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Abstract. We investigate the discriminant power of two local and two
global texture measures on virus images. The viruses are imaged using
negative stain transmission electron microscopy. Local binary patterns
and a multi scale extension are compared to radial density profiles in the
spatial domain and in the Fourier domain. To assess the discriminant po-
tential of the texture measures a Random Forest classifier is used. Our
analysis shows that the multi scale extension performs better than the
standard local binary patterns and that radial density profiles in compar-
ison is a rather poor virus texture discriminating measure. Furthermore,
we show that the multi scale extension and the profiles in Fourier domain
are both good texture measures and that they complement each other
well, that is, they seem to detect different texture properties. Combining
the two, hence, improves the discrimination between virus textures.

Keywords: virus morphology, texture analysis, local binary patterns,
radial density profiles.

1 Introduction

To image viruses using negative stain transmission electron microscopy (TEM)
has proven to be an invaluable tool in early virus diagnostics, [I2]. Viruses
show different surface texture when imaged using TEM. This fact has been uti-
lized from the very beginning of virology when the advances in TEM technology
walked hand in hand with the discovery of new viruses and the creation of a
virus taxonomy.

The analysis of a virus sample using TEM typically means an visual inspec-
tion performed at the microscope. The main problems with this procedure are
the need for an expert to perform the analysis at the microscope and that the
result is highly dependent on the expert’s skill and experience. To make virus
diagnostic using TEM more useful, automatic analysis would hence be desirable.
The analysis presented in this paper is part of a project with the aim to develop
a fully automatic system for virus diagnostics based on TEM in combination
with automatic image analysis.

Viruses vary in shape from icosahedral to highly pleomorphic particles and
different virus types have different sizes. The appearance of virus particles in
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TEM images can be divided into properties like size, shape and texture. While
size and shape can be used to exclude some virus types they can not, by them-
selves, confirm a specific virus type. Many viruses show a distinct and recurring
texture making it an interesting property to analyse and use to discriminate
between different virus types.

Very little work has been reported on analysing virus texture in TEM images.
In [3] ring filters in the Fourier power spectrum are used as features to discrim-
inate between four icosahedral viruses. In [4] higher order spectral features are
utilized to differentiate between the same four icosahedral viruses. There is no
consensus definition of what texture is, but the general opinion often include
some repetitive intensity variation. The definition of a good texture measure
is hence highly dependent on the problem at hand. When a measure is used
in a classification procedure it becomes possible to assess its capabilities and
qualities.

Local binary patterns (LBP) emerged in the mid ’90s as a local texture mea-
sure [BJ6]. LBP has along with several extensions become a popular texture
measure in several real-world applications, see e.g., [7I8]. The thesis by Méenpaa
[9] gives a good overview of LBP and some of it extensions.

Another way of describing the intensity variations in an object is to compute
a radial or density profile (RDP). In [10] radial density profiles are used to dis-
criminate between three maturation stages of human cytomegalovirus capsids in
TEM images of cell sections. [IT/12] are examples of their use in cyro-electron
microscopy where DNA packing is compared between two virus types and at-
tachment sites on Simian Cytomegalovirus capsids are analysed, respectively.

In this paper the basic concepts of LBP and RDP, along with some variations,
are investigated for the problem of discriminating between virus textures. We use
Random Forest [13], an ensemble classifier based on decision trees, to enable a
quantitative comparison of how the different texture measures can discriminate
between 15 virus types.

2 Material

The data set consists of 15 different virus types represented with 100 TEM im-
age patches each. The virus types are of different sizes and shape. However, the
diameter (most common cross section for non spherical viruses) is relatively con-
stant within a virus type. The virus types range from 25 to 270 nm in diameter
and their shapes vary from icosahedral to highly pleomorphic (for example like
boiled spaghetti). The image patches are disk shaped cutouts centred on auto-
matically segmented virus particles using the segmentation method presented
in [14]. The viruses have been imaged at different magnifications in the TEM
with a pixel size ranging from 0.5 to 5 nm. To get comparable texture samples
we resample the images to two specific scales using bilinear interpolation. In the
first, which we call fized scale, the size of a pixel is 1 nanometer. In the second,
which we call object scale, the radius of a virus particle is represented by 20
pixels. In Fig. [[l an image patch of each virus type in the object scale is shown
along with the virus name and diameter.
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1) Adenovirus 8onm  2) Astrovirus 25snm  3) CCHF 170nm 5) Dengue 45nm

4) Cowpox 270nm

9) Marburg 8onm 10) Norovirus 30nm

14) Rotavirus 8onm  15) West Nile 50nm

Fig. 1. Example images of the 15 virus types in the data set resampled to object scale.
Following the virus name is the approximate particle diameter of each virus type. The
dashed circle marks the texture patch used in the analysis.

3 Methods

3.1 LBP

The local binary pattern (LBP) at a pixel g. with the position (z.,y.) in an
image I is computed by thresholding a number, IV, of neighbour points, p, evenly
distributed at a radius R around ¢.. The position of the neighbour point p where
p€0,...,N —1], is given by: (z. + Rcos(2mp/N) , y. — Rsin(27p/N)).

The LBP code is then the sequence of zeros and ones from the thresholded
values in the neighbour points. If a point p does not coincide with a pixel centre,
bilinear interpolation is used to compute the gray value in p. The LBP code can
be made rotational invariant, LBP™, by circularly shifting the binary number
until the minimum value is obtained. Furthermore we can restrict our binary
codes, considering only uniform binary patterns, LBP™", further limiting the
number of possible codes. Uniform binary patterns are patterns with at the
most two spatial transitions between 0 and 1 or 1 and 0. Detailed definitions of
LBP, rotational invariance and uniformity can be found in [9]. The rotational
invariant and uniform (allowing < 2 transitions) LBP using N samples at the
radius R is denoted LBP?}%. The LBP measure of a set of pixels is then the
histogram of occurring LBP codes.
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3.2 LBPF

Extending LBP to multiple scales opens up many design options, whereof sev-
eral alternatives are presented in [9]. A straight forward extension of LBP is to
compute several LBPﬁ\if’ g With increasing R where the points are sampled using
Gaussian kernels. This is denoted LBP 5\1, R» where the additional F stands for
filtered. The standard deviation of the Gaussian kernels and the sample points
are selected to cover the neighbourhood as well as possible while minimizing the
overlap of kernels. We have used an exponentially growing radius R and Gaussian
kernels computed as described in [9]. The LBPF codes are then concatenated
into one feature vector.

3.3 RDP

The radial mean intensity, f, at radius r from the center pixel q. in an image
is defined as: 1
qeEN
N ={q: [la—qcll, € (r = 0.5,7 + 0.5}, (2)

where q is a pixel at radius r from q. and N is the set of pixels at radius r from
Qe |N| is the number of pixels in the set N. The radial density profile with n
radii, RDP,,, computed for the pixel q. is:

RDPTL:[f(Qcal)*fqu f(QCaQ)*fqu f(QCvn)*ch]v (3)
where f is the mean value of all f(q.,7), r € [1,2, ... ,n].
3.4 FRDP

The FRDP is computed in the same way as the RDP but using the Fourier
magnitude spectra in a log. scale as the input image. In this way, the FRDP
shows a profile of frequencies occurring in the input image I. FRDP can be
interpreted as a generalization of the spectral rings used in [3].

3.5 Classification

To get objective measures of the performances of the investigated texture mea-
sures we use the Random Forest classifier. That is an example of an ensemble
classifier based on bagged decision trees introduced by Breiman in [I3]. When
the ensemble is created a new bootstrap sample is drawn for each new tree. When
a tree is grown only a random subset of the feature values are used, increasing
the diversity among trees even further. The error rate of the built ensemble clas-
sifier can be estimated through the samples left out of the bootstrap samples,
called “out-of-bag” data by Breiman. We grew 200 trees and the increase in per-
formance per added tree levelled out between 100 and 200 trees meaning that
100 trees is a large enough ensemble. The number of feature values to select at
random for each decision split is set to the square root of the number of feature
values, proposed by Breiman as a rule of thumb.
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Fig. 2. Estimated classification errors for the Random Forest classifier for the different
texture measures. The boxes stretch from the lower to the upper quartile and the line
marks the median. The whiskers show min and max in the data excluding outliers.
Outliers (x) are data points at least 1.5 times the size of the box away from the box.

4 Results

For the investigation in this paper we have compared i) LB 22, ii) LBPgiEQ, i) a
multi scale LBPF composed of LBP g{l + ¥o4 + Es5.4 V) the uniform variant
LBPFEY® + 42 + 542 v) RDPy and vi) FRDP3. The latter two measures
are of global character while the LBP variations are of local character. Figure
shows the result. We found that the LBPF" in fixed scale and the FRDP in
object scale are the two most promising texture measures investigated.

For LBPx r a range of parameter values were tested: N € [4,8,16], R €
[1,2,3,4]. For LBPF the following sets of N were tested: Ny = [4,8,8], No =
[4,8,16], N3 = [8,8,8], Ny = [8,8,16] were tested together with R calculated
according to [9]. Many parameter combination resulted in similar discriminant
power and the values selected were the best performing options.

The result shows that LBP and its variations generally performed better in the
fixed scale. From Fig.[2lit is clear that applying the uniformity restriction results
in a poorer discrimination between the virus types in the fixed scale. Among the
1,500 texture patches in the data set, LBPg{‘éZ resulted in 263 more samples
being wrongly classified in the fixed scale compared to using LBPg{Q. Applying
the uniformity restriction in the LBPF also resulted in a poorer classification
result in the fixed scale, but only with 93 more samples incorrectly classified.
Most prominent, removing the uniformity restriction for samples of the Cowpox
virus the error decreased from 54% to 26% showing that for certain virus textures
important discriminant information is found in the non uniform patterns.

Figure [ shows the confusion matrices for the classification using LBP, LBPF,
RDP and FRPD for the fixed scale (a), and the object scale (b). These matri-
ces display the information constituting the boxes for these texture measures in
Fig.[2l From the figures it is clear that RDP discriminates between the virus tex-
tures rather poorly (week diagonal and relatively high values everywhere in the
matrix). It is also easy to see that both LBP and LBPF perform better in the fixed
scale (generally lower off-diagonal values), and that the opposite is true for RDPF.
Both Fig.Bland Fig.[2show that the texture measures best discriminating the virus
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textures are LBPF in the fixed scale and RDPF in the object scale. By carefully
analysing their confusion matrices one can see that LBPF clearly perform better
for certain virus textures e.g. 4, 6 and 12, whereas RDPF perform better for 15.
Combining these two measures would probably give an even better discrimination.
That is in fact the case which is shown in Fig. [l In the confusion matrix, Fig.[ a),
the off-diagonal values are lower, and the values on the diagonal are much higher
compared to the confusion matrices for each of the two texture measures. It is also

®@
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Fig. 3. Resulting confusion matrices, i.e., from the Random Forest classification for the
texture measures, from left to right: LBP", LBPF", RDP, FRDP for a) image patches
in fixed scale and b) object scale
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Fig. 4. a) Resulting confusion matrix after combining the LBPF"™ measure in the fixed
scale with the FRDP in the object scale. b) Total error in classification for each virus
type. The median value is marked with a horizontal line.
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clear that the two measures provide complementary information for many of the
virus textures as using both in the classification results in better discrimination
than using the best of the two for each virus class, see e.g. virus 5, 8, 9, and 13.
Figuredb) shows the classification result from using the combination of the two
measures for each of the virus classes. The median classification error rate is 13 %
which should be compared to 21% for LBPF in the fixed scale and 22% for RDPF
in the object scale.

5 Discussion

When the uniformity restriction was introduced in [I5] the authors show that
the discriminant power was mainly made up by the uniform patterns. This re-
striction is commonly regarded as an improvement upon the basic LBP when
applied. However, our results show that the non uniform patterns contribute to
the discriminant power of LBP and LBPF for the virus texture data.

The approach to handle the different sizes of the viruses was to resample the
images into a fixed scale and into an object scale. From Fig. 2] we can conclude
that the global measures generally score better in the object scale while the
opposite can be observed for the two LBP-based measures.

The choice of classifier can of course be discussed and with a different clas-
sifier, e.g., SVM, NN or AdaBoost, the result would most likely have looked
slightly different. We have selected the Random Forest classifier based on previ-
ous positive experiences using similar measures and on a comparison of classifiers
(Random Forest, SVM, GMM, AdaBoost) on a similar problem. However, this
paper is not about selecting the best suited classifier but rather using a classifier
as a tool to evaluate our texture measures.

Future work includes exploring some of the many possibilities within the LBP
framework to make a local texture descriptor that is more robust to noise. Fur-
ther, combinations of texture measures and size and shape descriptors as well
as other a priori knowledge about the virus sample type will be used in the dis-
crimination problem present in our intended real-world application. For example
haemorrhagic fever viruses such as CCHF, Dengue and Ebola are rarely found
in fecal samples. Moreover, many virus particles will be analysed and classified
in each patient sample and therefore a certain degree of incorrect classifications
do not pose a problem.
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