGS datasets) 
to enable cross-dataset comparisons.  

Table 1. For the facility with permit RI0100005, the 469th row for Coliform_fecal_general 
measurements on 09/30/2010 contains 2 tests 

C1_VALUE C1_UNIT C2_VALUE C2_UNIT 
34.07 MPN/100ML 53.83 MPN/100ML 

2.3   Provenance Tracking and Provenance-Aware Computing 

In order to enable transparency and encourage community participation, a public 
information system should track provenance metadata during data processing and 
leverage provenance metadata in its computational services. Similarly, an 

                                                           
8 http://www.epa-echo.gov/echo/compliance_report_water_icp.htm 
9 http://waterdata.usgs.gov/nwis 
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environmental monitoring system that combines data from different sources should 
maintain and expose data sources on demand. This enables data curators to get credit 
for their contributions and also allows users to choose data from trusted sources. The 
data sources are automatically refreshed from the corresponding provenance metadata 
when the system ingests new data. 

Provenance metadata can maintain context information (e.g. when and where an 
observation was collected), which can be used to determine whether two data objects 
are comparable. For example, when pH measurements from EPA and USGS are 
validated, the measurement provenance should be checked: the latitude and longitude 
of the EPA and USGS sites where the pH values are measured should be very close, 
the measurement time should be in the same year and month, etc. 

3   Semantic Web Approach 

We believe that a semantic web approach is well suited to the general problem of 
monitoring, and explore this approach with a water quality monitoring portal at scale.  

3.1   Domain Knowledge Modeling and Reasoning 

We use an ontology-based approach to model domain knowledge in environmental 
information systems. An upper ontology10 defines the basic terms for environmental 
monitoring. Domain ontologies extend the upper ontology to model domain specific 
terms. We also develop regulation ontologies 11  that include terms required for 
describing compliance and pollution levels. These ontologies leverage OWL 
inference to reason about the compliance of observations with regulations. 

Upper Ontology Design 
Existing ontologies do not completely cover all the necessary domain concepts as 
mentioned in section 2.1. We provide an upper ontology that reuses and is 
complementary to existing ontologies (e.g. SWEET, FOAF). The ontology models 
domain objects (e.g. polluted sites) as classes and their relationships (e.g. has 
Measurement, hasCharacteristic12) as properties. A subset of the ontology is illustrated in 
Figure 1. A polluted site is modeled as something that is both a measurement site and 
polluted thing, which is something that has at least one measurement that violates a 
regulation.  

This ontology can be extended to different domains by adding domain-specific 
classes. For example, water measurement is a subclass of measurement, and water site 
is the intersection of body of water, measurement site and something that has at least 
one water measurement13. Our water quality extension is also shown in Figure 1. 

                                                           
10  http://escience.rpi.edu/ontology/semanteco/2/0/pollution.owl# 
11  e.g., http://purl.org/twc/ontology/swqp/region/ny; others are listed at 

http://purl.org/twc/ontology/swqp/region/ 
12  Our ontology uses characteristic instead of contaminant based on the consideration that some 

characteristics measured like pH and temperature are not contaminants. 
13  http://escience.rpi.edu/ontology/2/0/water.owl# 
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Fig. 1. Portion of the TWC Environment Monitoring Ontology 

 

Fig. 2. Portion of the EPA Regulation Ontology 

Regulation Ontology Design 
Each domain must define its own regulation ontology that maps the rules in 
regulations to OWL classes. For water quality monitoring, we developed a regulation 
ontology in which the allowable ranges of regulated characteristics are encoded via 
numeric range restrictions on datatype properties. The rule-compliance results are 
reflected by whether an observational data item is a member of the class mapped from 
the rule. Figure 2 illustrates the OWL representation of one rule from EPA’s 
NPDWRs, i.e. drinking water is polluted if the concentration of Arsenic is more than 
0.01 mg/L. In the regulation ontology, ArsenicDrinkingWaterRegulationViolation is a 
water measurement with value greater than or equal to 0.01 mg/L of the Arsenic 
characteristic. Regulations in other environment domains can be similarly mapped to 
OWL2 restrictions if they represent violations as ranges of measured characteristics. 

Reasoning Domain Data with Regulations 
Combining observational data items collected at water-monitoring sites and the 
domain and regulation ontologies, an OWL2 reasoner can decide if any sites are 
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polluted. This design provides several benefits. First, the upper ontology is small and 
easy to maintain; it consists of only 7 classes, 4 object properties, and 10 data 
properties. Secondly, the ontology design is extensible. The upper ontology can be 
extended to other domains, e.g. air quality monitoring14. Regulation ontologies can be 
extended to incorporate more regulations as needed. We wrote converters to extract 
federal and four states’ regulation data from web pages and translated them into 
OWL2 [7] constraints that align with the upper ontology. The same workflow can be 
used to obtain the remaining state regulations using either our existing converters or 
potentially new converters if the data are in different forms. The design leads to 
flexible querying and reasoning: the user can select the regulations to apply to the 
data and the reasoner will classify using only the ontology for the selected 
regulations. For example, when Rhode Island regulations are applied to water quality 
data for zip code 02888 (Warwick, RI), the portal detects 2 polluted water sites and 7 
polluting facilities. If the user chooses to apply California regulations to the same 
region, the portal identifies 15 polluted water sites, including the 2 detected with 
Rhode Island regulations, and the same 7 polluting facilities. One conclusion is that 
California regulations are stricter than Rhode Island’s (and many other states), and the 
difference could be of interest to environmental researchers and local residents. 

3.2   Data Integration 

When integrating real world data from multiple sources, monitoring systems can 
benefit from adopting the data conversion and organization capabilities enabled by the 
TWC-LOGD portal [6]. The open source tool csv2rdf4lod15 can be used to convert 
datasets from heterogeneous sources into Linked Data [9].  

Linking to ontological terms: Datasets from different sources can be linked if they 
reuse common ontological terms, i.e. classes and properties. For instance, we map the 
property “CharacteristicName” in the USGS dataset and the property “Name” in the 
EPA dataset to a common property water:hasCharacteristic. Similarly, we map spatial 
location to an external ontology, i.e. wgs8416:lat and wgs84:long.  

Aligning instance references: We promote references to characteristic names from 
literal to URI, e.g. “Arsenic” is promoted to “water:Arsenic”, which then can be 
linked to external resources like “dbpedia:Arsenic” using owl:sameAs. This design is 
based on the observation that not all instance names can be directly mapped to 
DBpedia URIs (e.g., “Nitrate/Nitrite” from the Massachusetts water regulations17 
maps two DBpedia URIs), and some instances may not be defined in DBpedia (e.g., 
“C5-C8” from the Massachusetts water regulations). By linking to DBpedia URIs, we 
reserve the opportunity to connect to other knowledge base, e.g. disease database.  

                                                           
14 http://escience.rpi.edu/ontology/2/0/air.owl# 
15 http://purl.org/twc/id/software/csv2rdf4lod 
16 http://www.w3.org/2003/01/geo/wgs84_pos 
17 The “2011 Standards & Guidelines for Contaminants in Massachusetts Drinking Water” at  

 http://www.mass.gov/dep/water/drinking/standards/dwstand.htm 
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Converting complex objects: As discussed in section 2.2, we often need to compose a 
complex data object from multiple cells in a table. We use the cell-based conversion 
capability provided by csv2rdf4lod to enhance EPA data by marking each cell value 
as a subject in a triple and bundling the related cell values with the marked subject. 
The details can be found in [18].  

3.3   Provenance Tracking and Provenance-Aware Computing 

SemantEco provenance data come from two sources: (i) provenance metadata 
embedded in the original datasets, e.g. measurement location and time; (ii) metadata 
that describe the derivation history of the data. We automatically capture provenance 
data during the data integration stages and encode them in PML 2 [11] due to the 
provenance support from csv2rdf4lod. At the retrieval stage, we capture provenance, 
e.g. data source URL, time, method, and protocol used in data retrieval. We maintain 
provenance at the conversion stage, e.g. engine performing the conversion, antecedent 
data, and roles played by those data. At the publication stage, we capture provenance, 
e.g. agent, time, and context for triple store loads and updates. When we convert the 
regulations, we capture their provenance programmatically. We reveal these 
provenance data via pop up dialogs when the user selects a measurement site or 
facility, and utilize them to enable new applications like dynamic data source (DS) 
listings and provenance-aware cross validation. 

Data Source as Provenance 
We utilize data source provenance to support dynamic data source listing as follows: 

1. Newly gathered water quality data are loaded into the system as RDF graphs. 
2. When new graphs come, the system generates an RDF graph, namely the DS 

graph, to record the metadata of all the RDF graphs in the system. The DS graph 
contains information such as the URI, classification and ranking of each RDF 
graph. 

3. The system tells the user what data sources are currently available by executing a 
SPARQL query on the DS graph to select distinct data source URIs. 

4. With the presentation of the data sources on the interface, the user is allowed to 
select the data sources he/she trusts (see Figure 4). The system would then only 
return results within the selected sources.  

Provenance information can allow the user to customize his/her data retrieval request, 
e.g. some users may be only interested in data published within a particular time 
period. The SPARQL queries used in each step are available at [18]. 

Provenance-Aware Cross-Validation over EPA and USGS Data 
Provenance enables our system to compare and cross-validate water quality data 
originating from different source agencies. Figure 3 shows pH measurements 
collected at an EPA facility (at 41:59:37N, 71:34:27W) and a USGS site (at 
41:59:47N, 71:33:45W) that are less than 1km apart. Note that the pH values 
measured by USGS fell below the minimum value from EPA often and went above 
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the maximum value from EPA once. We found two nearby locations using a 
SPARQL filter:  

FILTER ( ?facLat < (?siteLat+"+delta+")  
&& ?facLat > (?siteLat-"+delta+")  
&& ?facLong < (?siteLong+"+delta+")  
&& ?facLong > (?siteLong-"+delta+")) 

 

Fig. 3. Data Validation Example 

4   SemantAqua: Semantic Water Quality Portal  

4.1   System Implementation 

Figure 4 shows one example where the semantic water quality portal supports water 
pollution identification. The user specifies a geographic region of interest by entering 
a zip code (mark 1). Users can customize queries from multiple facets: data source 
(mark 3), water regulations (mark 4), water characteristic (mark 6) and health concern 
(mark 7). After the portal generates the results, it visualizes the results on a Google 
map using different icons to distinguish between clean and polluted water sources and 
facilities (mark 5). The user can access more details about a site by clicking on its 
icon. The information provided in the pop up window (mark 2) include: names of 
contaminants, measured values, limit values, and time of measurement. The window 
also provides a link that displays the water quality data as a time series. 

The portal retrieves water quality datasets from EPA and USGS and converts the 
heterogeneous datasets into RDF using csv2rdf4lod. The converted water quality data 
are loaded into OpenLink Virtuoso 6 open-source edition 18  and retrieved via 
SPARQL queries. The portal utilizes the Pellet OWL Reasoner [16] together with the 
Jena Semantic Web Framework [2] to reason over the water quality data and water 
ontologies in order to identify water pollution events.  

The portal models the effective dates of the regulations, but only at the granularity 
of a set of regulations rather than per contaminant. We use provenance data to 
generate and maintain the data source facet (mark 3), enabling the user to choose data 
sources he/she trusts.  

                                                           
18 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/ 
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Fig. 4. Water Quality Portal In Action 

 

Fig. 5. Triple numbers for our initial four states with average computation 

4.2   Scaling Issues 

We wanted to test our approach in a realistic setting so we gathered data for an initial 
set of states to determine scaling issues. We have generated 89.58 million triples for 
the USGS datasets and 105.99 million triples for the EPA datasets for 4 states, which 
implies that water data for all 50 states would generate at least a few billion triples. 
The sizes of the available datasets are summarized in Figure 5. Such size suggests that 
a triple store cluster should be deployed to host the water data.19  

Table 2 includes class counts for our initial four state regulations. Our programmed 
conversion provides a quick and low cost approach for encoding regulations. It took 
us about 2 person-days to encode hundreds of rules. 

                                                           
19 We have recently obtained the data for the remaining 46 states and are working on the  

 completed US portal. 
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Table 2. Number of classes converted from regulations 

EPA CA MA NY RI 
83 104 139 74 100 

5   Discussion 

5.1   Linking to a Health Domain  

Polluted drinking water can cause acute diseases, such as diarrhea, and chronic health 
effects such as cancer, liver and kidney damage. For example, water pollution co-
occurring with new types of natural gas extraction in Bradford County, Pennsylvania 
has been reported to generate numerous problems20, 21. People reported symptoms 
ranging from rashes to numbness, tingling, and chemical burn sensations, escalating 
to more severe symptoms including racing heart and muscle tremors.  

In order to help citizens investigate health impacts of water pollution, we are 
extending our ontologies to include potential health impacts of overexposure to 
contaminants. These relationships are quite diverse since potential health impacts vary 
widely. For example, according to NPDWRs, excessive exposure to lead may cause 
kidney problems and high blood pressure in adults whereas infants and children may 
experience delays in physical or mental development.  

Similar to modeling water regulations, we programmatically extracted the 
relationships between contaminants and health impacts from a web page 22  and 
encoded them into OWL classes. We used the object property “hasSymptom” to 
connect the classes with their symptoms, e.g. health:high_blood_pressure. The classes 
of health effects are related to the classes of violations, e.g. LeadDrinkingWater 
RegulationViolation, with the object property hasCause. We can query symptom-
based measurements using this SPARQL query fragment: 
 

?healthEffect water:hasSymptom health:high_blood_pressure. 
?healthEffect rdf:type water:HealthEffect.  
?healthEffect water:hasCause ?cause.  
?cause owl:intersectionOf ?restrictions. 
?restrictions list:member ?restriction.  
?restriction owl:onProperty water:hasCharacteristic. 
?restriction owl:hasValue ?characteristic. 
?measurement water:hasCharacteristic ?characteristic. 
 

Based on this modeling, the portal has been extended to begin to address health 
concerns: (1) the user can specify his/her health concern and the portal will detect 
only the water pollution that has been correlated the particular health concern; (2) the 
user can query the possible health effects of each contaminant detected at a polluted 

                                                           
20 http://protectingourwaters.wordpress.com/2011/06/16/black-water-and-brazenness-gas-

drilling-disrupts-lives-endangers-health-in-bradford-county-pa/ 
21 http://switchboard.nrdc.org/blogs/amall/one_familys_life_in_the_gas_pa.html 
22 As obtained from the NPDWRs at http://water.epa.gov/drink/contaminants/index.cfm   
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site, which is useful for identifying potential effects of water pollution and for 
identifying appropriate responses (e.g., boiling water to kill germs, using water only 
for bathing but not for drinking, etc.) 

5.2   Time as Provenance 

Temporal considerations were non-trivial in regulation modeling. The thresholds 
defined in both the NPDWRs’ MCLs and state water quality regulations became 
effective nationally at different times for different contaminants23. For example, in the 
“2011 Standards & Guidelines for Contaminants in Massachusetts Drinking Water”, 
the date that the threshold of each contaminant was developed or last updated can be 
accessed by clicking on the contaminant’s name on the list. The effective time of the 
regulations has semantic implications: if the collection time of the water measurement 
is not in the effective time range of the constraint, then the constraint should not be 
applied to the measurement. In principle, we can use OWL2 RangeRestriction to 
model time interval constraints as we did on threshold.  

5.3   Regulation Mapping and Comparison 

The majority of the portal domain knowledge stems from water regulations that 
stipulate contaminants, pollution thresholds, and contaminant test options. Besides 
using semantics to clarify the meaning of water regulations and support regulation 
reasoning, we can also perform analysis on regulations. For example, we compared 
regulations from five different sources and shows substantial variation.  

By modeling regulations as OWL classes, we may also leverage OWL subsumption 
inference to detect the correlations between thresholds across different regulatory 
bodies and this knowledge could be further used to speed up reasoning. For example, 
the California regulations are stricter than the EPA regulations concerning 
Methoxychlor so we can derive two rules: 1) with respect to Methoxychlor, if a water 
site is identified as polluted according to the EPA regulations, it is polluted according 
to the California regulations; and 2) with respect to Methoxychlor, if the available 
data supports no threshold violation according to the California regulations, it will not 
exceed thresholds according to the EPA regulations. Since regulations such as these 
can be subclassed, reasoning efficiencies may be realized when multiple regulations 
are used to evaluate pollution.  

5.4   Scalability  

The large number of triples generated during the conversion phase prohibits 
classifying the entire dataset in real time. We have tried several approaches to 
improve reasoning speed: organize observation data by state, filter relevant data by 
zip code (we can derive county using zip code), and reasoning over the relevant data 
on one (or a small number of) selected regulation(s).  

The portal assigns one graph per state to store the integrated data. The triple count 
at the state level is still quite large: we currently host 29.45 million triples from EPA 
                                                           
23  Personal communication with the  Office of Research and Standards, Massachusetts 

Department of Environmental Protection. 
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and 68.03 million triples from USGS for California water quality data. Therefore, we 
refine the granularity to county level using a CONSTRUCT query (see below). This 
operation reduces the number of relevant triples to a manageable 10K to 100K size. 
 

CONSTRUCT {  
  ?s rdf:type water:MeasurementSite.  
  ?s water:hasMeasurement ?measurement.   
  ?s water:hasStateCode ?state.  
  ?s wgs84:lat ?lat.      ?s wgs84:long ?long.  
  ?measurement water:hasCharacteristic ?characteristic.  
  ?measurement water:hasValue ?value.  
  ?measurement water:hasUnit ?unit.  
  ?measurement time:inXSDDateTime ?time.  
  ?s water:hasCountyCode 085. } 
WHERE { GRAPH <http://sparql.tw.rpi.edu/source/usgs-
gov/dataset/national-water-information-system-nwis-
measurements/06> 
{ ?s rdf:type water:MeasurementSite.  
  ?s water:hasUSGSSiteId ?id.  
  ?s water:hasStateCode ?state.      
  ?s wgs84:lat ?lat.      ?s wgs84:long ?long. 
  ?measurement water:hasUSGSSiteId ?id. 
  ?measurement water:hasCharacteristic ?characteristic. 
  ?measurement water:hasValue ?value.  
  ?measurement water:hasUnit ?unit.  
  ?measurement time:inXSDDateTime ?time.  
  ?s water:hasCountyCode 085. }}  

5.5   Maintenance Costs for Data Service Provider 

Although government agencies typically publish environmental data on the web and 
allow citizens to browse and download the data, not all of their information systems 
are designed to support bulk data queries. In our case, our programmatic queries of 
the EPA dataset were blocked. From a personal communication with the EPA, we 
were surprised to find that our previous continuous data queries were impacting their 
operations budget since they are charged for queries. Consequently, we filed an online 
form requesting a bulk data transfer from the EPA which has recently been processed. 
In contrast, the USGS provides web services to facilitate periodic acquisition and 
processing of their water data via automated means. 

5.6   System Evaluation 

We provide an online questionnaire 24  to collect feedback from users. In the 
questionnaire, we ask the users to identify themselves as experts or lay users, then ask 
them to rate the data quality, responsiveness, and user interface of the portal. The 
questionnaire also solicits free text comments from users. We will report preliminary 
results of this ongoing user study at the conference. 
                                                           
24 http://was.tw.rpi.edu/swqp/questionnaire/portal_questionnaire.php 
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6   Related Work 

Three areas of work are considered most relevant to this work, namely knowledge 
modeling, data integration, and provenance tracking of environmental data. 

Knowledge-based approaches have begun in environmental informatics. Chen et al. 
[5] proposed a prototype system that integrates water quality data from multiple 
sources and retrieves data using semantic relationships among data. Chau [4] presented 
an ontology-based knowledge management system (KMS) to enable novice users to 
find numerical flow and water quality models given a set of constraints. OntoWEDSS 
[3] is an environmental decision-support system for wastewater management that 
combines classic rule-based and case-based reasoning with a domain ontology. 
Scholten et al. [14] developed the MoST system to facilitate the modeling process in 
the domain of water management. The Registry of EPA Applications, Models and 
Databases (READ)25 supports management of information resources. It collects life 
cycle phase information, how the resource supports environmental statutes, and 
whether the resource interfaces with other EPA information resources. A 
comprehensive review of environmental modeling approaches can be found in [17]. 
SemantEco and SemantAqua differ from these projects since they support provenance-
based query and data visualization. Moreover, SemantAqua is built upon standard 
semantic technologies (e.g. OWL, SPARQL, Pellet, Virtuoso) and thus can be easily 
replicated or expanded.  

Data integration across providers has been studied for decades by database 
researchers. In the area of ecological and environmental research, shallow integration 
approaches are taken to store and index metadata of data sources in a centralized 
database to aid search and discoverability. This approach is applied in systems such as 
KNB26 and SEEK27. Our integration scheme combines a limited, albeit extensible, set 
of data sources under a common ontology family. This supports reasoning over the 
integrated data set and allows for ingest of future data sources. 

There also has been a considerable amount of research efforts in semantic 
provenance, especially in the field of eScience. myGrid [19] proposes the COHSE 
open hypermedia system that generates, annotates and links provenance data in order 
to build a web of provenance documents, data, services, and workflows for 
experiments in biology. The Multi-Scale Chemical Science [12] (CMCS) project 
develops a general-purpose infrastructure for collaboration across many disciplines. It 
also contains a provenance subsystem for tracking, viewing and using data 
provenance. A review of provenance techniques used in eScience projects is 
presented in [15]. While these eScience projects design their own schemes for 
modeling provenance, the SemantAqua portal encodes provenance with PML 2, 
which is a general purpose interlingua for sharing explanations generated by various 
automated systems. These eScience projects keep provenance for uses like improving 
data quality, facilitating audits, and data replicability. Our portal demonstrates that 
provenance also can be used for developing and customizing web applications (e.g. 
generating the data source facet). 
                                                           
25 http://iaspub.epa.gov/sor_internet/registry/systmreg/home/overview/home.do 
26 Knowledge Network for Biocomplexity Project. http://knb.ecoinformatics.org/index.jsp 
27 The Science Environment for Ecological Knowledge. http://seek.ecoinformatics.org 
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7   Conclusions and Future Work 

We presented a semantic technology-based approach to ecological and environmental 
monitoring and described our work using this approach in the Tetherless World 
Constellation SemantEco approach and the SemantAqua Portal. SemantAqua supports 
both non-expert and expert users in water quality monitoring. We described the 
overall design and highlighted some benefits from utilizing semantic technologies, 
including: the design of the ontologies, the methodology used to perform data 
integration, and the encoding and usage of provenance information generated during 
data aggregation. The SemantAqua portal demonstrates some benefits and potential of 
applying semantic web technologies to environmental information systems. 

A number of extensions to this portal are in process. First, only four states' 
regulations have been encoded. We intend to encode the regulations for the remaining 
states whose regulations differ from the federal regulations. Second, data from other 
sources, e.g. weather, may yield new ways of identifying pollution events. For 
example, a contaminant control strategy may fail if heavy rainfall causes flooding, 
carrying contaminants outside of a prescribed area. It would be possible with real-
time sensor data to observe how these weather events impact the portability of water 
sources in the immediate area. We are also applying this approach to other monitoring 
topics, e.g. air quality, food safety, and health impacts.  
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